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Pancreatic cancer decreases survival time and quality of life because of drug resistance
and peripheral neuropathy during conventional treatment. This study was undertaken to
investigate whether avb3 integrin receptor antagonist compounds NDAT and XT199 can
suppress the development of cisplatin resistance and cisplatin-induced peripheral
neuropathy in an orthotopic pancreatic SUIT2-luc cancer cell mouse model. Anticancer
effects of these compounds and their combination with cisplatin were assessed in this
tumor mouse model with bioluminescent signaling and histopathology, and a cytokine
assay was used to examine expression of inflammatory cytokines IL-1b, IL-6, IL-10, and
TNF-a from plasma samples. To determine the neuroprotective effects of the compounds
on cisplatin-induced peripheral neuropathy, behavioral hind-limb posture of the mice was
evaluated. The combination therapy of NDAT or XT199 with cisplatin elicited greater
inhibition of tumor growth and increased tumor necrosis compared to cisplatin alone.
NDAT and XT199 in combination with cisplatin significantly decreased expression of pro-
inflammatory cytokines IL-1b, IL-6, and TNF-a and significantly increased expression of
anti-inflammatory cytokine IL-10 in comparison to cisplatin alone. Cisplatin-treated groups
showed stocking-glove hind-limb posture, whereas NDAT and XT199 with cisplatin-
treated groups displayed normal hind-limb posture. Results clearly suggest that NDAT
and XT199 treatment with cisplatin that inactivates NF-kB may contribute to increased
antitumor and anti-inflammatory efficacy as well as alleviate cisplatin-mediated loss of
motor function in this pancreatic tumor mouse model.

Keywords: pancreatic cancer, NF-kB, cisplatin, avb3 integrin receptor antagonist, peripheral neuropathy,
motor dysfunction
INTRODUCTION

Pancreatic cancer is a lethal malignancy, with a 5-year survival rate of only 9%. This is due to lack of
diagnosis at an early stage of tumor development, ineffective therapy, its highly invasive and
metastatic nature, and development of chemoresistance (Siegel et al., 2019). Drug resistance is a
major reason for the inadequate efficacy of most pancreatic cancer therapies (Long et al., 2011;
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Mezencev et al., 2016). Cis-diamminedichloroplatinum (II), or
cisplatin, a commonly used platinum-based anticancer drug for a
wide range of solid tumors, is effective alone (Mezencev et al.,
2016) or in combination with other chemotherapy drugs for the
treatment of advanced or metastatic pancreatic cancer (Gresham
et al., 2014; Ramfidis et al., 2014). Although cisplatin displays a
broad spectrum of anticancer activity via multiple mechanisms,
its clinical effectiveness is often limited due to chemoresistance
and adverse side effects, especially peripheral sensory
neurotoxicity (Florea and Büsselberg, 2011; Argyriou et al.,
2014; Avan et al., 2015).

Cisplatin-induced peripheral neuropathy involves the hind-
and upper-limbs and includes mixed signs of sensory and motor
dysfunction, loss of vibration sense, loss of position sense,
paresthesia, weakness, loss of taste, and tremor (Starobova and
Vetter, 2017). Multiple mechanisms involved in pathophysiology
of cisplatin-induced neuropathy are linked to oxidative stress,
DNA damage, mitochondrial dysfunction, activation of
apoptotic pathways, dysregulation of calcium homeostasis,
altered ion channels activity, axonal degeneration, and loss of
peripheral sensory neurons, immune processes, and neuro-
inflammation (Starobova and Vetter, 2017; Zajaczkowska et al.,
2019). Cisplatin was shown to kill cancer cells and primary
sensory neurons in a dorsal root ganglion by a similar
mechanism of apoptosis (Gill and Windebank, 1998).

Chemoresistance in pancreatic cancer is triggered by multiple
mechanisms including mutations in key genes, aberrant gene
expression, and deregulation of key signaling pathways. These
include nuclear factor-kappaB (NF-kB), Wnt/b-catenin, Notch,
Sonic Hedgehog, STAT3, PI3K/Akt, Smad/TGF-b and apoptosis
pathways, epithelial–mesenchymal transition (EMT), increased
angiogenesis, the presence of cancer stem cells, stroma cells and
highly resistant cells, and hypoxic microenvironment inside the
tumor (Long et al., 2011; Wang et al., 2011; Karandish and
Mallik, 2016).

