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Aims and hypothesis: Epidermal growth factor (EGF) has been shown to induce the
migration of various cancer cells. However, the underlying signaling mechanisms for EGF-
induced migration of oral squamous cell carcinoma (OSCC) remain to be elucidated.
WNT7A, a member of the family of 19 Wnt secreted glycoproteins, is commonly
associated with tumor development. It is mostly unknown whether and, if so, how EGF
modulates WNT7A in OSCC cells. The role of WNT7A in OSCC was thus investigated to
explore the underlying signaling mechanisms for EGF-induced migration of OSCC.

Methods: Cell migration was measured by Wound healing assay and Transwell assay.
Western blotting was carried out to detect the expression of WNT7A, MMP9, b-catenin,
p-AKT, and p-ERK. The cells were transfected with plasmids or siRNA to upregulate or
downregulate the expression of WNT7A. The location of b-catenin was displayed by
immunofluorescence microscopy. Immunohistochemistry was carried out to confirm the
relation between WNT7A expression and OSCC progression.

Results: The present study showed that the levels of WNT7A mRNA and protein were
increased by EGF stimulation in OSCC cells. Besides, it was proved that p-AKT, but not p-
ERK, mediated the expression of WNT7A protein induced by EGF. Furthermore, the
inhibition of AKT activation prevented the EGF-induced increase of WNT7A and matrix
metallopeptidase 9 (MMP9) expression and translocation of b-catenin from the cytoplasm
to the nucleus. Moreover, histological analysis of OSCC specimens revealed an
association between WNT7A expression and poor clinical prognosis of the disease.

Conclusions: The data in this paper indicated that WNT7A could be a potential
oncogene in OSCC and identified a novel PI3K/AKT/WNT7A/b-catenin/MMP9 signaling
for EGF-induced migration of OSCC cells.
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INTRODUCTION

It is well known that Wnt signaling is one of the most important
pathways, playing an essential role in a variety of cellular
processes (Ghosh et al., 2019; Goldsberry et al., 2019; Sharon
et al., 2019). Historically, it includes two categories: the canonical
and the non-canonical Wnt signalings. The Wnt/b-catenin
pathway, known as the canonical Wnt signaling, controls cell
growth, differentiation, apoptosis, and self-renewal (Rosenbluh
et al., 2012; Gonzalez-Moles et al., 2014; Nusse and Clevers, 2017;
Alamoud and Kukuruzinska, 2018). This pathway is aberrantly
activated during the development of multiple cancers and can
coordinate with other pathways to regulate cancer cell
proliferation, migration, and invasion (Yu et al., 2012; Myant
et al., 2013; Novellasdemunt et al., 2015; Rudy et al., 2016; Pohl
et al., 2017; Kartha et al., 2018; Lee et al., 2019; Reyes et al., 2019).

WNT3A and WNT7B are known to activate the WNT/b-
catenin pathway in colon cancer and pancreatic adenocarcinoma,
respectively (Arensman et al., 2014; Qi et al., 2015). WNT7A, a
member of the Wnt gene family, has been identified as an
oncogene in pancreatic ductal adenocarcinoma and colon cancer
(Thomas et al., 2003; Becer et al., 2019). The effect of WNT7A on
cancer development is type-dependent. It can accelerate cancer cell
proliferation and induce cancer progression through the canonical
Wnt/b-catenin pathway in ovarian and endometrial cancers (Liu
et al., 2013; MacLean et al., 2016). On the other hand, in non-small
cell lung carcinoma (NSCLC) and gastric cancer (GC), WNT7A
has been found to act as a tumor suppressor via non-canonical
Wnt signaling (Avasarala et al., 2013a; Avasarala et al., 2013b; Liu
et al., 2019). The role of WNT7A in oral squamous cell carcinoma
(OSCC) is unclear, and this is the focus of our research.

