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Calcium ions (Ca2+) play a major role in the cardiac excitation-contraction coupling.
Intracellular Ca2+ concentration increases during systole and falls in diastole thereby
determining cardiac contraction and relaxation. Normal cardiac function also requires
perfect organization of the ion currents at the cellular level to drive action potentials and to
maintain action potential propagation and electrical homogeneity at the tissue level. Any
imbalance in Ca2+ homeostasis of a cardiac myocyte can lead to electrical disturbances.
This review aims to discuss cardiac physiology and pathophysiology from the elementary
membrane processes that can cause the electrical instability of the ventricular myocytes
through intracellular Ca2+ handling maladies to inherited and acquired arrhythmias. Finally,
the paper will discuss the current therapeutic approaches targeting cardiac arrhythmias.

Keywords: calcium signalling, cardiac arrhythmias, catecholaminergic polymorphic ventricular tachycardia, long
QT syndrome, atrial fibrillation, reentry, early afterdepolarization, delayed afterdepolarization
INTRODUCTION

Excitation-contraction coupling (E-C coupling) of the cardiac myocytes is a well studied
phenomenon. We know that the calcium ion (Ca2+) plays a major role in controlling
contraction and force, a feature that was originally described by Sidney Ringer more than a
century ago (Ringer, 1883). Since this discovery, it has become clear that changes in
intracellular Ca2+ concentration ([Ca2+]i) have a significant role in virtually all parts of the
human body. Of particular importance is the fact, that within cardiac myocytes, [Ca2+]i changes
must be tightly regulated, so that the heart can beat rhythmically. This means that during the
cardiac systole, [Ca2+]i has to increase to certain levels to make contraction occur and must fall
Abbreviations: AF, atrial fibrillation; AP, action potential; APD, action potential duration; AV, atrioventricular; BrS, Brugada
syndrome; CaM, calmodulin; CaMKII, Ca2+/calmodulin-dependent protein kinase II; CICR, Ca2+-induced Ca2+ release;
CPVT, catecholaminergic polymorphic ventricular tachycardia; CSQ2, calsequestrin 2; DAD, delayed afterdepolarization;
EAD, early afterdepolarization; EC, excitation-contraction coupling; ERS, early repolarization syndrome; HF, heart failure;
ICD, implantable cardiac defibrillator; IVF, idiopathic ventricular fibrillation; LQTS, long QT syndrome; NCX, sodium-
calcium exchange; NFAT, nuclear factor of activated T-cells; PKA, protein kinase A; PLN, phospholamban; PMCA, plasma
membrane Ca2+-ATPase; PVC, premature ventricular contraction; RSV, relative short term beat-to-beat variability of action
potential duration; RyR, ryanodine receptor; SA, sinoatrial; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SOCE, store
overload-induced Ca2+ entry; SOICR, store overload-induced Ca2+ release; SQTS, short QT syndrome; SR, sarcoplasmic
reticulum; SV, short term beat-to-beat variability of action potential duration; VF, ventricular fibrillation; VT,
ventricular tachycardia.
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in diastole, allowing the muscle to relax and prepare for the
next cardiac cycle. E-C coupling has been reviewed in detail
(Bers, 2002; Eisner et al., 2017), here we consider the
elementary steps and the events that can lead to electrical
disturbances (Figure 1).

The normal cardiac action potential (AP) originates in the
sinoatrial node and propagates through the heart. In the
ventricle the initial depolarization opens voltage-gated
sodium channels leading to further depolarization which, in
turn, opens the L-type Ca2+ channels, causing a large Ca2+-
influx (Figure 1A). Some Ca2+ can also enter via T-type Ca2+

channels and reverse mode Na+/Ca2+ exchange (NCX)
(Kohomoto et al., 1994; Sipido et al., 1997). This Ca2+ entry
triggers a process known as calcium-induced calcium release
(CICR), in which Ca2+ is released from the sarcoplasmic
reticulum (SR) into the cytoplasm via ryanodine receptors
(RyR), allowing Ca2+ to bind to the myofilament protein
troponin C, activating the contractile machinery. Normal
cardiac function also requires relaxation to occur; this
results from a decrease of free cytoplasmic Ca2+ levels.
Several Ca2+ transport pathways are involved in this process,
as Ca2+ reuptake into the SR by the SR Ca2+-ATPase (SERCA),
Ca2+ extrusion by the sarcolemmal NCX and plasma
membrane Ca2+-ATPase (PMCA) (Figure 1B) (Bers, 2000).
This normal cardiac function requires perfect coordination of
the ion currents and intracellular processes, as any imbalance
in Ca2+ homeostasis of a cardiac myocyte can lead to electrical
disturbances (from cellular AP prolongation to complex
arrhythmic storms) (Eisner et al., 2017; Eisner, 2018).

Here we review the role of Ca2+ in generating and
maintaining cardiac arrhythmias from basic arrhythmia
Frontiers in Pharmacology | www.frontiersin.org 2
mechanisms to recent progresses in pharmacological challenges
and possible future therapies.
CALCIUM IN PATHOPHYSIOLOGY,
ARRHYTHMIA MECHANISMS

Arrhythmiamechanisms havemultiscale dynamics in the heart. The
lower end is the molecular scale, originating from the stochastic
behavior of ion channels, resulting from thermodynamic
fluctuations (Qu and Weiss, 2015). Next is the cellular scale, with
differences in the shape of the APs originating from distant parts of
the myocardium (Figure 2A). Under some diseased conditions,
several mechanisms can lead to electrical disturbances at the cellular
level, including early or delayed afterdepolarizations (EAD or DAD,
respectively) (Figures 3A–D). Whole-cell Ca2+ oscillations,
developing into propagating Ca2+ waves arise when the molecular
and cellular dynamics merge at the tissue and organ level. The lower
and higher scales tend to have a bidirectional information flow. A
good example is when EADs arising during an AP due to abnormal
ion currents and Ca2+ dynamics, can bring an extra amount of Ca2+

into the cell due to L-type Ca2+ channel reopening and potentiate
Ca2+ waves. These multiscale dynamics can lead to life threatening
complex arrhythmias.

Normal cardiac automaticity originates in the sinoatrial (SA)
node. If SA node impulse generation is impaired, atrioventricular
node (AV node) and Purkinje fibers can show automatic activity.
These secondary pacemakers are also called latent or subsidiary
pacemakers (Antzelevitch and Burashnikov, 2011). SA node
pacemaker activity depends on interactions of membrane
potential and [Ca2+]i. This “coupled-clock” pacemaker system
FIGURE 1 | Schematic diagram of the cardiac excitation-contraction coupling. (A) Structures involved in Ca2+ transport in cardiac mycocytes. Red trace shows a
typical systolic Ca2+ transient. Briefly, during the Ca2+-induced Ca2+ release process, Ca2+ entering the cell via L-type Ca2+ channels releases a larger amount of
Ca2+ from the sarcoplasmic reticulum to activate the contractile machinery. Ca2+ extrusion requires NCX, PMCA, and SERCA. (B) Detailed section of the dyad
showing the major proteins involved in Ca2+ cycling. Reproduced from Eisner et al. used with permission (Eisner et al., 2017). b-AR, b adrenoceptor; NCX, Na+-Ca2+

exchange; PMCA, plasma membrane Ca2+-ATPase; RyR, ryanodine receptor; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; CSQ, calsequestrin; PLN,
phospholamban.
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is produced by membrane proteins, driving the AP and the
intracellular Ca2+ cycling molecules (Figure 4) (Maltsev et al.,
2006; Lakatta, 2010; Joung et al., 2011).

The “membrane clock” implies sarcolemmal proteins,
continuously driving the membrane potential to more positive or
more negative values. The most important and well-known
participant is the hyperpolarization-activated funny current (If),
working mainly during early diastolic depolarization. The
consequent depolarization opens Ca2+ channels (ICa,T and ICa,L) and
the pacemaker (slow type) action potential occurs. As in the case of the
working myocardium, K+ currents repolarize the membrane. In the
last two decades it has become clear that spontaneousCa2+ release in a
cardiac cell is not always pathological. In the “calcium clock”
mechanism, spontaneous SR Ca2+ release events, the Ca2+ sparks
activate INCX and cause late diastolic membrane depolarization.
Coupled clock pacemaker system comprises functional interactions
between themembrane and calcium clock (Figure 4) (Vinogradova et
al., 2006; Lakatta and DiFrancesco, 2009; Lakatta et al., 2010).

For physiological contraction and relaxation, not only
pacemaker automaticity, but also the impulse conduction
system needs to work properly. Spontaneous depolarization
from the SA node propagates and depolarizes the distant parts
of the cardiac muscle (Figure 2B), via the SA node, AV node,
Bundle of His, Bundle branches, and Purkinje fibers pathway.
FIGURE 2 | Cellular physiological electrical activities. (A) Transmural
heterogeneity in the cardiac ventricular action potential, showing (from left to
right) recordings from: subendocardium, midmyocardium, and
subepicardium. Note the spike-and-dome action potential configuration in the
subepicardium. ENDO, subendocardial mycocyte; MID, midmyocardial “M”

myocyte; EPI, subepicardial myocyte. (B) Series of typical subepicardial
ventricular action potentials at normal pacing activity.
FIGURE 3 | Cellular pathophysiological electrical activities. (A) Phase 2 early afterdepolarization (EAD), (B) Phase 3 EAD, (C) Late-phase 3 EAD, (D) Delayed
afterdepolarization (DAD) manifesting triggered activity. Ca2+ has an important role in generating afterdepolarizations. Underlying mechanisms are described in the
relevant sections. (E) Automaticity (spontaneous membrane potential oscillations) occurs if the membrane potential of the cells shift to more positive values causing
abnormal activity. (F) Cardiac voltage alternans, manifesting a long-short-long-short pattern. (G) Short term beat-to-beat variability of the action potential duration.
(a), (b), and (c) show different time points after interventions that increase action potential duration and beat-to-beat variability leading to EAD generation. Right panel
of (G) shows action potential duration at 90% of the repolarization (APD90) as a function of time.
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Cardiac arrhythmia mechanisms can be divided into two
main categories: abnormal impulse formation and abnormal
impulse conduction. In general, these arrhythmic events occur
when the electrical activity of the heart is slower or faster than
normal and/or becomes irregular.

Abnormal Impulse Generation
Focal activity (enhanced or abnormal impulse generation) is an
important arrhythmogenic mechanism and consists of abnormal
automaticity and triggered activity.

Automaticity
In the normal human heart, the SA node generates the propagating
APs anddetermine the heart rate. In the case of parasystole, when the
primary pacemaker is bordered by ischemic, infarcted regions the
impulse cannot leave the SA node. Under these conditions,
parasystolic pacemakers can take over pacemaker activity and fire
APs at a lower rate compared to that of the SA node (Gussak et al.,
2003). The AV node produces a junctional rhythm of 40 to 60 bpm
and Purkinje fibers of about 20 to 40 bpm (Tse, 2016). In diseased
hearts (e.g. heart failure, HF)membrane potential of pacemaker cells
can shift to more positive values and this depolarization causes
abnormal automaticity. Enhanced activity (i.e. tachycardia) increases
rate of AP discharge by three mechanisms: threshold potential shifts
Frontiers in Pharmacology | www.frontiersin.org 4
to more negative, maximum diastolic potential shifts to more
positive, and the rate of phase 4 depolarization increases
(Figure 3E) (Jalife et al., 2009).