NF-kB is an important transcription factor that controls many
genes involved extensively in inflammation, cancer (Hoesel and
Schmid, 2013), and chemoresistance (Godwin et al., 2013).
Preclinical models have demonstrated that chemotherapy drugs
including cisplatin promote the activation of the NF-kB pathway,
which is responsible in part for drug resistance in carcinoma cell
lines (Chuang et al., 2002; Yeh et al., 2002; Yeh et al., 2003; Li et al.,
2005). Cisplatin induces oxidative stress and inflammation via
reactive oxygen species-related NF-kB pathway, implicated in
peripheral neuropathy that emerges as a dose-limiting side effect
(Morgan and Liu, 2011; Marullo et al., 2013; Areti et al., 2014; Vyas
et al., 2014). The NF-kB pathway contributes to cancer cell
development/progression and drug resistance in pancreatic cancer
by inhibiting cancer cell apoptosis and inducing expression of
inflammatory cytokines (Fujioka et al., 2003; Prabhu et al., 2014;
Yu and Kim, 2014). These cytokines, such as interleukin-1b (IL-1b),
IL-6, IL-8, IL-10, tumor necrosis factor-a (TNF-a), and
transforming growth factor-b (TGF-b) are potential prognostic
biomarkers as well as targets in the pathogenesis of pancreatic
cancer (Fujioka et al., 2003; Prabhu et al., 2014) and in peripheral
nerve injury (Fregnan et al., 2012;Wang et al., 2012; Lees et al., 2017).
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Integrins are important in various cell types that affect tumor
progression, especially tumor growth, angiogenesis, metastasis
(Desgrosellier and Cheresh, 2010), resistance to chemotherapy
(Aoudjit and Vuori, 2012), and crosstalk with growth factor
receptors (Mousa et al., 2008). They are therefore attractive targets
for cancer therapy. Among integrins, avb3 is important during
tumor angiogenesis (Liu et al., 2008), and it activates several NF-
kB-regulated gene expressions that are important for angiogenesis
and inflammation (Chen et al., 2015). High expression of integrin
avb3 on tumor blood vessels and some tumor cells makes it a suitable
marker for cancer-targeted delivery of potential cancer therapeutics
(Liu et al., 2008). In addition, integrin avb3 receptor is highly
expressed in the plasma membrane of cancer cells and of activated
endothelial cells, where it transduces thyroid hormone signals into
angiogenic response and tumor cell proliferation (Bergh et al., 2005;
Davis et al., 2011). Thus, the use of integrin avb3 antagonists and
integrin-targeted delivery systems have potential as effective anti-
angiogenic and anticancer therapeutics (Kumar, 2003; Hsu et al.,
2007; Liu et al., 2008; Davis et al., 2014a; Davis et al., 2014b) for
pancreatic cancer therapy (Chuang et al., 2013). With regard to the
peripheral nervous system, integrins play a role in its development,
axonal growth, Schwann cell-axon unit formation, and myelination;
therefore, altered expression or function of integrins is associated with
degenerative, inflammatory, and malignant disorders of this system
(Previtali et al., 2001). They are therefore potential targets for the
pathogenesis of chemotherapy-induced peripheral neuropathies
(Dina et al., 2004; Berti et al., 2006; Antonacopoulou et al., 2010),
rheumatoid arthritis related diseases (Wilder, 2002), and several
neurological disorders (Wu and Reddy, 2012).

To overcome chemoresistance and reduce peripheral
neurotoxicity, integrin receptor antagonists that inhibit key
metabolic pathways are a promising approach to use in
combination treatment for pancreatic cancer. Consequently,
targeting NF-kB that is involved in the resistance of pancreatic
cancer cells to cisplatin (Dizon et al., 2005; Godwin et al., 2013;
Tamburrino et al., 2013) with integrin avb3 receptor antagonists
might have great potential for development of novel preventive or
therapeutic agents to overcome resistance and alleviate peripheral
neuropathy in cisplatin-mediated pancreatic cancer therapies.