The tumor microenvironment (TME) provides a distinct
advantage in tumor-aggressive capability (Liubomirski et al.,
2019). It has been documented that cancer cells may gain
invasive and migratory properties when they receive TME
signals such as EGF, VEGF, TNF-a, and TNF-b, which could
promote tumorigenesis and metastasis (Dewangan et al., 2019;
Lee, 2019; Lin et al., 2019). EGF is mainly synthesized by the
salivary glands, making saliva a potential source of EGF in the
oral environment (Bernardes et al., 2011). EGF has been shown
to induce the migration of various cancer cells (Thomas et al.,
2003; Tumur et al., 2015). Furthermore, EGF receptor (EGFR) is
overexpressed in oral cancer tissues and is closely associated with
the degree of malignancy of tongue cancer (Ansell et al., 2016;
Sun et al., 2018). Previous studies have shown that there is an
association between EGF/EGFR and the Wnt family. For
example, it is reported that there is a crosstalk between Wnt
and EGF signalings (Zhang et al., 2015; Liu et al., 2017) and that
the over-expression of WNT10B can induce epidermal-
keratinocyte transformation through activating the EGF
pathway (Lei et al., 2015). However, despite these recent
studies, it is still mostly unknown whether and, if so, how EGF
modulates WNT7A-expression in OSCC cells.

It is generally accepted that tumor cell migration plays a vital
role in tumor progression (Yamashita et al., 2017; Qin et al., 2018;
Koedoot et al., 2019). In the present study, we identified WNT7A
as a potential oncogene mediating EGF signaling and confirmed
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the role of AKT as a critical molecular connection between EGF
stimulation and WNT7A expression in OSCC cells. Furthermore,
we showed that WNT7A could activate Wnt/b-catenin signaling,
which then increased MMP9 expression and led to cell migration.
The results of this study clearly demonstrate a unique relationship
between EGF signaling and WNT7A expression in regulating
cancer cell migration, which could be essential in the
identification of therapeutic targets for the treatment of OSCC.
MATERIALS AND METHODS

Ethics Statement
All immunohistochemistry assays with human tumor specimens
were conducted under the institutional guidelines of Jiangsu
Province, China.

Cell Culture
Human OSCC cell line HSC3 was purchased from the Cell
Resource Center for Biomedical Research, Tohoku University
(TKG0484) and CAL27 (CRL-2095) was purchased from the
American Type Culture Collection (ATCC, Manassas, VA, USA).
The cells were cultured in DMEMmedium (Biological Industries,
Bet-Haemek, Israel) supplemented with 10% fetal bovine serum
(Gibco, Thermo Scientific, Grand Island, NY, USA) at 37°C with
5% CO2. The cells were serum-starved overnight, followed by
EGF (R&D Systems, Minneapolis, MN, USA) treatment.

Cell Transfection
Three WNT7A siRNAs were obtained from GenePharma
(Shanghai, China); their sequences were 5’-GCGCAAGCAUCA
UCUGUAATT-3 ’ (siRNA #1), 5 ’-CCGG-GAGAUCA
AGCAGAAUTT-3’ (siRNA#2), and 5’ –CCACCUUCCU
GAAGAUCA-ATT-3’ (siRNA #3), respectively. The full-length
cDNA of Human WNT7A was cloned into a pcDNA3.1-HA-C
vector (Youbio, Hunan, China). The cells were transfected with
25 nM siRNA using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA). For plasmid transfection, FuGENE HD Transfection
Reagent (Promega Corporation, Madison, USA) was used.

Cell Viability Assay
The cells were seeded in 96-well plates at a density of 5×103 cells
per well. After 24 h, cells were serum-starved overnight and
treated with EGF for 0, 12, 24, and 48 h. A commercial CCK8
assay kit (Dojindo Laboratories, Kumamoto, Japan) was used to
detect the viability of the cells. The absorbance value was
measured at a wavelength of 450 nm using a microplate reader
(Bio-Tek, Vermont, American). The assay was performed in
more than three independent experiments.

Cell Proliferation Assay
Cell proliferation was analyzed with a 5‐ethynyl‐2′‐deoxyuridine
(EDU) Kit (RiboBio, Guangzhou, China). The cells cultured in a
24-well plate were treated with or without EGF (20 ng/mL) for
24 h. After the addition of EDU, the cells were cultured for an
extra 2 h. After the incubation, the cells were stained according to
the manufacturer’s instructions. Briefly, the culture medium was
February 2020 | Volume 11 | Article 98
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discarded, and 4% paraformaldehyde was added to fix the cells at
room temperature for 30 min. After the fixation, the cells were
washed with a glycine solution (2 mg/mL) for 5 min in a shaker.
After 0.5% Triton X-100 was added, the washing was continued
for an extra 10 min. Then, the cells were washed two times with
PBS. After the washing, 100 mL of 1 × Apollo® reaction cocktail
was added to each well, and the plate was incubated for 30 min.
After the incubation, the cells were washed three times with 0.5%
Triton X-100. Finally, the cells were stained with 100 mL of 1 ×
Hoechst 33342 for 30 min and washed three times with PBS.
Photographs were collected using an inverted microscope (Carl
Zeiss Meditec, Jena, Germany).