Early Afterdepolarization
Aside from the abnormal automaticity, the most common causes
of focal activity are the early and delayed afterdepolarizations
(EAD and DAD, respectively). EADs occur before the terminal
repolarization (phase 2 and phase 3 repolarization) of the AP,
while DADs occur after the repolarization when membrane
potential reaches the resting levels (Figure 5).

EADs usually occurwhen repolarization reserve is compromised,
i.e. reduced outward currents (IK1, IKr, IKs) and/or increased inward
currents (INa, window ICa,L, INCX) (Damiano andRosen, 1984; Sipido
et al., 2007; Benitah et al., 2010; Horvath et al., 2015; Karagueuzian et
al., 2017), that is, there is a change in the net membrane current
during the plateau (Figure 5A). Inmost of the cases these conditions
cause prolongation of the AP, allowing ICa,L to recover from
inactivation (Chiamvimonvat et al., 2017) and as a positive
feedback loop, triggering an AP (January and Riddle, 1989)
(Figure 3A). Alternatively, at membrane potentials negative to the
activation threshold for ICa,L, spontaneous Ca

2+ release from the SR
can activate INCX, driving a depolarizing current by reactivating INa
(Figure 3B) (Szabo et al., 1994). In addition, although EADs usually
FIGURE 4 | The origin of the heartbeat: coupled-clock pacemaker system in the sinoatrial cells. The pacemaker activity of the SA node originates from the membrane and
calcium clock mechanisms. The former is composed of the sarcolemmal channel proteins, and the latter results from sarcoplasmic reticulum and sarcoplasmic Ca2+ turnover. At
end of the SA action potential the hyperpolarization-activated If depolarizes the membrane to a level where Ca2+ channels open. In addition, during late diastole, spontaneous SR
Ca2+ releases further depolarize the membrane by activating INCX. Ca

2+ can bind to calmodulin and activate adenylyl cyclase (AC). High constitutive activation of AC leading to
high basal level of cAMP (which is needed for protein kinase A-dependent phosphorylation) in SA node cells has been suggested to contribute to the Ca2+ overload state. PKA-
dependent phosphorylation of phospholamban, ICa,L, and RyR promotes spontaneous Ca2+ release. Blue shows the membrane clock and red shows the calcium clock
mechanism. Solid arrows show the Ca2+-induced Ca2+ release process and spontaneous Ca2+ release events via RyR; dashed arrows show the phosphorylation targets of the
cAMP–PKA pathway. ICa,L, L-type Ca2+ current; ICa,T, T-type Ca2+ current; INCX, Na

+-Ca2+ exchange; If, funny current; Ito, transient outward K+ current; IKs, slow component of
delayed rectifier K+ current; IKr, rapid component of delayed rectifier K+ current; IK1, inward rectifier K+ current; IKur, ultra rapid component of delayed rectifier K+ current; RyR,
ryanodine receptor; SERCA, sarcoplasmic reticulum Ca2+-ATPase; PLN, phospholamban; CaM, calmodulin; AC, adenylyl cyclase; PKA, protein kinase A; CICR, Ca2+-induced
Ca2+ release; SA, sinoatrial.
February 2020 | Volume 11 | Article 72

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Kistamás et al. Calcium and Cardiac Arrhythmias
occurwhen theAP duration (APD) is prolonged, some data suggests
a novel mechanism, where even shortening of APD can be
responsible for generation of EADs (late-phase 3 EAD)
(Burashnikov and Antzelevitch, 2003). Late-phase 3 EADs occur
particularly under elevated intracellular Ca2+ loading (i.e. large Ca2+

transient) and are considered as a hybrid between EAD and DAD
(Figure 3C). At normal APD and at membrane potentials negative
to the equilibrium of the INCX (and ICl(Ca)), these Ca2+-mediated
currents are weakly inward. However, if APD is abbreviated, they
become strongly inward, allowing an INCX-driven depolarizing
current, when the shorter repolarization allows a stronger (and not
spontaneous) Ca2+ release from the SR (Burashnikov and
Antzelevitch, 2006). The EAD generated under these
circumstances interrupts the final phase of the AP. A key
difference compared to the previously described EADs (and
DADs) is a non-spontaneous Ca2+ release in generating late-phase
3 EADs (Figure 5). Late-phase 3 EAD also has clinical relevance, as
its appearance is immediately following termination of other
tachyarrhythmias, such as atrial flutter and fibrillation or
ventricular tachycardia and fibrillation (Burashnikov and
Antzelevitch, 2006).

The contribution of spontaneous SR Ca2+ release and an inward
INCX to the generation of EADs has been described (Priori and Corr,
1990; Volders et al., 1997), furthermore, Volders et al. elegantly
demonstrated in isoproterenol induced canine ventricular myocytes
Frontiers in Pharmacology | www.frontiersin.org 5
that earlyCa2+ aftertransients and their aftercontractions precede the
upstroke of the subsequent EAD so that they are a primary event
inducing EADs (Volders et al., 1997). The time course of the EAD
generation is characterized by a conditional phase (in other words,
an initial delay in repolarization, defined by net membrane current)
and the EAD upstroke. In this regard, a significant role of INCX has
been suggested in the initial delay in repolarization, thus in the
conditional phase (Volders et al., 2000).

In previous studies, distinct spatial features of afterdepolarization-
associated Ca2+ transients had been shown; i.e. a heterogenous pattern
indicating focal, spontaneous SR Ca2+ release in DADs and a
homogenous pattern suggesting ICa,L-induced Ca2+ release in EADs
(Miura et al., 1993;Miura et al., 1995;DeFerrari et al., 1995).However,
it must be noted, under certain circumstances (adrenergic stimulation
mediated sudden [Ca2+]i changes), Ca

2+ release during an EAD is not
governed by sarcolemmal Ca2+ influx, so that it is spontaneous, which
resembles as a heterogenous pattern, just like in the case of DADs
(Volders et al., 1997).

In our previous work, EADs were evoked by IKr blockade
(dofetilide), activation of Na+ current (INa,L) (veratridine), and
activation of ICa,L (BAY K8644) at slow pacing rates. Additional
application of the Ca2+ chelator BAPTA-AM decreased [Ca2+]i as
expected, but either reduced EAD frequency in the presence of
dofetilide and veratridine or further increased EAD frequency in
the presence of BAY K8644 (direct augmentation of the ICa,L
FIGURE 5 | Basic mechanisms of ectopic activity. (A) Factors involved in the generation of early afterdepolarizations (EAD). In general, EADs occur when outward
currents are reduced (reduced repolarization reserve) and/or the inward currents are enhanced. The currently known types of EADs are consequencies of different
etiologies, indicated on (A). Detailed description in the text. Membrane potential recording shows a typical phase 2 EAD. (B) Delayed afterdepolarizations (DAD)
originate from Ca2+ overload and consequently, spontaneous SR Ca2+ release which, in turn, generates a depolarizing transient inward (Iti) current. Suprathreshold
depolarization can elicit triggered activity. Membrane potential recording shows a typical DAD. EAD, early afterdepolarization; DAD, delayed afterdepolarization; ICa,L,
L-type Ca2+ current; INa, Na

+ current; IKs, slow component of delayed rectifier K+ current; IKr, rapid component of delayed rectifier K+ current; IK1, inward rectifier K+

current; INCX, Na
+-Ca2+ exchange; INS, nonselective Ca2+-sensitive cationic currents; ICl(Ca), Ca

2+-activated chloride current; Iti, transient outward current; RyR,
ryanodine receptor; SR, sarcoplasmic reticulum; SERCA, sarcoplasmic reticulum Ca2+-ATPase; TA, triggered activity.
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brings extra Ca2+ inflow and is a substrate for increased EAD
likelihood). Since BAPTA-AM decreased EAD frequency in the
presence of veratridine, but failed to shorten APD, these results
contradicts the exclusive role of APD in EAD generation and
indicate that an increase in [Ca2+]i is a significant factor not only
for generating DADs, but for evoking EADs as well (Horvath et al.,
2015). Moreover, in another set of experiments of Kistamas et al.
H2O2 significantly increased APD and relative short term beat-to-
beat variability (SV) (Kistamas et al., 2015a) and increased the
occurrence of EADs on canine ventricular myocytes. Elevation of
[Ca2+]i in H2O2 was shown by others which can account for the
increased SV and EAD incidence (Goldhaber, 1996; Xie et al.,
2009; Szentandrassy et al., 2015; Kistamas et al., 2015).
Furthermore, we also showed in guinea pig cardiomyocytes, that
spontaneous Ca2+ release from the SR mediates (INa,L) induced
EADs (Horvath et al., 2013). The two possible mechanisms
proposed by Zaza et al. by which INa,L promotes EAD genesis
are (1) the reactivation of ICa,L during the plateau phase of AP and
(2) SR Ca2+ overload (Zaza et al., 2008). In our experiments the
first EAD occurred at a membrane potential more positive than
the window Ca2+ current voltage range, meaning that not the
reactivation of ICa,L was responsible for the generation of EADs. In
fact, several mechanisms were addressed, showing the SR load was
key in formation of the EADs: (a) anemone toxin II (ATX-II)
facilitates INa,L that caused elevated systolic Ca2+ transient and SR
load, (b) the spontaneous Ca2+ wave precedes the first EAD, and
(c) Ca2+ buffering with BAPTA in the patch pipette abolished
EADs (Horvath et al., 2013).

Therefore, our recent knowledge about the factors involved in
the development of EADs includes changes in [Ca2+]i and the
amplitude of Ca2+ transient, along with the APD and beat-to-
beat variability of APD, AP morphology and plateau potential,
net membrane current, and the actual availability of L-type Ca2+

channels. Regardless of the type of EAD mechanisms, if the
depolarizing effect of the EAD on the membrane potential is
sufficient to activate INa, the result will be an abnormal impulse
generation, triggered activity (Hoffman and Rosen, 1981).

EADs are more likely to develop in midmyocardial cells and
Purkinje fibers than in subepi- or subendocardial cells. There is a
difference in ion current composition (less IKs, more INa,L in
midmyocardial cells), consequently these regions are more prone
to AP prolongation (Liu and Antzelevitch, 1995; Zygmunt et al.,
2001; Szabo et al., 2005). EADs are generally observed under
conditions of ventricular hypertrophy and HF, injured cardiac
tissue, or when the myocardium is exposed to catecholamines,
hypoxia, acidosis, and pharmacologic agents (Roden, 2004;
Roden, 2006). The clinical significance of EADs is clear, as
they can either serve as the trigger or as the substrate for
initiation and perpetuation of torsade de pointes arrhythmia
(Volders et al., 2000). Being as a trigger, as EADs can cause new
APs which will be reflected on the ECG as ectopic beats. EADs
provide a substrate by causing electrical inhomogeneity in the
surrounding tissues.