In this work we examined the potent and specific avb3
integrin antagonists Nano-diamino-tetrac (NDAT) and XT199
in an orthotopic pancreatic tumor mouse model to evaluate
their efficacy on cisplatin-induced chemoresistance and
peripheral neurotoxicity presenting as deficits in motor function
that develop in a glove-and-stocking distribution in the hands and
feet. NDAT, ({4-[4-(3-(3-(poly-2-(2-hydroxyacetotoxy))
propanamido)aminopropoxy)-3,5-diiodophenoxy]-3,5-
diiodophenyl} acetic acid), is a 150–200 nm poly(lactic-co-glycolic
acid) (PLGA) nanoparticle covalently bound via a
diaminopropane linker to tetraiodothyroacetic acid (tetrac)
(Sudha et al., 2017a), which is a naturally occurring deaminated
analog of L-thyroxine (T4). It has been shown to block the
binding of thyroxine to integrin avb3 and the actions of the
major intracellular agonist form of thyroid hormone, 3,3′,5-
triiodo-L-thyronine (T3) (Davis et al., 2011; Davis et al., 2016).
The NDAT formulation prohibits tetrac from entering cells and
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thus concentrates its activity at integrin avb3. Thus NDAT was
formulated for targeted anticancer drug delivery and for reduced
systemic toxicity (Sudha et al., 2017a). Previous studies from our
laboratory have demonstrated that NDAT is an effective
anticancer and anti-angiogenic agent in vitro and in vivo in the
chick chorioallantoic membrane (CAM) and human cancer cell
implanted mouse tumor xenograft models (Yalcin et al., 2009;
Yalcin et al., 2010a; Yalcin et al., 2010b; Mousa et al., 2012; Bharali
et al., 2013; Sudha et al., 2017a; Sudha et al., 2017b; Li et al., 2019).
XT199, [3-(3-(3-(4 , 5-d ihydroimidazol-2-y lamino)
propyloxylisoxazol-5-yl) carbonylamino)-2-(phenylsulfonylamino)
propionic acid], is a small molecule, non-peptide selective integrin
avb3 receptor antagonist (Bishop et al., 2001) that is an effective
anti-angiogenic agent in the CAM model (Mousa et al., 2006;
Bridoux et al., 2011). This anti-angiogenic effect is associated with
tumor regression of human tumor cell xenografts transplanted
onto the CAM by inducing apoptosis of angiogenic blood vessels
(Brooks et al., 1994).
RESULTS

NDAT and XT199 Promote Antitumor
Effect of Cisplatin
NDAT and XT199 alone or in combination with cisplatin (Table
1) resulted in suppression of tumor signal intensity and tumor
weights at 21 days following initiation of SUIT2-luc orthotopic
pancreatic tumors. In contrast, control group tumors showed
increased bioluminescent signal intensities with increased tumor
weight over time (Figure 1), as observed in the ex vivo imaging of
excised tumors (Figures 2A, B). It is intriguing to notice that the
viable tumor cell signal intensity in cisplatin-treated animals was
greater than the intensity from the control group (Figure 2A),
yet the cisplatin-treated group had a 37.4% decrease in tumor
weight compared to the control group (Figures 2C, D).

NDAT had a reduced signal intensity compared to control of
27%, and NDAT had an antitumor effect on tumor weight
(51.3% vs. control). NDAT + cisplatin reduced tumor signal
intensity by 60.2% and tumor weight by 69% in comparison to
control. The reduction of tumor cell viability measured with IVIS
revealed a clear trend in advantage of NDAT + cisplatin over
NDAT and cisplatin alone treatments. NDAT + cisplatin-treated
groups showed a decrease in tumor weight by 50.4% (Figures
2C, D) and in tumor signal intensity by 67.3% in comparison to
cisplatin-treated group (Figures 2A, B).

XT199 had an antitumor effect on tumor weight (37% vs.
control), and the reduction of tumor signal intensity compared
to control was 8.1%. In comparison to control, XT199 + cisplatin
reduced tumor weight by 73% and tumor signal intensity by
58.3%. XT199 + cisplatin-treated groups showed a decrease in
tumor signal intensity by 65.6% and tumor weight by 57% when
compared to the cisplatin-treated group (Figures 2A–D).

NDAT and XT199 Did Not Affect
Body Weight
Body weight gain did not differ in the NDAT and XT199, alone,
treatment groups in comparison to the control group from day 1
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to the end of the study, but all cisplatin treatment groups had
lower body weight compared to the control group. Cisplatin-
treated body weights were lower after the second week and
continued to decrease until the end of the experiment. This
change was not statistically significant for the 21-day duration of
the study (Figure 3). However, there is a clear trend of body
weight loss on cisplatin that was reversed by either XT199 or
NDAT as shown in Figure 3.

Histopathological Analysis: NDAT
and XT199 Alone and in Combination
With Cisplatin Promote SUIT2-luc
Tumor Necrosis
Cisplatin treatment resulted in significant increase in necrotic
areas as compared to control (Figures 4A, B). Necrotic areas
included fragmented and small nucleus (early stage) and ghost
cells without nucleus (late stage), suggesting that cisplatin had
effects on both stages of cell death. Bioluminescent signal in the
tumor was inversely proportional to tumor necrosis. The
treatments with NDAT and XT199 showed a significant
increase in the necrotic areas (**p < 0.01) compared to control.
NDAT + cisplatin (*p < 0.05) and XT199 + cisplatin-treated
tumors showed large regions of necrosis when compared to
cisplatin alone (Figure 4B).