Wound Healing Assay
The cells were seeded in a 6-well plate. When the cells reached
confluence, the wound-healing assay was performed by scraping
through the cell monolayer with a sterile P200 pipette tip. The
plate was washed twice with PBS to remove non-adherent cells.
Then, new medium was added, and the cells were cultured for 24
h. Photographs were collected by using an inverted microscope
(Carl Zeiss Meditec, Jena, Germany) at 0 and 24 h time points.

Transwell Migration Assay
Transwell assay was performed using a transwell plate (Millipore,
Billerica, MA, United States). HSC3 cells were isolated, washed,
and suspended in DMEM without FBS. The cells (2×105) were
seeded in the upper chamber, and the lower chamber was filled
with 600 mL DMEM with 10% FBS. The cells were treated with
U0126 or LY294002 in the absence or presence of EGF (20 ng/mL)
for 24 h. Then, the cells remaining on the upper side of the
membrane were wiped off with cotton swabs. The cells that had
migrated onto the lower side of the membrane were fixed with 4%
formaldehyde and stained with 0.1% crystal violet. Images of the
migrated cells were taken with an inverted microscope (Carl Zeiss
Meditec, Jena, Germany). The cells in three randomly selected
regions of the field were counted using Image J software. The
experiments were repeated at least three times.

Total RNA Isolation and Quantitative
Real-Time PCR
Total RNA was isolated using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). The reverse transcription was carried out
by HiScript II Q RT SuperMix (Vazyme, Nanjing, China). The
quantity of target cDNAs was measured using the ABI
StepOne™ Plus Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA) and analyzed with StepOne software v2.1
(Applied Biosystems, Foster City, CA, USA). The 2−DDCT method
was used to calculate gene expression levels. Each sample was
measured in triplicate relative to GAPDH values.

Western Blotting
The protein sample was collected, and its concentration was
measured by the BCA protein assay and normalized to equal
amounts. The proteins were separated by 10% SDS-PAGE gels
and transferred onto nitrocellulose membranes. The membranes
were blocked with 5% skim milk in TBST for 1 h at room
temperature and incubated with primary antibody overnight at
Frontiers in Pharmacology | www.frontiersin.org 3
4°C. After incubation with a secondary antibody for 1 h at room
temperature, the bands were visualized with ECL reagent
(Millipore, Billerica, MA, USA) and analyzed using the
Quantity One image analysis program (Bio-Rad).

Immunofluorescence Microscopy and
Immunohistochemistry
The cells grown on a glass coverslip were washed with PBS and
fixed with paraformaldehyde. Permeabilization was done using
0.1% TritonX-100 before blocking in 1% BSA for 1 h at room
temperature. The cells were incubated with primary antibody
overnight, followed by incubation with an Alexa-coupled
secondary antibody (Thermo Fisher Scientific) for 1 h at room
temperature. DAPI (Southern Biotech, Birmingham, AL, USA)
was used for staining cell nuclei. Pictures were acquired using an
Olympus BX43 microscope (Olympus, Tokyo, Japan).

Oral cancer tissue microarrays were purchased from Outdo
Biotech (Shanghai, China). OSCC and corresponding tissue
samples were used for immunohistological staining in our
study. The paraffin sections were de-paraffinized and hydrated.
Later, peroxidase blocking was carried out with 3% H2O2 in
methanol for 15 min at 37°C. The sections were incubated with
primary antibody overnight and then with secondary antibody
for 1 h. Afterward, these sections were incubated with DAB and
counterstained with hematoxylin. Finally, the staining was
analyzed by evaluating the percentage of the WNT7A positive
cells and the staining intensity, allowing the assessment of an
immunoreactivity score (IRS).

Reagents and Antibodies
EGF was purchased from R&D Systems (Minneapolis, MN, USA).
Phospho-ERK1/2, phospho-AKT (Thr308), phospho-AKT
(Ser473), AKT, b-catenin, ERK1/2, and Histone3 antibodies
were purchased from Cell Signaling Technology (Boston, MA,
USA). MMP9 antibody was purchased from Bimake (Shanghai,
China). GAPDH antibody and HRP-linked anti-rabbit secondary
antibodies were purchased from Bioworld Technology (Louis
Park, MN, USA). WNT7A antibody was purchased from Abcam
(Cambridge, MA, USA). MEK inhibitor U0126 was purchased
from Promega (Madison, WI, USA), and PI3K/AKT inhibitor
LY294402 was purchased from Sigma (St. Louis, MO, USA).