Delayed Afterdepolarization
DADs are the other common causes of focal activity and were
originally described as oscillatory afterpotentials (Ferrier et al., 1973).
Frontiers in Pharmacology | www.frontiersin.org 6
They occur in diastole, after complete repolarization of the cell
(Figure 5B). DADs can originate from intracellular Ca2+ overload
that induces spontaneous SRCa2+ release, resulting in a depolarizing
current via forward mode INCX (Mechmann and Pott, 1986). Other
nonselective Ca2+-sensitive cationic currents (INS) and chloride
current (ICl(Ca)) may also be involved in DAD generation (Asakura
et al., 2014). These three depolarizing currents result in a transient
inward current (Iti), which is responsible for the membrane
depolarization (Figure 3D). Ca2+ overload of the cardiac myocytes
can occur in several diseases and also in several experimental
conditions, e.g. toxic levels of digitalis (Ferrier et al., 1973;
Saunders et al., 1973; Rosen et al., 1973), catecholamines (Wit and
Cranefield, 1977; Rozanski and Lipsius, 1985; Priori and Corr, 1990),
hypokalemia and hypercalcemia (Tse, 2016), hypertrophy, HF
(Aronson, 1981; Vermeulen et al., 1994), and rapid heart rates.
The amplitude of the generatedDADdepends on the size of theCa2+

transient and on the properties of INCX and the inward rectifier K+

current (IK1) (Pogwizd et al., 2001; Sung et al., 2006;Maruyama et al.,
2010). Subthreshold DADs [appearing as the U wave on the
electrocardiogram (ECG)] are small voltage deflections, which
although unable to trigger a propagating action potential, may still
cause dispersion of excitability, thereby promoting regional
conduction block (Rosen et al., 1975; Surawicz, 1998; di Bernardo
andMurray, 2002). However, if DADs reach the threshold potential
for the opening of Na+ channels, a spontaneous AP emerges and can
result in premature ventricular contraction (PVC). The clinical
significance of DAD generation lies in triggered activity that
contributes to arrhythmogenesis with catecholaminergic
polymorphic ventricular tachycardia (CPVT), atrial fibrillation
(AF), and HF. In CPVT and HF, intracellular Ca2+ load combines
with RyR dysfunction (“leaky”RyR). Under circumstances when the
SR becomes loaded (high Ca2+ load, fast heart rate, and/or increased
adrenergic tone) and/or RyR becomes leaky, spontaneous Ca2+

release is favored.
Considering the mechanism of the spontaneous Ca2+ release,

there are two main patterns. First, focal Ca2+ release, when Ca2+

signal acts locally (Lipp and Niggli, 1994) and secondly, when the
released Ca2+ leaves its focus and propagates as a global Ca2+

wave through the myocyte (Takamatsu and Wier, 1990; Wier et
al., 1987; Cheng et al., 1993).

Unlike the EADs, DADs are always generated at relatively
rapid rates (Antzelevitch and Burashnikov, 2011). As mentioned
earlier, late-phase 3 EADs are considered as a hybrid between
EAD and DAD. A key difference is the time of the SR Ca2+

release during the AP (Figure 5). Ca2+ release occurs during
diastole in the case of DAD, while late-phase 3 EAD is generated
at the late repolarization of the AP (Fink and Noble, 2010).

Beat-To-Beat Variability of Action Potential Duration
Variations (physiological or pathological) in AP configuration can
cause disturbances in Ca2+ signaling and the electrical properties of
cardiac muscle. In our previous experiments, we determined the
beat-to-beat variability of AP duration in isolated canine left
ventricular myocytes in several experimental settings (Kistamas
et al., 2015a; Kistamas et al., 2015b; Szentandrassy et al., 2015;
Magyar et al., 2016), as recent studies suggest the short term beat-
to-beat variability (SV) of APD as a novel method for predicting
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imminent cardiac arrhythmias (Thomsen et al., 2004; Abi-Gerges
et al., 2010). Higher variability is considered to be arrhythmic by
increasing dispersion of refractoriness (Figure 3G).We established
the concept of relative short term beat-to-beat variability of APD
(RSV) by normalizing the changes of short term variability of APD
to the concomitant changes in APD [see (Nanasi et al., 2017] for
review). We summarized that RSV was decreased by ion currents
involved in the negative feedback regulation of APD (ICa,L, IKs and
IKr), while it was increased by INa and Ito, and in general, increased
if repolarization reserved was compromised. RSV was also
increased at faster rates and at increased [Ca2+]i. Transient
changes of [Ca2+]i due to Ca2+ released from the SR were the
dominant contributor to this process (Kistamas et al., 2015b). High
RSV at faster rates can also be explained by the elevated [Ca2+]i, as
faster pacing increases ICa,L, ultimately overloading the cell with
Ca2+ which, in turn, increases RSV.

Cardiac Alternans
A severe form of this beat-to-beat variation is cardiac alternans,
where short and long AP duration alternate (Figure 3F). Pulse
and T-wave alternans can be clinically observed and are
considered to be a precursor for cardiac arrhythmias
(Rosenbaum et al., 1994; Verrier et al., 2011). Cardiac
alternans originates from instabilities of membrane voltage or
of Ca2+ cycling. At the cellular level, alternans is manifested as
beat-to-beat alternations in contraction amplitude (mechanical
alternans), APD (electrical or APD alternans), and Ca2+ transient
amplitude (Ca2+ alternans) at constant heart rate. However,
because of the bidirectional information flow between
membrane voltage and Ca2+ cycling, electrical alternans is
always influenced by Ca2+ alternans, and vice versa (Weiss
et al., 2006).

Twomechanisms have been described for Ca2+-driven alternans.
One depends on the relationship between SR Ca2+ content and the
amount of Ca2+ released from the SR (Eisner et al., 2000). If this
relationship is steep then a small increase of SR Ca2+ content will
produce a large increase of the amplitude of the Ca2+ transient
resulting in increased Ca2+ efflux via INCX and a decreased influx via
ICa,L (Ca

2+-dependent inactivation). The net result is a decrease of SR
Ca2+ content. The next beat therefore arises from a depleted SR
resulting in a smaller Ca2+ transient and decreased INCX, so that the
cell will gain Ca2+ resulting in a larger SR content and Ca2+ transient
for the third beat (Eisner et al., 2006). Later, it was shown that
reduced SERCA pump activity is also needed for an alternating
pattern to develop (Shiferaw et al., 2003; Qu et al., 2007; Xie et al.,
2008; Li et al., 2009). Another mechanism for Ca2+-driven alternans
has been proposed, when on every beat, the SR load is unchanged,
however the released amount of Ca2+ is alternating beat-to-beat. This
kind of alternans results from the refractoriness of the RyRs, without
the need for SR Ca2+ content alternans (Picht et al., 2006; Shkryl et
al., 2012).

Voltage-driven or electrical alternans is determined by APD
restitution. Here, the shorter the preceding diastolic interval, the
less the APD (Nolasco and Dahlen, 1968). The steeper this
relationship, the more likely is alternans to occur. There may
be several causes for this APD restitution. The rapid, pacing-
induced electrical alternans occurs at fast heart rates (short
Frontiers in Pharmacology | www.frontiersin.org 7
diastolic intervals, where recovery of ICa,L is crucial, becoming
a key factor in regulating the steepness of APD restitution
(Mahajan et al., 2008). Another APD alternating mechanism is
driven by Ito at slow or normal heart rates and possibly accounts
for T-wave alternans in patients with Brugada syndrome
(Hopenfeld, 2006). The third type of electrical alternans is
mediated by non-inactivating ICa,L with IKs at normal or slow
rates and possibly cause T-wave alternans in LQTS patients
(Wegener et al., 2008). Electrical, restitution-based alternans has
been associated with the breakdown of reentry into ventricular
fibrillation (VF). At the tissue level, if cellular alternanses in
different regions of the ventricle occur in phase with each other
(spatially concordant), T-wave alternanses is observed on the
ECG. A more malignant form, the spatially discordant APD
alternans, manifesting as QRS alternans on the ECG, causes large
dispersion of refractoriness, a substrate for reentry. Spatially
discordant alternans is a significant cause of wave break, a
phenomenon that is essential to VF (Garfinkel, 2007). It has
been shown, that interventions that lower the slope of the APD
restitution curve can turn multiwave VF to single-wave
monomorphic ventricular tachycardia (VT) (Garfinkel et al.,
2000; Wu et al., 2002).

Abnormal Impulse Conduction
Abnormal impulse conduction, i.e. reentry, occurs when the AP
fails to terminate and has the ability to re-excite tissue regions
which have already recovered. This mechanism can be divided
into two main types, one with an obstacle (circus type with
anatomical or functional barrier) and the other without an
obstacle (phase-2 reentry and reflection). The key difference is
in refractoriness. Circus movement reentry travels around an
anatomic or functional obstacle and all cells are recovered from
inactivation, while cells involved in reflection or phase-2 reentry
show large differences in recovery from refractoriness with no
obstacle in the way of the reentrant wave. In addition, classic
nomenclature distinguishes between microreentry and
macroreentry, where the reentrant circuit does not or does
appear on the surface ECG, respectively.

The myocardiumworks as a functional syncytium (Figure 6A).
The elemental components of this system are the gap junctions.
Gap junctions form channels (comprised of two neighboring
connexons) between adjacent cardiomyocytes and allow the
cardiac AP to propagate from cell to cell and thereby initiate
contraction. However, gap junction channels are unevenly
distributed within the cells, expressing a larger portion of
channel proteins at the longitudinal ends of the cells than at the
transversal, lateral sides (De Maziere and Scheuermann, 1990;
Oosthoek et al., 1993). This anisotropy allows a much larger
longitudinal conduction velocity and effective electrical coupling
between the adjacent cells (Figure 6B). Several conditions are
reported to reduce or abolish gap junctional conductance,
including increased [Ca2+]i, reduced pH, or lower ATP levels
(Dhein, 1998). Uncoupling of the cells may lead to the formation
of unidirectional conduction block and reentry type arrhythmias
(Figure 6B). The hypothesis that Ca2+ overload conditions have
arrhythmogenic behavior is also supported by experiments in
neonatal rat myocytes, where gap junctional conductance was
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decreased by Ca2+ concentrations higher than physiological (Firek
andWeingart, 1995), while it was proposed that elevation of [Ca2+]i
by Ca2+ entry was more effective in decreasing gap junctional
conductance than Ca2+ released from internal stores (Lazrak et al.,
1994; Chanson et al., 1999). Furthermore, adequate coupling
between the cells in the tissue (i.e. low longitudinal resistance)
can suppress differences in APD, eliminate EADs, and reduce beat-
to-beat variability (Magyar et al., 2015).

In the subsequent sections reentry types are discussed
in detail.