Inhibition of NF-kB by NDAT and XT199
Exerts Protective Effects on Cisplatin-
Mediated Loss of Motor Function
Normally, mice show normal splaying of the hind-limbs when
suspended by the tail. This behavior was absent in cisplatin-
treated animals, which manifested flaccidity of the hind-limbs
and crossing of the limbs (Figure 5). Postural evaluation for
motor symptoms of peripheral neuropathy revealed cisplatin-
induced muscle weakness manifested by crossed hind-limbs close to
the body when suspended by their tails, starting at day 8. This was an
indication of stocking-glove pattern neuropathy caused by cisplatin.
Control groups, NDAT + cisplatin, and XT199 + cisplatin-treated
groups displayed normal motor behaviors. This provides evidence
that these compounds may preserve functional motor integrity
compared to cisplatin treatment alone by preserving nerve structure.
TABLE 1 | Daily treatments with NDAT, XT199, cisplatin, and combination for
the 21-day study along with number of animals per group and dose and
administration route.

Treatment Number of animals1 Dose (mg/kg b.w.) Administration

Control (PBS) 4 – s.c.
Cisplatin 5 1 i.p.
NDAT 5 3 s.c.
NDAT +
Cisplatin

4 3
1

s.c.
i.p.

XT199 4 3 s.c.
XT199 +
Cisplatin

5 3
1

s.c.
i.p.
F
ebruary 2020 | Volum
1Three animals were excluded from randomization into groups 2 days after initiation of
SUIT2-luc orthotopic pancreatic tumors where tumor signal intensity was not detectable
with IVIS, resulting in 3 groups having 4 instead of 5 animals. i.p., intraperitoneal; s.c.,
subcutaneous.
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FIGURE 2 | Effects of cisplatin, NDAT, XT199, and combination treatments on SUIT2-luc cancer cell viability and weight in tumors at study conclusion (day 21).
(A) Bioluminescence images of excised orthotopic tumors of SUIT2-luc cells bearing luciferase gene. (B) Average signal intensity of SUIT2-luc cells for NDAT +
cisplatin and XT199 + cisplatin treatments showing reduction compared to cisplatin. Image color estimates viability, ranging from nonviable (blue) to fully viable (red).
(C) Photographic images of excised orthotopic tumors of SUIT2-luc cells bearing luciferase gene. (D) Tumors weight of SUIT2-luc cell orthotopic pancreatic tumors.
Data represent mean ± SEM, (*p < 0.05).
FIGURE 1 | Tumor growth dynamics and signal intensity over time. Luminescent signals of SUIT2-luc orthopic tumors showing the average signals from day 1
through day 19 post-treatment. Effects of cisplatin, NDAT, XT199, and combination treatments on tumors' cancer cell viability as observed with IVIS imaging of
tumor bioluminescence intensity. Data represents mean ± SEM.
Frontiers in Pharmacology | www.frontiersin.org February 2020 | Volume 11 | Article 954
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NDAT and XT199 Downregulate IL-1b,
TNF-a, and IL-6 Mediated Activation
of NF-kB
Because cytokines from innate immune cells (TNF, IL-1, IL-6,
IL-10, etc.) are usually released in small amounts, have very short
half-lives, and are restricted to the tissues, we detected the
changes in inflammatory cytokine responses from plasma
Frontiers in Pharmacology | www.frontiersin.org 5
samples of mice with SUIT2-luc orthotopic pancreatic tumors
(Figure 6). Relative to the control group, the cisplatin-treated
group exhibited increased IL-1b, TNF-a and IL-6 levels and
decreased levels of IL-10. The TNF-a levels were significantly
decreased by NDAT compared to control (*p < 0.05) and by the
combinatorial treatments compared to cisplatin (*p < 0.05). The
IL-6 and IL-1b, levels were significantly decreased by the
combinatorial treatments compared to cisplatin (*p < 0.05 and
FIGURE 4 | (A) Representative micrographs (40X) of H and E stained histological sections of orthotopic pancreatic tumors showing increased necrotic areas after
treatment with NDAT and XT199 compared to control (untreated) tumor with viable cells and large nuclei at 40X. (B) Histopathological analysis of the orthotopic
pancreatic tumors of SUIT2-luc cells treated with cisplatin showed significant increase in necrotic areas compared to control (*p < 0.05, **p < 0.01).
FIGURE 3 | Effect of daily treatment with cisplatin vs XT199 + cisplatin or NDAT + cisplatin on body weight of mice vs control mice treated with PBS. Data
represents mean ± SEM.
February 2020 | Volume 11 | Article 95