Statistical Analysis
Statistical analyses were performed using Prism 7.0 software
(GraphPad Software, Inc., La Jolla, CA, USA). All experiments
were repeated at least three times. Differences between two groups
were analyzed by Student’s t-test. Repeated measures analysis of
variance was used to compare the differences among multiple
groups. P < 0.05 represents statistical significance, and P < 0.01
represents sufficiently statistical significance (two-tailed).
RESULTS

EGF Induces the Migration of OSCC Cells
CAL27 cells were treated with different concentrations of EGF
and underwent a wound-healing assay to examine the effect of
February 2020 | Volume 11 | Article 98
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EGF on the migration of the cells. The results showed that the
migration of CAL27 cells was increased by EGF stimulation,
especially with stimulation by 10 ng/mL and 20 ng/mL EGF
(Figure 1A). Cell Counting Kit-8 (CCK8) assay was used to
measure the viability of CAL27 cells incubated with EGF. The
Frontiers in Pharmacology | www.frontiersin.org 4
results showed that treatment with EGF did not noticeably affect
the viability of CAL27 cells (Figure 1B). qPCR was applied to
detect the mRNA expression of all members of the Wnt gene
family in CAL27 and HSC3 cells (Figures 1C, D). The results
showed that the mRNAs of WNT4, WNT7A, WNT7B, and
FIGURE 1 | Continued
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FIGURE 1 | EGF induces the migration of OSCC cells. The results of the wound healing assay and quantification of migration rate (A), showing that the cell
migration was increased by EGF stimulation for 24 h. *P < 0.05, **P < 0.01. Scale bar, 100 mm. (B) The results of the CCK8 assay showed that treatment with the
indicated concentration of EGF for 24 h did not noticeably affect the viability of CAL27 cells. (C) qPCR detection of WNT mRNA expression in CAL27 cells showed
that WNT4, WNT7A, WNT7B, and WNT10A were abundantly expressed. (D) qPCR detection of WNT mRNA expression in HSC3 cells. (E) Among the highly
expressed WNT mRNAs, the WNT7A mRNA level was doubled with EGF (20 ng/mL) treatment for 24 h. *P < 0.05, **P < 0.01. (F) The qPCR result, which showed
the maximum change in MMP mRNA expression with EGF (20 ng/mL) stimulation for 24 h. **P < 0.01. (G) The results of Western blotting showed that WNT7A was
remarkably increased after EGF (20 ng/mL) stimulation in both HSC3 and CAL27 cells. (H) The results of CCK8 assay in CAL27 and HSC3 cells showed that there
was no significant difference between the two indicated groups at 0, 12, 24, and 48 h. (I) EDU assay showed that EGF (20 ng/mL) treatment for 24 h did not affect
cell proliferation in CAL27 and HSC3 cells.

Xie et al. EGF-Induced Migration of OSCC Cells
WNT10A were abundantly expressed in the CAL27 cells and the
mRNA of WNT5A was abundantly expressed in the HSC3 cells
(Figure 1C). This difference might relate to the characteristics of
different cell lines. Besides, the qPCR result showed that the
mRNA level of WNT7A was remarkably increased after EGF
stimulation (20 ng/mL, 24 h) (Figure 1E). Furthermore, the
Frontiers in Pharmacology | www.frontiersin.org 5
qPCR result showed that the expression of MMP9 mRNA was
obviously increased under the stimulation with 20 ng/mL EGF
(Figure 1F).

Taken together, we hypothesized that WNT7A might play a
vital role in the EGF-induced migration of OSCC cells. Thus, we
used HSC3 cells to verify our hypothesis. The results of Western
February 2020 | Volume 11 | Article 98
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blotting showed that WNT7A was remarkably increased after
EGF stimulation (20 ng/mL, 24 h) in both HSC3 and CAL27 cells
(Figure 1G).