Reentry With Anatomical Obstacle (Ring Model)
Reentry was first described in 1906 by Mayer in rings of tissue cut
from jellyfish (ring model) (Mayer, 1906). Later work by Mines
showed that circus-type reentry can be initiated by electrical
stimulation in cardiac muscle and was the first to define the
concept of circus movement reentry around an anatomical
obstacle (Figure 7A) (Mines , 1913; Mines , 1914).
Frontiers in Pharmacology | www.frontiersin.org 8
The anatomical barrier can be a valve, vessel or scar. The
possibility that circus-type reentry can form without an
anatomical obstacle was proposed by Garrey (1914).

Initiation of reentry requires a trigger and a substrate. The trigger
can be a premature contraction, while tissue substrate is the
dispersion of refractoriness. On top of that, fundamental settings
are needed for reentry excitation with anatomical obstacle: (1) the
impulse initiating the circus movement must propagate in one
direction (unidirectional block) and (2) the proportion of absolute
and relative refractoriness in the tissue, that is, the reentrant circuit
must be long enough to let all areas—within the circuit, distal from
the stimulus—recover from refractory (excitable gap), so the circuit
can return to its origin and continue as a new cycle (Figure 7A).
Consequently, (3) the circulatingmovementwould terminate in case
of interruption of the reentrant circuit (Mines, 1913). These criteria
proposed by Mines are still in use today. The above mentioned
excitation is, in fact, a propagating wave. The length of this wave
(wavelength) is determined by the distance between the wavefront
(phase 0, AP depolarization) andwaveback (phase 3, repolarization),
that is, creating an arrhythmogenic excitation needs the special
properties of refractoriness and conduction velocity (Weiss et al.,
2000). If the above three criteria are not met, i.e. in sinus rhythm if
the tissue around the anatomical obstacle is homogenous (and the
impulse pathway is wide enough), the wavefront can simultaneously
propagate in both pathways around the barrier. However, if the
tissue is electrically heterogenous, due to dispersion of refractoriness,
unidirectional conduction block can form caused by a PVC, i.e.
initiating reentry (Figure 7A).
Reentry Without Anatomical Obstacle (Functional
Block)
In the cases, when there is no anatomical barrier present,
functional reentry can still form, maintained only by the
electrical properties (dispersion of refractoriness) of the tissue.
The best known examples are the leading circle, spiral wave, and
figure-of-8 reentry (Figure 7B).

The leading circle model was described by Allessie et al., as
“the head of the circulating wavefront is continuously biting in
its own tail of refractoriness” (Allessie et al., 1977). The main
differences compared to the ring model are (1) the length of the
circuit is determined by conduction velocity, stimulating efficacy,
and refractory period not by an anatomic obstacle, (2) while the
length of the circuit is not fixed, it can be altered by changes in
electrophysiological properties of the tissue. (3) There is no
excitable gap in the leading circle model and (4) a shortcut of
the circuit is possible and finally (5) revolution time is
proportional to refractory period, while in the ring model,
revolution time is inversely related to conduction velocity
(Figure 7B) (Allessie et al., 1977).

Spiral waves and rotors can be induced in small two-
dimensional pieces of cardiac muscle, without an anatomical
barrier, and can drift through the tissue (Pertsov et al., 1993).
Scroll waves are the three-dimensional forms of spiral waves.
Spiral waves can develop both in homogenous and heterogenous
tissues and either in stable or in an unstable form (Ikeda et al.,
FIGURE 6 | Role of gap junctions in propagating of the cardiac action potential.
(A) The cardiac tissue is eletrically homogenous if the adjacent cells are coupled by
gap junction channels. The anisotropic nature of gap junction channel distribution
favors longitudinal over transversal conduction. (B) Conditions that decrease or
abolish coupling between the cells may cause a unidirectional conduction block
and as the electrical impulse propagates around the block it can re-excite those
tissue regions due to differences in refractoriness. Insert shows cell-cell connections
via gap junction channels. The main causes of uncoupling of the cells (showed in
red) are elevated intracellular Ca2+ concentration, reduction in H+ concentration, or
lower levels of ATP. Cx, connexon; ATP, adenosine triphosphate.
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1996; Davidenko et al., 1992). The former might result in
monomorphic VT, while the latter can cause polymorphic VT
or torsade de pointes (Figure 7B) (Gray et al., 1995).

Figure-of-8 type reentry was first demonstrated by el-Sherif et
al. In this case the reentrant wavefront reaches a functional
conduction block surrounded by regions of reduced excitability.
As conduction is not favored through such tissue, the wavefront
drives clockwise and counterclockwise around the two arcs of
functional block and beyond the barriers of low excitability the
two separated waves can collide. If the conduction is slow enough
and the intermediate area can be activated, reentry can form
(Figure 7B) (el-Sherif et al., 1985; Lazzara, 1988).

Phase-2 Reentry
In the previous reentrant mechanisms, the trigger and the
substrate originated from different etiologies, while in the case
of phase-2 reentry, trigger and substrate are from the same
source. Phase-2 reentry occurs in ischemia (Lukas and
Antzelevitch, 1996), Brugada syndrome (Brugada and Brugada,
1992) or under conditions of higher pacing rates and higher
extracellular Ca2+ concentration (Di Diego and Antzelevitch,
1994). It is caused by severe spatial dispersion of repolarization,
that is, spike-and-dome configuration of AP morphology is lost
at one site (predominantly at the epicardial region), while
preserved at another site and is responsible for the transition
to VT and VF. APs without the dome (short APD, early
repolarization) can therefore be reexcited and reentry can be
initiated (Antzelevitch, 2007). Loss of dome can be explained by
a stronger transient outward current (Ito) current, and overall by
the competitive behavior between INa and Ito (Greenstein et al.,
2000; Szabo et al., 2005; Dong et al., 2010). If the actual
membrane potential value is more negative than the activation
threshold for the ICa,L then the AP dome vanishes. Cantalapiedra
et al. showed in a simplified ionic and in a realistic cardiac model,
that the origin of reexcitation is based on the presence of slow
Ca2+ pulse, produced by the slow inward Ca2+ current (Isi), so
that the slow pulse propagates to the regions of short APs until it
triggers a fast pulse (Cantalapiedra et al., 2010). Interestingly, the
same research group argued that conditions (e.g. drugs)
increasing the ICa,L, to recover the dome or to prevent the loss
of dome, decreases dispersion of repolarization, however, also
increasing the probability of reexcitation, through the stabilizing
effect of the Ca2+ conductance (ICa,L) on the slow Ca2+ pulse
(Cantalapiedra et al., 2009).

Reflection
Reflection is another example of non-circus movement reentry,
with a one-dimensional behavior and can be the cause of PVCs
or even lethal arrhythmias (Wit et al., 1972; Rosenthal, 1988; Van
Hemel et al., 1988). Reflection describes reentry in a linear
bundle of a conductive tissue. A stimulus from the proximal
region travels through an inexcitable gap and elicits an AP at the
distal end. Slow electrotonic currents (inexcitable region can only
transmit electrotonic currents) generated by this AP can then
propagate in the retrograde direction and reenter and reexcite
the proximal elements (Antzelevitch et al., 1980). There must be
FIGURE 7 | Abnormal impulse conduction. Circus movement reentry
types. (A) Reentrant wave travels around an anatomical obstacle. If the
cardiac tissue around the obstacle is homogenous the impulse
conduction is favored in both directions. However, if the tissue is
heterogenous (i.e. dispersion of refractoriness), unidirectional block can
form initating a reentry circuit. Excitable gap consists of tissue regions
that fully and/or partially recovered from refractory period, therefore
excitable. (B) Circuit movement reentry can form in the absence of an
anatomical obstacle (functional block). In the leading circle model the
length of the circuit is not determined by the pathway around an
obstacle, but rather by conduction velocity, refractory period, and
stimulating efficacy where (in the absence of an obstacle) a shortcut of
the circuit is possible. Spiral waves reentry (or scroll wave if three-
dimensional) drifts through the tissue without an obstacle and the main
wave can break up and radiate waves to the neighboring regions. In the
model of figure-of-8 the circulating waves appear in pairs and the
wavefront can circulate around the functional blocks clockwise and
counterclockwise. If the intermediate area (central gray) can be activated
by the colliding separated waves, reentry can form.
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an adequate conduction delay to let reflection happen (proximal
end can recover from refractoriness), depending on the pacing
interval and stimulus strength. It was also shown that neither
EADs nor automaticity was required for reflection (Cabo and
Barr, 1992; Kandel and Roth, 2015).

Biexcitability
A novel wave dynamic, termed biexcitability has been
described in recent studies (Chang et al. , 2012). In
pacemaker regions ICa,L causes the activation, while in
working muscle cells, the upstroke of the AP is driven by INa

and ICa,L. During biexcitability both form of activation can
coexist at the same tissue. Under certain conditions, like long
QT syndrome, repolarization reserve is compromised, APD
prolongs, and EADs can occur. Consequently, there can be a
situation where the cells develop two stable membrane
potential values (−80 mV and −50 mV) and switches
between them (Gadsby and Cranefield, 1977), resulting in a
Na+- and Ca2+-mediated (fast) or a Ca2+-mediated (slow)
propagating wavefront. This bi-stable behavior might serve
as an explanation for the two different possible outcomes of
torsade de pointes. According to Chang et al., in cases where
the Ca2+-mediated slow spiral wave is terminated, leads to
termination of the torsade de pointes, while if the tissue is
sufficiently heterogenous, Na+ and Ca2+-mediated fast spiral
waves degenerate torsade de pointes to VF (Chang et al., 2012;
Chang et al., 2013).

DADs can induce focal VT by DAD-mediated triggered
activity or initiate reentry. Moreover, unstable Ca2+ signaling
can dynamically serve as a substrate for reentry, by promoting
dispersion of excitability or promoting dispersion of
refractoriness (Weiss et al., 2015). In those tissue regions,
where subthreshold DADs do not trigger a propagating AP,
the resultant small membrane depolarization can still be
sufficient to depress excitability by inactivating the fast
voltage gated Na+ channels. This condition can lead to
reentry, as the inactivated Na+ channels form a regional
conduction block for impulses generated by suprathreshold
DADs (Rosen et al., 1975; Liu et al., 2015). In the latter case,
DAD-mediated triggered activity at fast rates can promote
Ca2+ transient alternans, which in turn causes APD alternans,
thereby increasing the dispersion of refractoriness (Sato et al.,
2006; Weiss et al. , 2006). As previously mentioned,
subthreshold EADs can also enhance the dispersion of
refractoriness, also creating a reentry substrate.

For more detailed reviews on conduction disorders, see Qu
and Weiss (2015) and Antzelevitch and Burashnikov (2011).