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Debreli Coskun et al. avb3 Integrin Antagonists Enhance Chemotherapy
**p < 0.01). The combinatorial treatments reversed the effects of
cisplatin and significantly increased the IL-10 levels compared to
cisplatin (**p < 0.01). In summary, any increase in these pro-
inflammatory cytokines by cisplatin was effectively decreased by
NDAT and XT199, and any decrease by cisplatin was effectively
increased by NDAT and XT199 (Figure 6).
Frontiers in Pharmacology | www.frontiersin.org 6
DISCUSSION

In cancer treatment, recognition of chemotherapy-induced
peripheral neurotoxicity is important because subsequent drug
discontinuation or dose adjustment may prevent further
neurologic injuries. Cisplatin-induced peripheral neurotoxicity
is implicated in the induction of oxidative stress and
FIGURE 5 | Hind-limb posture at 21 days of cisplatin treatment with and without NDAT and XT199 treatment, showing one control mouse and representative
treated mice; result were the same in all treated mice. Control mouse had normal escape extension with its hind-limb upon elevation by the tail. A mouse from the
cisplatin group held its hind-limbs in a crossed position close to its body as a sign of muscle weakness and motor deficits that started at day 8. Mice treated with
NDAT and XT199 in combination with cisplatin did not show hind-limb posture behavior at 21-days study. The result was the same behavior with NDAT alone and
XT199 alone (data not shown).
FIGURE 6 | Changes in (A) TNF-a (B) IL-1b (C) IL-6 (D) IL-10 mean plasma concentrations for NDAT, XT199, cisplatin, and combination treated mice groups. Mice
were pre-treated with NDAT (3 mg/kg) and XT199 (3 mg/kg) and post-treated with cisplatin (1 mg/kg) for 21 days. Plasma was collected to measure the
concentration of these cytokines. From each treatment group, n = 4, plasma samples were tested in duplicate. Results are presented as the mean ± SEM,
*p < 0.05, **p < 0.01.
February 2020 | Volume 11 | Article 95
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inflammatory response via reactive oxygen species-related NF-
kB signaling pathway (Chtourou et al., 2015; Sharawy et al.,
2015). Our previous study demonstrated that NDAT suppressed
cisplatin-induced NF-kB activation in contrast to the NF-kB
inhibitor QNZ in HeLa/NF-kB-luc reporter cells (Sudha et al.,
2017a). These data suggest a greater effect of NDAT on limiting
cisplatin-induced NF-kB activation.

In earlier studies we found NDAT delivery of cisplatin to urinary
bladder cancer xenografts showed a 5-fold enhancement of tumor
content of drug compared to conventionally administered cisplatin
(Sudha et al., 2017a), and in related work we showed the efficiency
of NDAT delivery of doxorubicin and paclitaxel to breast cancer
and pancreatic cancer orthotopic nude mouse models, respectively;
intra-tumoral concentrations of doxorubicin and paclitaxel were
2.3- and 5-fold, respectively, higher than via the conventional route
of the administration of these agents and increased drug antitumor
efficacy (Sudha et al., 2017b). The multifold increase in the tumor
content of each of these widely used anticancer drugs supported the
cancer-targeting ability of NDAT (Davis et al., 2011).

We show here the anti-inflammatory and anticancer actions of
avb3 integrin antagonists NDAT and XT199 as a new approach to
treat cisplatin-resistant pancreatic cancer cells. The most significant
improvement in tumor response was observed with NDAT +
cisplatin and XT199 + cisplatin compared to cisplatin alone in
orthotopic pancreatic tumor mouse models. NDAT and XT199
alone also had an antitumor effect on pancreatic tumor signal
intensity and tumor weight when compared to control (Sudha et al.,
2017c; Chang et al., 2018; Li et al., 2019). Doses of NDAT and
XT199 were based on previous studies with NDAT or XT199 at 1, 3,
and 10 mg/kg s.c., where 10 mg/kg resulted in maximal response. In
the present study, NDAT or XT199 were used at sub-maximal dose
of 3 mg/kg s.c. with or without cisplatin. In contrast to our
previously reported study (Sudha et al., 2017a) where NDAT acts
as a targeted delivery strategy for cisplatin into tumor and its
microenvironment, this study examined the effects of cisplatin
combined with NDAT or XT199 and we demonstrate enhanced
anti-cancer efficacy.

We previously reported on the molecular mechanisms of
NDAT where it enhances pro-apoptosis genes and suppresses
tumor survival genes (Chin et al., 2019).