Since FZDs, LRP, and EGFR play an essential role in the
regulation of WNT signaling (Ma et al., 2017; Tripurani et al.,
2018; Yin et al., 2018; Hsu et al., 2019), we checked the
expression of their mRNAs in CAL27 and HSC3 cells (Figures
S1A–C). The expression of EGFR, MMP9, and WNT7A was also
detected with Western blotting in both CAL27 and HSC3 cells
(Figure S1D). We found that FZD3, FZD6, LRP5, LRP6, and
EGFR were highly expressed in the OSCC cells. To exclude the
effect of cell viability on the migration, CCK8 was carried out to
detect the viability of the cells with EGF (20 ng/mL) treatment at
0, 12, 24, and 48 h in CAL27 and HSC3 cells (Figure 1H). In
addition, the EDU experiment was also used to exclude the effect
of EGF (20 ng/mL) treatment on cell proliferation (Figure 1I).
No significant differences in cell viability and proliferation were
found. Therefore, 20 ng/mL of EGF was chosen as the optimal
concentration in this research.

WNT7A is Associated With the EGF-
Induced Migration of OSCC Cells
The finding that EGF could induce WNT7A expression impelled
us to figure out whether WNT7A was required for EGF-induced
migration. The overexpression and knockdown efficiency of
WNT7A in CAL27 and HSC3 cells were detected by qPCR
(Figures 2A–D). The results showed that the MMP9 mRNA
level was changed accordingly with a change in WNT7A
expression. Wound healing assay was used to measure the
migration of normal and WNT7A knockdown CAL27 cells
incubated with or without EGF (20 ng/mL). The results
showed that in CAL27 cells in which the expression of
WNT7A was silenced, incubation with EGF (20 ng/mL) did
not increase the migration and the expression of MMP9 (Figures
2E, F). Furthermore, the results of wound healing assay and
Western blotting showed that the migration and MMP9
expression of HSC3 cells overexpressing WNT7A was
increased (Figures 2G, H). The above results demonstrated
that WNT7A was associated with the migration of OSCC cells
induced by EGF treatment.

EGF Regulates the Activation of the
WNT7A/b-Catenin Pathway
Considering that b-catenin was the classical downstream
signaling molecule of WNT7A, we investigated whether the
WNT7A/b-catenin pathway was activated by EGF stimulation.
The EGF-induced expression and distribution of b-catenin in the
nucleus and cytoplasm were examined, respectively. The
Western blotting results showed that the nuclear distribution
of b-catenin increased and reached the peak level with EGF
treatment for 8-12 h in CAL27 cells (Figures 3A, B). The results
of confocal microscopy showed that the knockdown of WNT7A
in CAL27 and HSC3 cells blocked the accumulation of b-catenin
in the nucleus in response to EGF stimulation. Conversely, after
transfection with WNT7A plasmids, b-catenin accumulated in
the nucleus (Figure 3C). Furthermore, Western blotting results
Frontiers in Pharmacology | www.frontiersin.org 6
showed that the distribution of b-catenin in the nucleus was
decreased by the silencing of WNT7A expression when CAL27
cells were incubated with 20 ng/mL EGF (Figure 3D). Also, the
nuclear distribution of b-catenin was increased in CAL27 cells
overexpressing WNT7A (Figure 3E). Therefore, the above
results suggested that WNT7A was involved in the process of
EGF-activated Wnt/b-catenin signaling.

EGF Induces Cell Migration via MEK/ERK
and PI3K/AKT Signalings, but Only p-AKT
is Involved in the Wnt/b-Catenin Pathway
ERK and PI3K/AKT are critical components of EGF-activated
signaling, which has been associated with human cancer EMT
(Wudtiwai et al., 2018; Jiang et al., 2019; Park et al., 2019; Yang
et al., 2019; Yoo et al., 2019). To verify whether ERK and PI3K/
AKT could affect EGF-mediated migration of CAL27 cells, MEK
inhibitor U0126 and PI3K/AKT inhibitor LY294002 were
applied in observing the cell migration in the absence or
presence of EGF (20 ng/mL) for 24 h. The results showed that
pre-treatment with U0126 and LY294002 could reverse the EGF-
induced migration (Figures 4A, B). Transwell assay was carried
out in HSC3 cells to verify the effect of U0126 and LY294002 on
the migration (Figure 4C). We found that the migration of HSC3
cells was noticeably increased by EGF (20 ng/mL) stimulation.
Besides, pre-treatment with both U0126 and LY294002 could
reverse the EGF-induced migration.

Furthermore, the result of Western blotting indicated that
treatment with U0126 and LY290042 could down-regulate
MMP9 expression (Figures 4D, E). Interestingly, in cells
pre-treated with U0126 and incubated with or without
EGF, the level of p-AKT and WNT7A remained consistent
(Figures 4D, E). In addition, we noticed that LY290042 could
down-regulate WNT7A expression but had no significant effect
on the p-ERK level (Figures 4D, E). Furthermore, qPCR was
applied to detect the WNT7A mRNA expression in the absence or
presence of U0126 and LY294002 with or without EGF stimulation
in both CAL27 cells and HSC3 cells (Figures S2A, B).
Consistent with the Western blotting results, treatment with
LY294002 rather than U0126 affected the expression of
WNT7A mRNA.