The following sections will provide further insights into
intracellular Ca2+ handling maladies in the most prevalent
inherited and acquired arrhythmia syndromes, caused by
channelopathies and defects in Ca2+ handling genes. Ca2+

handling defects also have an arrhythmogenic role in
diseases, such as heart failure and cardiomyopathies,
however they are beyond the scope of the present review
[see recent reviews (Coppini et al., 2018; Johnson and
Antoons, 2018; Denham et al., 2018)].
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INHERITED SYNDROMES

Catecholaminergic Polymorphic
Ventricular Tachycardia
Catecholaminergic PolymorphicVentricular Tachycardia (CPVT) is
a severe arrhythmogenic disorder, manifesting as a bidirectional or
polymorphic VT, mainly in young patients with structurally healthy
hearts after exercise or acute emotional stress (Reid et al., 1975). As
heart rate increases as a result of exercise or emotional stress, the
ectopic ventricular trigger increases in complexity, such that VT
turns into VF and may lead to syncope or sudden cardiac death
(Coumel, 1978; Leenhardt et al., 1995).

The main criteria for CPVT diagnosis are as follows: structurally
normal heart (and normal coronary arteries in individuals above 40
years of age), normal QT interval, and adrenergic induced
bidirectional or polymorphic VT (Venetucci et al., 2012). CPVT is
also diagnosed in patients who carry a pathogenic mutation and in
family members of a CPVT index case, fulfilling the above
mentioned criteria (Priori et al., 2013). There are also nonspecific
features, therefore not diagnostic criteria, including a prominent U
wave on the ECG accompanied by sinus bradycardia (Postma et
al., 2005).

In CPVT, arrhythmias are induced by Ca2+ release from the
SR leading to a DAD. The fundamental feature of this process is
the Ca2+ release unit (Ca2+ sparks), where the spontaneous Ca2+

release occurs. If sufficient number of release units are activated,
a Ca2+ wave is born, which depends on the SR Ca2+ content and
the SR Ca2+ threshold (Lukyanenko et al., 1999; Venetucci et al.,
2007). Interventions that alter RyR opening will affect SR Ca2+

threshold. For example, caffeine increases the open probability of
RyR, therefore it is easier to elicit spontaneous Ca2+ release
(Trafford et al., 2000), on the other hand tetracaine has an
opposite effect, by reducing RyR opening, SR Ca2+ release
threshold is higher (Overend et al., 1997; Venetucci et al., 2006).

In the previous sections we detailed the normal Ca2+ cycling
and consequences of elevated [Ca2+]i. Briefly, the main
arrhythmogenic mechanism in CPVT is due to SR Ca2+ release
increasing cytoplasmic Ca2+ levels, NCX exchanges Ca2+ with
Na+, thereby generating Iti. Iti produces DADs and if DADs reach
the activation threshold of Na+ channels, an elicited AP causes
triggered activity, which in turn can lead to an extrasystolic
heartbeat. Mutations in CPVT have been shown to alter RyR
function and increase the occurrence of spontaneous Ca2+

release events after sympathetic stimulation (Liu et al., 2006).
b-adrenergic activation increases SR Ca2+ content, while the
same process enhances RyR phosphorylation by Ca2+/
calmodulin-dependent protein kinase II (CaMKII) and protein
kinase A (PKA) (Kashimura et al., 2010; Liu et al., 2011a;
Venetucci et al., 2012). In addition to the phosphorylation by
PKA, CaMKII-mediated phosphorylation increases the ICa,L and
SERCA (by removing the inhibitory effect of phospholamban
on SERCA) and activates RyR. Simultaneous activation of ICa,L,
SERCA (increases SR Ca2+ content), and RyR therefore increases
the possibility of spontaneous Ca2+ release (Maier and Bers,
2007; Hegyi et al., 2019). Experimental data confirmed that
higher RyR Ca2+ sensitivity alone is not sufficient to elicit
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spontaneous Ca2+ release and that inhibition of CaMKII in a
CPVT mouse model prevents arrhythmias (Venetucci et al.,
2007; Liu et al., 2011a).

Several CPVT subtypes have been described to date, albeit the
two most common types are the CPVT-1 and CPVT-2 (Table 1).

CPVT-1 is caused by an autosomal dominant mutation in the
RyR2 gene (Swan et al., 1999). This subtype is the most common,
accountable for about 60% of all CPVT cases (Laitinen et al., 2001;
Priori et al., 2001). RyR exists as a macromolecular complex with
many other molecules, such as calsequestrin 2 (CSQ2), FK506
binding protein 1B (FKBP1B or FKBP12.6), FK506 binding
protein 1B (FKBP1B or FKBP12.6), PKA, CaMKII, phosphatase 1
(PP1), phosphatase 1 (PP1), phosphatase 2A (PP2A), histidine-rich
Ca2+ binding protein (HRC), junctin and triadin (Wang et al., 1998;
George et al., 2007; Yano et al., 2009; Arvanitis et al., 2011; Szabo et
al., 2013). Junctin and triadinmediates interaction between RyR and
CSQ2 (Eisner et al., 2017). Most RyR mutations in CPVT are gain-
of-function mutations and thereby leading to increased Ca2+

sensitivity and RyR channels may open during diastole causing
Ca2+ leak, particularly during adrenergic stress (Jones et al., 2008).
Several hypotheses have been advanced to explain this phenomenon,
including the role of FKBP12.6, store overload-induced Ca2+ entry
Frontiers in Pharmacology | www.frontiersin.org 11
(SOCE) and a defective mutation in the RyR 3D conformation
(Reiken et al., 2003; Lehnart et al., 2004; Jiang et al., 2005; Yamamoto
et al., 2008; Liu et al., 2009; Uchinoumi et al., 2010; Suetomi et al.,
2011; Venetucci et al., 2012a).

CPVT-2 is an autosomal recessive gene anomaly in CASQ2-
encoded CSQ2 and responsible for about 3–5% of CPVT patients
(Lahat et al., 2001). The structure of this intra-SRCa2+ buffer changes
Ca2+ concentration. At low SR Ca2+ concentrations (< 0.6 mmol/L)
CSQ2 is a monomer, which is converted to a dimer (0.6–3 mmol/L)
or polymer (> 3 mmol/L) at higher Ca2+ concentrations (Mitchell et
al., 1988;Wang et al., 1998). It has been shown that, in the absence of
functional CSQ2, RyR channels open spontaneously, without the
need for L-type Ca2+ current mediated trigger (Knollmann et al.,
2006) and that mutation of CSQ2 destabilizes Ca2+ storing capacity
of the SR, which in turn alters the Ca2+ sensitivity of RyR
(Viatchenko-Karpinski et al., 2004). In all CSQ2 mutations
(missense, deleterious, nonsense), level of CSQ2 protein is reduced
or absent, perhaps because it is more susceptible to degradation
(Rizzi et al., 2008; Faggioni et al., 2012). Impaired polymerization
(Bal et al., 2010), reduced RyR binding andmodulation (Houle et al.,
2004; Terentyev et al., 2006) are generally associated with lower SR
Ca2+ content, higher [Ca2+]i and Ca

2+ leak throughRyR, these effects
TABLE 1 | Ca2+ handling genes associated with inherited arrhythmogenic syndromes.

Syndrome/
Phenotype

Genes Genetic
Locus

Functional
effect

Protein Ref Syndrome
overlap

CPVT-1 RYR2 1q43 GoF ryanodine receptor 2 (Laitinen et al., 2001; Priori et al., 2001)
CPVT-2 CASQ2 1p13.1 GoF calsequestrin 2 (Lahat et al., 2001)
CPVT-4 CALM1 14q31–q32 LoF calmodulin 1 (Nyegaard et al., 2012; Sondergaard et al.,

2015; Sondergaard et al., 2017)
LQTS-14

CPVT-5 TRDN 6q22.31 LoF triadin (Chopra et al., 2009) LQTS-17
LQTS-4 ANK2 4q25–q26 LoF ankyrin B (Bhuiyan et al., 2013; Mohler et al., 2003)
LQTS-8
(Timothy
syndrome)

CACNA1C 12p13.33 GoF a1C subunit of LTCC (Splawski et al., 2004; Thiel et al., 2008; Boczek
et al., 2015; Landstrom et al., 2016)

BrS-3, SQTS-4,
ERS/IVF

LQTS-14 CALM1 14q32.11 GoF/LoF calmodulin 1 (Shamgar et al., 2006; Gray and Behr, 2016;
Jensen et al., 2018; Wren et al., 2019)

CPVT-4

LQTS-15 CALM2 2p21 LoF calmodulin 2 (Shamgar et al., 2006; Gray and Behr, 2016;
Jensen et al., 2018; Wren et al., 2019)

LQTS-16 CALM3 19q13.32 LoF calmodulin 3 (Shamgar et al., 2006; Gray and Behr, 2016;
Jensen et al., 2018; Wren et al., 2019)

LQTS-17
(Triadin
Knockout
Syndrome)

TRDN 6q22.31 LoF triadin (Altmann et al., 2015) CPVT-5

BrS-3 CACNA1C 12p13.33 LoF a1C subunit of LTCC (Schwartz et al., 1995; Rosero et al., 1997) SQTS-4, ERS/IVF
BrS-4 CACNB2 10p12.33–p12.31 LoF b2 subunit of LTCC (Schwartz et al., 1995; Rosero et al., 1997) SQTS-5, ERS/IVF
BrS-11 CACNA2D1 7q21.11 LoF a2d1 subunit of LTCC (Schwartz et al., 1995; Rosero et al., 1997) SQTS-6, ERS/IVF
BrS-15 TRMP4 19q13.33 GoF/LoF transient receptor

potential melastatin 4
(Liu et al., 2013)

SQTS-4 CACNA1C 12p13.33 LoF a1C subunit of LTCC (Antzelevitch et al., 2007; Bjerregaard et al.,
2010)

BrS-3,
ERS/IVF

SQTS-5 CACNB2 10p12.33–p12.31 LoF b2 subunit of LTCC (Antzelevitch et al., 2007; Bjerregaard et al.,
2010)

BrS-4,
ERS/IVF

SQTS-6 CACNA2D1 7q21.11 LoF a2d1 subunit of LTCC (Antzelevitch et al., 2007; Bjerregaard et al.,
2010)

BrS-11, ERS/IVF

ERS/IVF CACNA1C 12p13.33 LoF a1C subunit of LTCC (Priori et al., 2013) BrS-3, SQTS-4
CACNB2 10p12.33–p12.31 LoF b2 subunit of LTCC (Priori et al., 2013) BrS-4, SQTS-5
CACNA2D1 7q21.11 LoF a2d1 subunit of LTCC (Priori et al., 2013) BrS-11, SQTS-6
February 2020 | Vo
CPVT, catecholaminergic polymorphic ventricular tachycardia; LQTS, long QT syndrome; BrS, Brugada syndrome; SQTS, short QT syndrome; ERS, early repolarization syndrome; IVF,
idiopathic ventricular fibrillation; LTCC, L-type Ca2+ channel; GoF, gain-of-function; LoF, loss-of-function.
lume 11 | Article 72

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Kistamás et al. Calcium and Cardiac Arrhythmias
can be augmented by b-stimulation (Song et al., 2007). An
interesting feature of CSQ2 protein reduction is a subsequent
reduction in triadin and junctin levels. Denegri et al. showed in
CSQ2 knock-out animal model that viral gene transfer for in vivo
replacement of CSQ2 restored normal CSQ2 levels along with
triadin and junctin, and ultimately prevented arrhythmias
(Denegri et al., 2012).