The greater tumor bioluminescence signal intensity in
cisplatin-treated animals compared to control animals indicates
lack of any effect of cisplatin on the growth of the SUIT2-luc
orthotopic tumors. A possible explanation could be the ability of
the SUIT2-luc cells to resist cisplatin therapy. Pancreatic cancer is
highly resistant to chemotherapy that is largely associated with
constitutive activation of NF-kB (Long et al., 2011), and cisplatin is
known to induce drug resistance in carcinoma cell lines via
regulating NF-kB pathway (Chuang et al., 2002; Yeh et al., 2002;
Yeh et al., 2003; Li et al., 2005). Taken together, NDAT and XT199
treatment enhanced the antitumor efficacy of cisplatin, resulting in
the sensitization of SUIT2-luc cells to cisplatin, suggesting that
these agents may target NF-kB pathway or multiple drug
resistance mechanisms. These results strongly suggest that the
combination of cisplatin with either NDAT or XT199 has a
synergistic antitumor effect in SUIT2-luc cells.
Frontiers in Pharmacology | www.frontiersin.org 7
On the other hand, cisplatin resistance in different pancreatic cancer
cells was found to display significant differences in gene expression
profiles (Mezencev et al., 2016). Miller et al. reported that drug
resistance in pancreatic cancer was associated with the presence of
multidrug resistance-associated protein (MRP) (Miller et al., 1996).
Noma et al. examined the expression of MRPs (MRP1, MRP2, and
MRP3) and analyzed the correlation between MRP2 expression and
cisplatin resistance in human pancreatic cancer. They found that the
expression of MRP2 was increased in cisplatin-resistant pancreatic
cancer cells (Noma et al., 2008). Cui et al. evaluated that some specific
genetic profiles of pancreatic cancer cells correlated with in vitro
chemosensitivity. They found that inactivation of DPC4/SMAD4
(high-frequency pancreatic cancer driver genes) sensitized pancreatic
cancer cells to cisplatin (Cui et al., 2012). Indeed, SUIT-2 cells do not
contain mutation in the SMAD4 gene and thus are insensitive to
cisplatin (Moore et al., 2001). Muralidharan-Chari et al. showed that
exposure to chemotherapeutic drugs triggers pancreatic cancer cells to
release micro-vesicles, which enable the expulsion of therapeutic drugs
from human pancreatic cancer cells and from their microenvironment,
contributing to their drug resistance (Muralidharan-Chari et al., 2016).
Resistance to chemotherapy is a major problem in cancer treatment,
therefore understanding the mechanism of drug resistance may lead to
development of novel and effective therapeutics with the potential to
sensitize pancreatic cancer cells to chemotherapy and improve
anticancer efficacy of current treatments.

Nephrotoxicity is the major dose limiting side effect of cisplatin
that causes acute (early) and chronic (advanced) kidney injury
depending on the dosage, dose frequencies, and cumulative dose of
cisplatin. A study of rats treated twice a week for 10 weeks with
repeated lower doses of cisplatin 1 mg/kg (cumulative dose 20 mg/
kg) with or without 100 mg/kg procainamide hydrochloride
(cumulative dose 2 g/kg) showed protective activity against acute
cisplatin-induced nephrotoxicity and hepatotoxicity (Fenoglio et al.,
2005). Specifically, short‐duration and low‐volume hydration
regimens with magnesium supplementation and mannitol are
used in preventing cisplatin‐induced nephrotoxicity (Crona et al.,
2017). Therefore, in our study mice were treated daily for 21 days
with lower doses (1 mg/kg) of cisplatin supplemented with
mannitol to prevent cisplatin-induced nephrotoxicity.

Recent studies have highlighted the role of cytokines in cancer
drug resistance mechanisms and in cancer cell progression (Ho
and Piquette-Miller, 2006; Jones et al., 2016). Observing changes
in cytokine levels during chemotherapy may allow early
diagnosis of cancer drug resistance. Increased cytokine levels in
pancreatic cancer cells are most likely due to activation of the
NF-kB pathway (Prabhu et al., 2014). Therefore, in our study the
pharmacological inhibition of cisplatin-induced NF-kB
activation by NDAT and XT199 may decrease the expression
of pro-inflammatory cytokines IL-1b, TNF-a, IL-6 and increase
anti-inflammatory cytokine IL-10. High levels of cytokines IL-
1b, IL-6, IL-8, IL-10, TGF-b, and TNF-a are observed in patients
with pancreatic cancer compared to healthy patients. Therefore,
these cytokines are identified as novel candidate markers in the
development and progression of pancreatic cancer (Dima et al.,
2012; Blogowski et al., 2014; Yu and Kim, 2014). In addition,
nerve injury increases the expression of inflammatory cytokines
February 2020 | Volume 11 | Article 95
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including IL-1b, IL-6, IL-17, and TNF-a and decreases the levels
of anti-inflammatory/neuroprotective cytokines (IL-10, IL-4)
that are involved in the pathogenesis of neuropathic pain
(Fregnan et al., 2012; Lees et al., 2013; Janes et al., 2015).