The above results suggested that both MEK/ERK and
PI3K/AKT contributed to the EGF-induced migration, while
p-AKT was involved in the EGF-activated WNT7A/b-
catenin signaling.

EGF Steers a Two-Pronged (MEK/ERK
and PI3K/AKT) Pathway Toward Migration
The investigation was carried out into whether there was
crosstalk between MEK/ERK and PI3K/AKT signalings in
EGF-induced migration. Firstly, to probe the activation of ERK
and AKT during EGF-induced migration, the levels of p-AKT
(Thr308), p-AKT(Ser473), p-ERK, MMP9, and WNT7A in cells
treated with EGF for the indicated periods were detected. The
results showed that p-AKT (Thr308), p-AKT (Ser473), and
p-ERK reached their peak levels at 1 h with EGF stimulation
(Figure 5A). Next, to verify the relation between p-ERK and
February 2020 | Volume 11 | Article 98
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p-AKT, their levels in CAL27 cells incubated with U0126 or
LY294002 for 1 h in the presence or absence of EGF were
detected. As shown in Figure 5B, U0126 did not affect the
phosphorylation of AKT, and LY290042 did not affect the
phosphorylation of ERK. Furthermore, the results confirmed
Frontiers in Pharmacology | www.frontiersin.org 7
that LY290042 but not U0126 had an effect on WNT7A
expression (Figures 5C, D).