Other, less frequent gene mutations have also been described,
such as autosomal recessive forms of CPVT, the CPVT-3 and
CPVT-5, while CPVT-4 is an autosomal dominant form of the
inherited syndrome. CPVT-3 subtype is related to the gene
encoding trans-2,3-enoyl-CoA reductase-like protein (TECRL)
and is first seen at an early age with high likelihood of infant
sudden cardiac death (Bhuiyan et al., 2007). When CPVT-3 is
studied in induced pluripotent stem cell-derived cardiomyocytes
(iPSC-CM) slower Ca2+ reuptake, slower Ca2+ transient upstroke
velocity, and increased APD has been observed, along with
norepinephrine-induced DADs, which could be eliminated by
flecainide (see below) (Devalla et al., 2016). Mutations in
CALM1-encoded calmodulin (CaM) cause the CPVT-4
subtype. In vitro experiments showed that this gene anomaly
in the C domain compromises Ca2+ binding to CaM and impairs
interaction between RyR and its CaM-binding domain, leading
to an increased open state of RyR (Nyegaard et al., 2012;
Sondergaard et al., 2015; Sondergaard et al., 2017). TRDN-
encoded triadin mutation results in CPVT-5 subtype, which
may cause diastolic Ca2+ leak and Ca2+ overload. Electron
microscopy experiments uncovered fragmentation and reduced
contact at the dyadic cleft, thus possibly lacking the negative
feedback of SR Ca2+ release on the L-type Ca2+ channels, so SR
Ca2+ overload may arise from the uncontrolled Ca2+ influx
(Chopra et al., 2009).

A possible loss-of-function RyR mutation has also been
proposed in a case classified as idiopathic VF, where a reduced
SR Ca2+ sensitivity was shown (Jiang et al., 2007). Moreover,
exercise induced bidirectional VT has been reported in types of
long QT syndromes (LQTS-4 and LQTS-7) (Table 1) (Mohler
et al., 2004; Vega et al., 2009).

Because of the hiding nature of the disease, it is difficult to
diagnose CPVT, as patients have normal heart structure and
show no symptoms before syncope or sudden cardiac death.
However, if diagnosed, there are several therapeutic approaches
to CPVT.

Generally speaking, life-long administration of b-blockers is the
first choice as treatment. Studies showed that nadolol was clinically
effective and a useful prophylactic (Priori et al., 2013). In countries,
where nadolol is not available, propranolol was also shown to be
effective (Hayashi et al., 2009). Carvedilol has been shown to inhibit
store overload-induced Ca2+ release (SOICR) and is the only b-
blocker to have RyR inhibitory action, albeit it is a less potent b-
blocker after all (Zhou et al., 2011). Patients with CPVT are
recommended to remove the triggers, in other words to limit or
avoid any vigorous physical activities and stressful environments
(Priori et al., 2013). In some patients (lacking long-term studies yet)
b-blocker and non–dihydropyridine Ca2+-channel blocker
Frontiers in Pharmacology | www.frontiersin.org 12
(verapamil) combination therapy was shown to be beneficial
(Swan et al., 2005; Rosso et al., 2007).

Flecainide administration has been suggested on top of b-
blockers to prevent arrhythmias, in CPVT patients refractory to b-
blockers alone (Biernacka and Hoffman, 2011; Pott et al., 2011; van
der Werf et al., 2011). Flecainide is a Na+-channel blocker drug,
specifically aClass Ic antiarrhythmic agent. Several studies, including
three retrospective cohorts in human patients with CPVT (Liu et al.,
2011; Radwanski et al., 2016; Kannankeril et al., 2017) have shown
the effectiveness of flecainide but there is still debate around the
mechanism by which it exerts its antiarrhythmic effect. Watanabe et
al. concluded that the most important effect of flecainide was
blocking the RyR along with the Na+-channel blockade (Watanabe
et al., 2009). They hypothesized that blocking RyR reduces the
spontaneous Ca2+ release events and therefore DADs, while Na+-
channel blockade prevents the possibility of triggered activity from
any residual DADs (Hilliard et al., 2010). Of the Class Ic
antiarrhythmic drugs, only flecainide and propafenone was shown
to inhibit RyR activity (Hwang et al., 2011). On the other hand, Liu et
al. showed in an animal model of CPVT that although flecainide
prevents VT and triggered activity, spontaneous Ca2+ release and
DADs were still detectable in single myocytes. They concluded that
the antiarrhythmic effect of flecainide results from its Na+-channel
blocker effect rather than via RyR inhibition (Liu et al., 2011b;
Bannister et al., 2015). These conflicting results raise the question
whether the different effects seen in the previous studies are
dependent of a specific genetic mutation. In a recent study,
isolated myocytes from Casq2-/- and RyR2R4496C+/- mice were
compared (Hwang et al., 2019). It was found that the former
produces a stronger proarrhythmic response upon isoproterenol
stimulation, but flecainide prevented arrhythmias in both cases. Also
independent from the underlying mutation, effect of flecainide
decreased at high Ca2+ load. An additional drug has also been
tested both in vitro and in vivo. 1,4-benzothiazepine derivative K201
(JTV519) was shown to prevent arrhythmias in mouse models by
reducing RyR opening, SERCA activity and ICa,L (Lehnart et al.,
2004; Loughrey et al., 2007).

The latest guidelines recommend implantable cardiac
defibrillator (ICD) implantation in patients with diagnosis of
CPVT who experience VT, syncope, or cardiac arrest despite the
optimal medical treatment (Priori et al., 2013). However, the use
of ICDs without concomitant use of b-blockers is dangerous
because of the possibility of shock-related electrical storms in
these patients (Mohamed et al., 2006; Pflaumer and Davis, 2012).
Selective left cardiac sympathetic denervation (LCSD) can be a
useful therapeutic method and may be considered in patients
with uncontrollable arrhythmias (patients with contraindication
to b-blockers; when ICD cannot be implanted; or when recurrent
VTs manifest in patients with ICD and b-blockers treatment)
(Priori et al., 2013). Pulmonary vein isolation (catheter ablation)
was reported to be efficient in some patients with CPVT and AF
(Sumitomo et al., 2010), while the possibility of gene therapy was
suggested after successful adenoviral vector infection (CASQ2
gene) in R33Q knock-in mutant mouse with dysfunctional CSQ2
(Denegri et al., 2014). Family screening of first degree relatives
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(clinical evaluation and genetic testing) has been strongly
suggested with an optional b-blocker therapy even in the
absence of a positive exercise test (Bauce et al., 2002; Hayashi
et al., 2009).

Congenital Long QT Syndrome
Congenital long QT syndrome (LQTS) is an inherited cardiac ion
channelopathy. LQTS is characterized by a prolongedQT interval on
the surface ECG, reflecting the ventricular APD prolongation, which
gives rise to risk for syncope, seizures, VT or torsade de pointes and
finally VF and sudden cardiac death (Schwartz et al., 2012).
Prolongation of APD can happen in an inhomogenous pattern,
resulting in an enhanced dispersion of repolarization across the
tissue. Delay in repolarization can occur e.g. by genetic defects of key
ion currents, namely IKs, IKr, or INa. As mentioned in a previous
section, EADs can form if the repolarization reserve is compromised,
outward currents are reduced and/or inward currents are increased.
In the case of LQTS, inhomogeneity of refractoriness combined with
EADs establishes the arrhythmia substrate for VT, torsade
de pointes.

The above mentioned conditions are illustrated in the cases of
LQTS-1, LQTS-2, and LQTS-3. LQTS-1 is caused by the loss-of-
function mutation of KCNQ1 gene (Kv7.1) that encodes IKs
(Sanguinetti et al., 1996; Barhanin et al., 1996) while LQTS-2 is
also a loss-of-function mutation, but of the KCNH2 channel
gene (Kv11.1), encoding IKr (Sanguinetti et al., 1995). LQTS-3 is
an inherited gain-of-function mutation of SCN5A Na+ channel
(Nav1.5) encoding INa (Wang et al., 1995). All three mutations
play key role in determining the length of AP and all of them
points towards compromised repolarization reserve with
decreased outward currents (LQTS1-2) and increased inward
current (LQTS-3). LQTS-1–3 account for ~75–85% of the
congenital LQTS cases (El-Sherif et al., 2017).

Mutations of several other genes have been described in LQTS
patients. Mutations of structural and channel interacting proteins
result in: LQTS-4, a loss-of-function mutation of ANK2-encoded
ankyrin B and leads to Ca2+ overload, QT prolongation, sinus
bradycardia, AF, and CPVT (Bhuiyan et al., 2013; Mohler et al.,
2003); LQTS-5, a loss-of-functionKCNE1-encodedminKmutation,
consequential reduction in IKs (Splawski et al., 1997); LQTS-6, a loss-
of-function mutation of KCNE2-encoded MiRP1, causing a faster
inactivation time course for IKr, enhanced ICa,L, and reduced If (Lu et
al., 2003; Nawathe et al., 2013; Liu et al., 2014); LQTS-9, CAV3-
encoded Caveolin 3, causing an enhanced INa,L; and LQTS-11, a
mutant A-kinase anchoring protein (AKAP9-Yotiao) results in an
abnormal response upon b-stimulation, as mutation reduces
interaction between AKAP9 and KvLQT1 cannel a subunit
(KCNQ1, IKs) leading to dysfunctional response to cAMP and a
prolonged APD (QT) (Chen et al., 2007).

LQTS-9 and LQTS-10 (gain-of-function mutation in SCN4B-
encoded Na+ channel Navb4 b-subunit) together resemble the
LQTS-3 phenotype as QT prolongation is achieved by increased
Na+ current (Medeiros-Domingo et al., 2007). Mutation of
SNTA1-encoded a1-syntrophin is a gain-of-function gene
anomaly, causing LQTS-12 by enhancing Na+ current (Nav1.5)
(Wu et al., 2008). LQTS-7 and LQTS-13 are affecting
Frontiers in Pharmacology | www.frontiersin.org 13
repolarizing K+ currents and channels. LQTS-7 or Andersen-
Tawil type 1 syndrome is caused by the loss-of-function
mutation of the KCNJ2-encoded Kir2.1 inward rectifier K+

channel, responsible for IK1, and as IK1 is an important player
in terminal repolarization, reduction of Kir2.1 function prolongs
QT interval (Plaster et al., 2001). In LQTS-13, a loss-of-function
mutation on KCNJ5-encoded Kir3.4 causes loss of acetylcholine
activated, G-protein-gated K+ (IKAch) channel function. IKAch is
formed by Kir3.1 and Kir3.4. Mutation in Kir3.4 function disrupts
membrane targeting and stability, i.e. reduced membrane
expression has been suggested as the cause of LQTS-13 (Yang
et al., 2010).