Toll-like receptor (especially TLR4)/MyD88 dependent
pathway leads to the activation of NF kB and subsequently the
induction of pro-inflammatory cytokines (such as TNFa, IL-1b,
IL-6) and reduction of anti-inflammatory cytokines (IL-10). This
TLR4 signaling regulates chemotherapy-induced peripheral
neuropathy in mice (Li et al., 2014; Park et al., 2014), and in
the current work, cisplatin related chemotherapy-induced loss of
motor dysfunction is ameliorated using avb3 integrin receptor
antagonist to inhibit NF-kB activation and inflammation. Loss of
motor function was not seen in untreated animals (control)
implanted with pancreatic cancer cells (i.e., loss of motor
function is not due to pancreatic tumor).

Cytokines have a short half-life (generally <60 minutes) and are
usually present at low concentrations in circulation (Sachdeva and
Asthana, 2007). They act at hormonal concentrations with high
receptor binding affinity of between 10−12 and 10−10M. In some cases,
only a few dozen receptors need to be activated per cell to elicit an
effect. In vivo concentrations are in the range of ng/ml. Due to this
local action at low concentrations, cytokine serum/plasma levels may
not reliably reflect local activation (Sommer and Kress, 2004).

Initial sensory symptoms of cisplatin-induced peripheral
neuropathy are numbness and paresthesias of the hind-limbs and
then to the front-limbs in a “stocking-glove” distribution (Argyriou
et al., 2014). Sensory nerve dysfunction is more common than
motor involvement. However, motor neuropathy symptoms such as
mild distal muscle weakness and atrophy due to denervation may
also develop (Park et al., 2013). We observed no loss of motor
function in animals receiving NDAT, XT199, or NDAT + cisplatin
and XT199 + cisplatin. In contrast, cisplatin induced hind-limb
spasticity after administration for 2 weeks, which is an indication of
stocking-glove distribution caused by cisplatin-induced peripheral
neuropathy. This provides evidence that NDAT and XT199 may
preserve functional motor integrity by preserving nerve structure,
which might be due to the modulation of cisplatin-induced
upregulation of cytokines and chemokines by the avb3
antagonists NDAT and XT199.
MATERIALS AND METHODS

Cell Culture and Preparation
of Stock Solutions
Human pancreatic cancer SUIT2-luc cells (provided by Dr.
Arumugam from MD Anderson Cancer Center, Houston, TX,
USA) were grown in DMEM supplemented with 10% FBS and 1%
penicillin/streptomycin. Cells were cultured at 37°C in a 5% CO2

humidified incubator to sub-confluence and treated with 0.25%
(w/v) trypsin/EDTA to induce cell release from culture flasks. Cells
were washed with culture medium, suspended in DMEM that was
free of phenol red and FBS, and counted. Stock concentrations of
test compounds were prepared in PBS (NDAT) and in DMSO
Frontiers in Pharmacology | www.frontiersin.org 8
(XT199) as 1 mM stocks for use in cellular assays. One mM stock
solution of cisplatin was freshly dissolved in 0.9% sodium chloride
and 10% D-mannitol added sterile water.

Animals
Animal studies were conducted at the animal facility of the
Veterans Affairs Medical Center, Albany, NY, USA and approved
by the IACUC committee of the Veterans Affairs Medical Center.
Immune-deficient female NCr-Foxn1 nude homozygous mice aged
5–6 weeks and weighing 18–20 g were purchased from Taconic
Biosciences Inc. (Hudson, NY, USA). Mice were maintained under
specific pathogen-free conditions and housed under controlled
conditions of temperature (20–24°C), humidity (60–70%), and 12
h light/dark cycle with ad libitum access to water and food. Mice
were allowed to acclimatize for 5 days before the study.

Pancreatic Cancer Xenografts
For the development of orthotopic pancreatic tumor mouse
models, SUIT2-luc cancer cells were harvested and injected (3 ×
105 cells per mouse, suspended in 30 ml of DMEM) into the
pancreas of isoflurane anesthetized mice. Two days after tumor
cell implantation, and immediately before the initiation of
treatment, animals were randomized into 6 groups (5 animals/
group) by tumor mass detected with an in vivo imaging system
(IVIS®, Perkin Elmer, Boston, MA, USA) where average signal
intensity was 0.25 E+07. Three animals were excluded from the
randomization where tumor signal intensity was not detectable,
i.e. < 0.05E+07. Numbers of animals in each treatment group are
listed in Table 1. Treatments were administered subcutaneously
(s.c.) or intraperitoneal (i.p.) daily for 21 days. Mice were
observed daily during treatment for their hind-limb posture as
an indication of acute pain response.