Since the above results suggested that both p-ERK and p-AKT
might regulate the migration of CAL27 cells and that WNT7A
could be down-regulated by LY290042, we hypothesized that
FIGURE 2 | WNT7A is associated with the EGF-induced migration of OSCC cells. (A–D) CAL27 and HSC3 cells were transfected with empty vector, HA-tagged
WNT7A, negative control siRNA, or WNT7A siRNA, respectively. qPCR was performed to detect the expression of WNT7A and MMP9. The results showed that
MMP9 protein expression was changed accordingly with the expression of WNT7A. *P < 0.05, **P < 0.01, ***P < 0.001. (E) The wound healing assay showed that
in CAL27 cells with WNT7A knockdown, incubation with EGF (20 ng/mL) did not increase the migration. Scale bar, 100 mm. *P < 0.05, in the cells incubated with
EGF versus no EGF treatment; #P < 0.05, the siRNA-interfered WNT7A cells incubated with EGF versus the cells treated with EGF only. (F) The incubation with EGF
did not cause the change of MMP9 protein level in CAL27 cells with WNT7A silence. (G) Overexpression of WNT7A induced migration of HSC3 cells. Scale bar,
100 mm. *P < 0.05. (H) Overexpression of WNT7A caused MMP9 expression.
February 2020 | Volume 11 | Article 98
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FIGURE 3 | EGF regulates the activation of the WNT7A/b-catenin pathway. (A, B) CAL27 cells were incubated with EGF (20 ng/mL) for the indicated times. The
results of Western blotting showed that the nuclear distribution of b-catenin increased and reached the peak level at 8-12 h with EGF treatment. *P < 0.05 the
cytoplasm versus the nucleus. (C) CAL27 and HSC3 cells were divided into the indicated groups for immunofluorescent microscopy. The results showed that
b-catenin accumulated in the nucleus with EGF stimulation as well as WNT7A overexpression. Knocking down WNT7A blocked the entrance of b-catenin into the
nucleus in response to EGF stimulation. Scale bar, 10 mm. (D) In CAL27 cells incubated with 20 ng/mL EGF, the protein level of b-catenin in the nucleus was
decreased by WNT7A silence. (E) b-catenin accumulated in the nuclei of CAL27 cells overexpressing WNT7A.
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FIGURE 4 | EGF induces cell migration via MEK/ERK and PI3K/AKT signalings, but only p-AKT is involved in the Wnt/b-catenin pathway. (A–E) CAL27 cells were
incubated for 2 h in the absence or presence of 10 mM U0126 or 10 mM LY294002 prior to EGF treatment (20 ng/mL) for 24 h. The wound healing assay showed
that pre-treatment with MEK inhibitor U0126 (A) and PI3K/AKT inhibitor LY294002 (B) could reverse the EGF-induced migration. *P < 0.05, **P < 0.01 in the cells
treated with EGF combined with U0126 or LY294002 versus the cells in the control group. #P < 0.05 in the cells incubated with EGF combined with U0126 or
LY294002 versus the cells treated with EGF only. Scale bar, 100 mm. (C) Transwell assay showed that EGF (20 ng/mL) treatment induced the migration of HSC3
cells and that pre-treatment with U0126 and LY294002 could reverse the process. *P < 0.05, **P < 0.01, in the cells treated with EGF combined with U0126 or
LY294002 versus the cells in the control group. #P < 0.05, in the cells incubated with EGF combined with U0126 or LY294002 versus the cells treated with EGF
only. (D) The Western blotting results indicated that U0126 could down-regulate MMP9 expression but had no significant effect on the p-AKT or WNT7A level.
(E) The Western blotting results showed that LY290042 could down-regulate WNT7A and MMP9 expression but had no significant effect on the p-ERK level.
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FIGURE 5 | EGF steers a two-pronged (MEK/ERK and PI3K/AKT) pathway toward migration. (A) CAL27 cells were incubated in EGF (20 ng/mL) for the indicated
times, and the results of Western blotting showed that p-AKT (Thr308), p-AKT(Ser473), and p-ERK reached their peak levels at 1 h with EGF stimulation. (B) Cells
were treated with a different combination of EGF with U0126 or LY294002 for 1 h. The results of Western blotting showed that U0126 did not affect the
phosphorylation of AKT and that LY290042 did not affect the phosphorylation of ERK either. (C, D) The results of Western blotting showed that in cells with
pretreatment of U0126 (C) or LY294002 (D) and treatment with EGF for the indicated times, MEK/ERK and PI3K/AKT did not affect each other. Also, PI3K/AKT
inhibitor but not MEK/ERK inhibitor had an effect on WNT7A expression. The results of immunofluorescence microscopy (E) and Western blotting (F) showed that
pretreatment with U0126 did not prevent EGF-induced b-catenin accumulation in the nucleus. In contrast, pretreatment with LY294002 blocked the accumulation
induced by EGF. Scale bar, 10 mm.
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p-AKT might be involved in the regulation of WNT7A. To
further explore whether and how p-ERK and p-AKT mediate the
EGF-activated signaling, immunofluorescence microscopy and
Western blotting were carried out to detect the distribution of b-
catenin. The results showed that pre-treatment with U0126 and
EGF could induce b-catenin accumulation in the nucleus, while
pre-treatment with LY294002 and EGF did not cause its
accumulation (Figures 5E, F). Therefore, these results
demonstrated that p-AKT rather than p-ERK was involved in
the EGF-activated Wnt/b-catenin signaling.

In summary, these results indicated that EGF steers a two-
pronged (MEK/ERK and PI3K/AKT) pathway toward migration.
On the one hand, EGF treatment could increase the
phosphorylation of AKT, causing the nuclear accumulation of
b-catenin, the increase of WNT7A and MMP9 expression, and
the stimulation of migration in CAL27 cells. On the other hand,
Frontiers in Pharmacology | www.frontiersin.org 11
EGF activated ERK at the same time, which could target MMP9
directly to promote the migration (Figure 6).

Expression of WNT7A Protein in OSCC
Correlates With the Differentiation of the
OSCC Cells
To explore whether our in vitro experimental results were
consistent with the pathogenesis of OSCC, we examined the
expression of WNT7A in OSCC tissue and its adjacent tissue
(five paired cases) as well as high and low differentiated OSCC
specimens (56 cases). The representative immunohistochemistry
results are shown in Figure 7. The results indicated that the
expression of WNT7A in tumor tissues was higher than that in
matched adjacent tissues (Figure 7A). Among 56 OSCC cases,
the WNT7A expression in poorly differentiated tumor tissues
was markedly increased compared with the expression in well-
differentiated tumor tissues (Figures 7B, C). Overall, the clinical
data supported our in vitro results in indicating that WNT7A
might play a key role in OSCC progression.
DISCUSSION

OSCC is one of the most common malignant tumors of the head
and neck area (Chundayil Madathil et al., 2019; Feng et al., 2019).
Although the morbidity and mortality of OSCC have gradually
decreased recently, the 5-year survival rate remains lower than
50% (Torre et al., 2016; Bray et al., 2018). It is widely accepted
that high rates of lymph node metastasis and distant metastasis
are the major causes of OSCC-related death (Huang et al., 2008;
Ganly et al., 2012; D’Cruz et al., 2015). Therefore, elucidating
potential mechanisms that regulate OSCC metastasis is critical
for the treatment of OSCC. However, the molecular mechanisms
underlying the metastasis in OSCC were not fully understood. In
this paper, it was revealed that WNT7A was involved in the EGF-
induced migration of OSCC cells, and the related mechanism
was also elucidated. This will be beneficial for the understanding
of the metastasis mechanisms of OSCC.