Although most of the LQTS mutant genes are related to K+

and Na+ channels (i.e. LQTS-1–3 being ~75–85% of total
congenital LQTS), there are several Ca2+-signaling proteins
that are linked to the occurrence of long QT intervals, typically
causing LQTS-8, LQTS-14, LQTS-15, LQTS-16, and LQTS-17
(Table 1).

LQTS-8 is a gain-of-function mutation of the CACNA1C-
encoded a1C subunit of L-type Ca2+ channel (Cav1.2) and is
generally associated with Timothy syndrome. Timothy
syndrome is a rare (less than 30 patients reported worldwide),
but severe multisystem disorder, involving QT prolongation,
syndactyly, congenital heart defects, cardiomyopathies,
bradycardia (caused by AV block rather than sinus
bradycardia), and autism (Splawski et al., 2004). LQTS-8
mutation of the Cav1.2 leads to (1) a significant reduction in
voltage-dependent inactivation of ICa,L, (2) enhanced ICa,L, (3)
decreased current density with enhanced window current, and
(4) a steeper APD restitution curve (Thiel et al., 2008; Boczek et
al., 2015; Landstrom et al., 2016). A lesser inactivation of the
steady-state current and/or increased peak current means a
higher Ca2+ influx, which can in turn prolong APD, therefore
QT interval. A steeper APD restitution curve is proarrhythmic,
being a substrate for alternans, as detailed in previous chapters.
The mutation can also cause T-wave alternans on the ECG by
increasing the dispersion of repolarization (Zhu and Clancy,
2007). In iPSC cells of a Timothy syndrome patient, a cyclin-
dependent kinase inhibitor, roscovitine was found to shorten
APD by partially recovering inactivation of the mutant channel
(Yarotskyy et al., 2010; Yazawa et al., 2011). If Timothy
syndrome/LQTS-8 is diagnosed, because of the high mortality,
ICD implantation is the first choice. ICD is often supplemented
with b-blockers, relying on the fact that they are generally
effective in LQTS patients. Also, verapamil (Jacobs et al., 2006),
mexiletine (Krause et al., 2011), and ranolazine (Shah et al.,
2012) have been shown to shorten APD by affecting ICa,L and
reducing the risk of arrhythmias.

LQTS-14–16 are newly described subtypes of LQT syndrome,
caused by mutations in the genes coding the ubiquitous Ca2+

sensor and binder, calmodulin (CaM). Mutations in CALM1-
encoding CaM1, CALM2-encoding CaM2, and CALM3-
encoding CaM3 are responsible for producing LQTS-14, LQTS-
15, and LQTS-16, respectively. Patients diagnosed with these
conditions are usually young and have a high rate of cardiac
arrest with severe QT prolongation (Gray and Behr, 2016). CaM
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is important in the inactivation of Na+ channels, Ca2+-dependent
inactivation of ICa,L and also important in the trafficking, assembly,
and gating of the IKs channel, KCNQ1 (Shamgar et al., 2006). Gene
anomalies, affecting CaM, and therefore, Ca2+ binding and/or
enhancing ICa,L can lead to severe APD prolongation. To date,
over 20 mutations have been reported in the disease group of
calmodulinopathies (Jensen et al., 2018; Wren et al., 2019)
associated with LQTS, CPVT, and idiopathic VF. LQTS
mutations, e.g. CaM-D130G, CaM-D96V, CaM-N98S, and CaM-
F142L are all having impaired Ca2+ binding properties at the EF
hand domains (Crotti et al., 2013). In CaM-D130G, CaM-D96V,
and CaM-N98S mutations impaired CaM-dependent inhibition of
RyR was reported, thereby increasing SR Ca2+ release due to an
increased open state of RyR (Sondergaard et al., 2017; Jensen et al.,
2018). Unexpectedly, an LQTS-associated CaM mutation, CaM-
F142L did not diminish, but, increased the CaM-dependent RyR
gating inhibition and caused faster RyR closing at high [Ca2+]i
(Sondergaard et al., 2017). The authors proposed that the mutation
displayed both gain-of-function and loss-of-function properties. In
the process of gain-of-function, F142L mutation increases the
interactions between the C-domain of CaM and the CaM
binding domain of RyR, therefore enhancing RyR inhibition. On
the other hand, the loss-of-function effect impairs the ability of the
C-domain of CaM to bind free Ca2+, i.e. decreases RyR inhibition.
However, at high [Ca2+]i C-domain of CaM saturates allowing the
increased RyR inhibitory effect to be the dominant one
(Sondergaard et al., 2017). One might assume an overlap
between LQTS and CPVT as diminished inhibitory effect on RyR
gating is generally associated with CPVT. In mutant guinea pig
cells, it was shown that decreased inhibition of RyR gating with
impaired CaM effect on the CaM-dependent inactivation of ICa,L
(i.e. increased ICa,L) may contribute to APD prolongation and that
LQTS associated CaM mutations can lead to electrical alternans, a
pathological feature of LQTS (Limpitikul et al., 2014).

Recently a novel mutation, LQTS-17 has been proposed,
however, the nomenclature is still indistinct. Some reviews
refer to LQTS-17 as a mutation in TRDN-encoded triadin,
which has also been linked to CPVT-5 (Landstrom et al.,
2017). However, Altmann et al., originally identified the
autosomal recessive homozygous or compound heterozygous
frameshift loss-of-function mutations in TRDN, proposed the
term Triadin Knockout Syndrome (TKOS) or TRDN-mediated
autosomal-recessive LQTS, rather than LQTS-17 (Altmann et al.,
2015). As in the previous case, here is also the possibility of an
overlap with CPVT, as QT prolongation and disease appearance
at young age is accompanied by arrhythmias that occur during
exercise. The possible cellular mechanism includes reduced
negative feedback on ICa,L (i.e. increased ICa,L), increased
spontaneous Ca2+ release via RyR, and promotion of SR Ca2+

loading by NCX. It is not clear yet, whether the arrhythmogenic
feature is mediated by DAD or EAD, but in a TRDN-null mice
model, nifedipine aborted SR Ca2+ overload and spontaneous
Ca2+ release (Chopra et al., 2009).

Although most of the LQTSs are inherited in an autosomal
dominant form, there is a relatively rare, autosomal recessive
inherited form, causing the Jervell and Lange-Nielsen syndrome
Frontiers in Pharmacology | www.frontiersin.org 14
(KCNQ1 or KCNE1, leading to reduced IKs) (Splawski et al.,
1997; Duggal et al., 1998). LQTS-related arrhythmias can be
triggered by either slow or fast heart rate or by sinus pauses,
therefore the relation between the LQTSs and the sinoatrial node
is an interesting topic; for details, see the mini-review from
Wilders and Verkerk (2018). For a detailed summary chart about
LQTSs with the genetic loci, see a recent review of Landstrom et
al. (Landstrom et al., 2017).

Pharmacological management of congenital LQTS starts with
the administration of b-blockers, irrespective of the genotype
(Moss et al., 2000). In one study, propranolol was shown to be
the most effective b-blocker (Na+ channel blockade with limited
effects on K+ channels) (Chockalingam et al., 2012). It should be
noted that care is required with the use of b-blockers at low heart
rate in LQTS-3 since bradycardia-dependent arrhythmias occur
more often in these patients (El-Sherif et al., 2017). It was shown
in LQTS-2 patients that besides b-blockers, application of
mexiletine may also have positive effects (Kim et al., 2010;
Ildarova et al., 2012). As an add-on therapy, in the case of
LQTS-3 patients mexiletine (Schwartz et al., 1995), lidocaine,
tocainide (Rosero et al., 1997), flecainide (Moss et al., 2005),
phenytoin (Vukmir and Stein, 1991), or ranolazine (Moss et al.,
2008) can be useful (Priori et al., 2013). In LQTS where
mutations cause reduction in K+ currents, drugs that enhance
K+ currents, nicorandil (Shimizu et al., 1998) or RPR26043
(Kang et al., 2005) were shown to be effective. ICD
implantation is recommended for survivors of cardiac arrest or
with recurrent syncope while on b-blocker (Priori et al., 2013).
Left cardiac sympathetic denervation (LCSD) can also be
performed on high-risk patients (arrhythmic events even in the
presence of b-blocker/ICD). In addition to drugs or surgical
procedures, lifestyle changes, such as avoidance of drugs that
lengthen QT interval, identification and correlation of electrolyte
abnormalities, avoidance of strenuous exercise (especially
swimming in LQTS-1 patients) and abrupt loud noises (LTQS-
2) are recommended for patients (Priori et al., 2013).

Brugada Syndrome
Brugada syndrome (BrS) is characterized by ST elevation in
V1–V3 ECG leads and is associated with elevated risk of
polymorphic VT, VF, and sudden cardiac death (Brugada
and Brugada, 1992). Two hypotheses have been proposed to
describe the mechanism behind BrS and how ST segment
elevation is linked to VT/VF. (Ringer, 1883) In the
repolarization hypothesis, the loss of spike-and-dome AP
morphology (heterogenous shortening of AP due to
predominance of Ito over INa and ICa,L) is suggested in the
epicardium of the right ventricular outflow tract, causing an
enhanced transmural dispersion of repolarization, i.e. ST
elevation (Yan and Antzelevitch, 1999). The arrhythmogenic
mechanism is delivered by phase-2 reentry, when the
produced extrasystole can occur on the preceding T wave
(R-on-T phenomenon), finally initiating VT/VF. (Bers, 2002)
The depolarization theory proposes a slowed conduction and
delayed activation mechanism in the right ventricular outflow
tract as a substrate for reentry (Meregalli et al., 2005).
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To date, 23 gene (gain-of-function and also loss-of-function)
mutations have been described generating BrS-1–BrS-23 (Gray
and Behr, 2016). The most common subtype is BrS-1, mutation
affects the SCN5A-encoded a-subunit of the Na+ channel
(Nav1.5) and is accountable for about one third of all BrS
(Antzelevitch et al., 2005). Genes, governing Ca2+-signaling
molecules are also affected in BrS and causing 10–15% of cases
(Burashnikov et al., 2010) (Table 1). Loss-of-function mutation
of the CACNA1C-encoded a1C-subunit (Cav1.2a1; BrS-3), the
CACNB2-encoded b2-subunit (Cavb2; BrS-4), and the
CACNA2D1-encoded a2d1-subunit (Cava2d1; BrS-11) of the
L-type Ca2+ channel (governing ICa,L) have been described with a
concomitant reduction of ICa,L (Antzelevitch et al., 2007).
Patients harboring these Ca2+ related mutations showed BrS
like ECG but with shorter than normal QT intervals. Recently, a
new Ca2+-related mutation has been linked to BrS, accounting
for about 6% of the cases. Mutation of the TRPM4-encoded Ca2+

activated non-selective cation channel transient receptor
potential melastatin 4 (TRPM4; BrS-15) can either be gain-of-
function or loss-of-function (Liu et al., 2013). TRPM4-mediated
current increases APD in atrial muscle and isolated myocytes
(Simard et al., 2013), possibly by promoting the plateau (as it is
more likely to activate when Ca2+ is elevated). Therefore, TRPM4
mutation may change the AP dome and be arrhythmogenic.
TRMP4 may also slow down conduction by altering the
availability of Na+ channels (Liu et al., 2013).