Orthotopic tumor growth was determined twice a week using
IVIS®. Mice bearing SUIT2-luc tumors were anaesthetized using
isoflurane and injected s.c. with 200 ml D-luciferin (30 mg/ml),
then were imaged in the IVIS®. Photographic and luminescence
images were taken at constant exposure time. Xenogen IVIS®

Living Image software version 4.5 was used to quantify non-
saturated bioluminescence in regions of interest (ROI). Light
emission between 5.5 × 106–7.0 × 1010 photons was assumed to
be indicative of viable luciferase-labeled tumor cells, while
emissions below this range were considered as background.
Bioluminescence was quantified as photons/second for each
ROI. In vivo tumor kinetic growth and metastasis were
monitored by signal intensity. After the termination of the study
(day 21), animals were anaesthetized using isoflurane, sacrificed,
and tumors were harvested for weighing and IVIS imaging.

Tumor Histopathology
All tumors were analyzed with routine histopathology analysis.
Tumors were fixed in 10% buffered formalin and tissues
processed in a tissue processor (Tissue-Tek VIP, Miles
Scientific, Newark, DE, USA) and then tissues were transferred
into embedding chambers to hold them in position until the
paraffin became solid to prevent further rotation. Once
embedded, tissues were cut at 5 mm thickness on a microtome
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(Biocut 2030 Microtome, Leica, Buffalo Grove, IL, USA) onto
charged glass slides. The sections were then deparaffinized and stained
with hematoxylin and eosin (H&E staining protocol from imaging core
facility at Oklahoma Medical Research Foundation). Sections were
evaluated for various pathologic parameters using a light microscope
(Leica EC3,Mag. 400X), and histopathological measurements of tumor
area were performed in a double-blinded manner.

Cytokine Assay
At animal sacrifice, bloodwas collected from hearts for analysis with a
Bio-Plex® 200 system assay. Plasma samples of 4 animals/group were
used to analyze cytokine levels (IL-1b, IL-6, IL-10, TNF-a). The
cytokine assay was performed strictly according to themanufacturer's
protocol for plasma samples, utilizing recommended sample dilutions
and standard curve concentrations, with all samples and standards
assayed in duplicate.

Statistical Analysis
Statistical analysis was performed using Student t-test as a
parametric test and Kruskal-Wallis test as a non-parametric test
and comparing the mean ± standard error of the mean (SEM) from
each experimental group with its respective control group. Statistics
were also evaluated using IBM SPSS Statistics 23.0. According to the
Tukey HSD test, p values < 0.05 were considered significant.
CONCLUSIONS

This study confirms that NDAT and XT199 exert anti-tumor
and anti-inflammatory properties that reduce cisplatin resistance
and alleviate cisplatin-mediated loss of motor function.
Therefore, targeting several pathways by the avb3 antagonists
NDAT and XT199 might overcome drug resistance and enhance
the efficacy of cisplatin therapy in pancreatic cancer.

This study also provides an understanding of the role of NF-kB
in pancreatic cancer, indicating that NF-kB may be an important
therapeutic target for peripheral neuropathic complications. Further
investigations are warranted to determine their efficacy in various
tumor types with and without chemotherapy, which may have
implications for improving the efficacy of systemic chemotherapy
for patients with pancreatic cancer. To confirm our observational
changes in motor function with NDAT and XT199 combination
treatment with cisplatin in mice, future experiments should include
quantitative sensory testing and histopathologic evaluation for
evaluation of two important manifestations: axonal degeneration
and demyelination after sciatic nerve injury in mice due to
cisplatin treatment.
Frontiers in Pharmacology | www.frontiersin.org 9
DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.
ETHICS STATEMENT

Animal studies were conducted at the animal facility of the
Veterans Affairs Medical Center, Albany, NY, USA and
approved by the IACUC committee of the Veterans Affairs
Medical Center.
AUTHOR CONTRIBUTIONS

Conceptualization: MD and SM. Methodology: MD, TS, DB, and
SM. Validation: MD, TS, and SM. Formal analysis: MD, TS, and
SM. Investigation: MD, TS, and SM. Resources: PD and SM. Data
curation: MD, TS, and SM. Writing—original draft preparation:
MD. Writing—review and editing: MD and SM. Visualization:
MD and TS. Supervision: SC, PD, and SM. Project
administration: MD and SM. Funding acquisition: SM.
FUNDING

This work was supported by 2214-A International Doctoral
Research Fellowship Programme of Scientific and Technological
Research Council of Turkey (TÜBİ TAK), Grant No:
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