There have been pharmacological attempts to manage BrS
(isoproterenol, quinidine, procainamide, propafenone, pilsicainide,
flecainide), some of them were effective in preventing recurrent
episodes of VF or electrical storms, but did not reduce the overall risk
of VF (Brugada et al., 2000; Shimizu et al., 2000; Morita et al., 2003;
Belhassen et al., 2004; Ohgo et al., 2007). Guidelines are also
recommending lifestyle changes (omit drugs that aggravate ST
elevation, avoid alcohol and immediate treatment if fevered) and
implantation of ICD (Priori et al., 2013).

Short QT Syndrome
Short QT syndrome (SQTS) is a rare inherited syndrome
characterized by QT intervals essentially shorter than 360 ms
and by an increased incidence of VT/VF mainly in youngsters
(Bjerregaard et al., 2010). There are eight different gene
mutations, of which three affect ICa,L (Table 1). Loss-of-
function mutation of the CACNA1C-encoded a1C-subunit
(Cav1.2a1; SQTS-4), the CACNB2-encoded b2-subunit (Cavb2;
SQTS-5), and the CACNA2D1-encoded a2d1-subunit (Cava2d1;
SQTS-6) of the L-type Ca2+ channel, similar to the BrS-3, BrS-4,
and BrS-11 phenotype. These mutations decrease ICa,L (alter
current density and activation/inactivation kinetics), cause
heterogenous shortening of APD and QT interval, therefore
increases dispersion of repolarization (Antzelevitch et al.,
2007). Transmural dispersion of repolarization (shortening
effect is more pronounced in the epicardium compared to
endocardium and midmyocardium) finally serves as a substrate
for reentry. These mutations combined with the mutation of
SCN5A-encoded a-subunit of the Na+ channel (Nav1.5) causes
an overlapping phenotype of SQTS and BrS.
Frontiers in Pharmacology | www.frontiersin.org 15
Early Repolarization Syndrome and
Idiopathic Ventricular Fibrillation
Early repolarization syndrome (ERS) is characterized by J-point and
ST segment elevation in two or more contiguous leads on ECG
(Boineau, 2007). The early repolarization pattern (in the inferior and/
or lateral precordial leads) had been considered harmless, but it has
recently been associated with idiopathic ventricular fibrillation (IVF)
(Rosso et al., 2008). ERS now is diagnosed in IVF survival patients,
without other causes of cardiac arrest (channelopathies; structural or
non-structural heart diseases, e.g. BrS; metabolic; toxicological;
respiratory; and infectious) (Haissaguerre et al., 2008). Seven gene
mutations were shown, to date, including loss-of-function mutations
of CACNA1C, CACNAB2, and CACNA2D1, as seen in BrS or SQTS
(Table 1). L-type channel mutations account for 16% of cases
(Burashnikov et al., 2010). CaM-F90L mutation was proposed to be
linked to IVF phenotype, where the authors speculated that CaM
mutations could be arrhythmogenic by altering Ca2+ binding and/or
binding of target proteins, thus generating a rather insensitive CaM
and that the gene anomaly ismore pronounced in the Purkinje system
(Marsman et al., 2014). Recently, a novel single point mutation in
RyR2 (RyR2-H29D) has been linked to IVF phenotype (Cheung et al.,
2015). RyR2-H29Dmutation was shown to be associated with short-
coupled premature ventricular contractions, initiating polymorphic
VT. This mutation caused diastolic Ca2+ leak at rest by higher open
probability and higher frequency of opening of RyR at low diastolic
Ca2+ levels in a non-PKA phosphorylated state, unlike the typical
CPVT-related RyR mutations. Therefore, RyR dysfunction caused by
RyR2-H29D mutation may play a role in short-coupled
polymorphic VT.

J-point elevation associated malignant arrhythmias have
recently been proposed with a new classification, as J-wave
syndrome (Antzelevitch and Yan, 2010).
ACQUIRED SYNDROMES

Acquired Long QT Syndrome
In addition to the congenital form, LQTS can also be acquired. The
prevalence of acquired LQTS is greater than that of congenital forms
(El-Sherif et al., 2019). It is generally caused by adverse, unwanted
drug effects and/or electrolyte abnormalities and may predispose to
the prolongation of the APD/QT interval, increase in dispersion of
refractoriness and to a higher risk for generating EADs, being the
substrates for VTs, especially for torsade de pointes VT (El-Sherif
and Turitto, 1999).

The above mentioned effects are often seen for the hERG-
encoded (human ether-à-go-go-related gene or KCNH2) Kv11.1
channel, responsible for IKr while effects on enhanced INa,L has
also been reported (Yang et al., 2014). The role of dispersion of
repolarization in generating tachyarrhythmias (and the role as a
preclinical proarrhythmia marker) is further supported by a
series of experiments, where DL-sotalol and amiodarone were
compared (Milberg et al., 2004). It was shown, that both hERG-
blockers increased QT interval, however only DL-sotalol
increased transmural dispersion of refractoriness, EADs and
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torsade de pointes (and caused triangulation of the AP), while
amiodarone caused phase-2 prolongation of the AP without
triangulation, which is otherwise considered proarrhythmic.

Several other causes of acquired LQTS have been described,
including electrolyte disorders (El-Sherif and Turitto, 2011),
such as hypokalemia, hypomagnesemia or hypocalcemia,
hypothyroidism, hypothermia, but also antidepressant and
antipsychotic treatments (Sicouri and Antzelevitch, 2018),
female gender, and autoimmune and inflammatory diseases
(Lazzerini et al., 2015; Boutjdir et al., 2016). Hypocalcemia
causes QT prolongation via phase-2 prolongation of AP
(Eryol et al., 2003), also longer and late Ca2+ influx (due to
reduced Ca2+-dependent inactivation of ICa,L) can favor the
formation of EADs.

Atrial Fibrillation
The most prevalent cardiac arrhythmia is atrial fibrillation
(AF) and this can be classified as paroxysmal (spontaneously
self-terminates into sinus rhythm in less than 7 days),
persistent (lasts for more than 7 days), long-lasting
persistent (AF lasts for more than a year) or permanent AF
(without active rhythm control) (Kirchhof et al., 2016). AF is
multifactorial. Basic arrhythmogenic mechanisms include
Ca2+ handling defects such as triggered activity (DAD, late-
phase 3 EAD), conduction block (reentry), and Ca2+-driven
cardiac alternans and altered Ca2+ buffering (Nattel and
Dobrev, 2016). DAD-mediated triggered arrhythmias are
underlined by Ca2+ handling instability in AF, namely RyR
dys funct ion ( increased phosphory la t ion and open
probability), increased SERCA function, increased diastolic
SR Ca2+ leak and spontaneous SR Ca2+ release, increase in
Ca2+ sparks and waves, enhanced CaMKII function (with
subsequent RyR hyperphosphorylation), or reduced ICa,L
(Sood et al., 2008; Neef et al., 2010; Shan et al., 2012; Voigt
et al., 2012). Involvement of late-phase 3 EAD has also been
shown (Burashnikov and Antzelevitch, 2006). As in most of
the AF models APD is abbreviated, this observation can be
somewhat surprising, since EADs generally occur at a
prolonged APD. However, as we previously described, late-
phase 3 EADs occur at shorter APD and at elevated Ca2+

loading conditions (such as rapid atrial pacing). These
ectopic activities can serve as a trigger for reentry which is
considered to be the main arrhythmogenic mechanism in AF.
Also, ICa,L reduction in AF causes APD shortening and
promotes reentrant activity (Heijman et al . , 2014).
Reduction of ICa,L might be governed by reduction of
protein and mRNA levels of the channel (alpha subunit)
after rapid pacing. This transcriptional downregulation of
Ca2+ channel has been proposed to be mediated by activation
of calcineurin by Ca2+/CaM, which in turn, regulates nuclear
translocation of NFAT (Qi et al., 2008).

A novel, interesting theory has been proposed, namely,
Ca2+ signaling silencing, as an antiarrhythmic adaptive
mechanism in AF (Greiser et al., 2014). The key observation
was, that sustained high atrial pacing may not lead to Ca2+
Frontiers in Pharmacology | www.frontiersin.org 16
instability, suggesting a role of accompanying cardiovascular
diseases (e.g. HF) rather than “lone AF” itself in those cases
when unstable Ca2+ signaling occurs in AF. Ca2+ signaling
silencing process includes the failure of centripetal
intracellular Ca2+ signal propagation (also unchanged level
of Ca2+ sparks and decreased amplitude of the systolic Ca2+

transient), remodeling of the RyR complex (reduced protein
expression and CaMKII-mediated phosphorylation), and
lower Na+ concentration (consequential reduction in Ca2+

load) (Greiser, 2017). The decreased propagation was
associated with an increase of cytoplasmic buffer power
possibly due to increased Ca2+ sensitivity of myofilaments
resulting from decreased phosphorylation of troponin I
(Greiser et al., 2014). The authors concluded that the Ca2+

signaling phenotype in AF patients is a net result of factors that
stabilize (i.e. Ca2+ signaling silencing) or destabilize it
(arrhythmogenic Ca2+ instability). Therefore, future
therapeutic approaches should identify the substrate
(arrhythmia enhancing abnormalities or arrhythmia
suppressing Ca2+ signaling silencing) and tailor therapies for
individual AF patients (Kirchhof et al., 2016; Schotten et al.,
2016; Greiser, 2017).

For an excess review about the role of Ca2+ in the pathophsiology
of AF see the review of Denham et al. (2018).
CONCLUSIONS

In summary, we have reviewed the roles of Ca2+ in cardiac E-C-
coupling focusing on those defects which lead to cardiac
arrhythmias in inherited and acquired syndromes. In the last
few decades there have been great advances in the understanding
of these arrhythmias, however, there is still a need for more work
investigating the physiology and pathophysiology of Ca2+ related
events. Designing drugs to treat a specific disease type has never
been simple; it is enough to think of the early disappointing
attempts to block the Na+ or K+ channels (CAST and SWORD
trials, respectively). Multiple characteristics of novel therapeutic
approaches have to be determined and to be considered as a
complex, systems problem.

Along with the generally used b-blockers, newly developed
selective drugs without proarrhythmic side effects are necessary.
While implantable cardiac defibrillators provide longer life
expectancy, they cannot prevent the onset of cardiac events. An
additional helpful tool would be reliable and effective risk stratification
and clinical guidance for all of the syndromes discussed. It should not
be overlooked that in the future other genetic mutations may be
discovered requiring novel biological therapies. Because of the
diversity of inherited and acquired mutations individually tailored
therapeutic approaches (gene-specific or mutation-specific
pharmacological and/or gene therapy) will be required.

To gain a better understanding of the role of Ca2+ in the cardiac
arrhythmias data from basic science should meet the clinical
practice; translational aspects must be key in all fields of science.
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