The existing research data about the association of WNT7A
with cancers are inconsistent. For example, research results
obtained from NSCLC indicated that WNT7A was a tumor
suppressor and that its expression was low in NSCLC tissues
(Kondratov et al., 2012; Avasarala et al., 2013; Bikkavilli et al.,
2015). However, research results from ovary cancer
demonstrated that WNT7A could promote the process of the
tumor (Huang et al., 2014; Park et al., 2015). This contradiction
suggested that the role of WNT7A in tumorigenesis was type-
dependent and that investigation of its role in more cancers was
needed. Here, in this paper, our results confirmed that WNT7A
expression was markedly increased in poorly differentiated
tumor tissues compared with matched well-differentiated
tumor tissues and that EGF could cause an increase of
WNT7A expression in OSCC cells. The results provided a
further experimental basis for us to recognize the multiple
roles of WNT7A in mutagenesis.
FIGURE 6 | Schematic model for the EGF-mediated migration regulation. In
summary, the present study showed that WNT7A mRNA and protein levels were
increased by EGF stimulation. In addition, the study also proved that p-AKT, but
not p-ERK, mediated the expression of WNT7A protein induced by EGF.
Furthermore, inhibition of AKT activation prevented the upregulation of WNT7A
expression, the translocation of b-catenin from the cytoplasm to the nucleus, and
the increase of MMP9 expression induced by EGF. Moreover, EGF activates
ERK at the same time, which directly targets MMP9 to promote the migration of
OSCC cells.
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In the present study, we examined the mRNA expression
of all members of the Wnt gene family in CAL27 and HSC3
cells. We found that WNT7A was abundantly expressed in the
CAL27 cells and that WNT5A was abundantly expressed in the
Frontiers in Pharmacology | www.frontiersin.org 12
HSC3 cells. This difference may relate to the characteristics
of different cell lines. Previous studies already proved that
WNT5A acts as a regulator of OSCC via non-canonical
Wnt signaling (Prgomet et al., 2015; Sakamoto et al., 2017).
FIGURE 7 | Expression of WNT7A protein in OSCC tissues correlates with the differentiation of the cells. (A) Immunostaining of cancer tissue and its adjacent tissue
indicated that WNT7A was highly expressed in tumor tissues compared with matched normal tissues. Brown, WNT7A; Blue, hematoxylin. (B) IRS scores of WNT7A
according to tumor histological grade. P values and tissue samples are shown above the scatter diagram. (C) Immunostaining of high and low differentiated OSCC
tissues showed that the WNT7A expression was markedly increased in poorly differentiated tumor tissues compared with well-differentiated tumor tissues.
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Therefore, our research focused on the effect of WNT7A on
OSCC progression.

In this paper, the role of WNT7A in the EGF-induced
migration of OSCC cells was explored step by step. First, since
recent studies revealed that increased MMP9 expression was
associated with the increase of cell migration activity in
response to chemical stressors (Huang et al., 2014; Park et al.,
2015; Wang et al., 2018; Zhang et al., 2018; Xue et al., 2019), the
relations among EGF, WNT7A, and MMP9 were investigated.
The results showed that WNT7A mediated the EGF-induced
migration and MMP9 expression: the knockdown of WNT7A
reversed the EGF-induced increase in migration activity, and the
overexpression of WNT7A enhanced the migration and the
expression of MMP9. Considering that WNT7A could regulate
cancer progression through canonical or non-canonical Wnt
signaling (Bikkavilli et al., 2015; Huang et al., 2018), our
subsequent studies were focused on the downstream signaling
of WNT7A in response to EGF stimulation. It was found that
EGF-induced activation of WNT7A was accompanied by b-
catenin accumulation in the nucleus. Consistently, the process
of EGF-induced b-catenin accumulation was blocked by silencing
WNT7A. This suggested that the reversal of EGF-induced b-
catenin accumulation in the nucleus was associated withWNT7A
expression. Meanwhile, overexpression of WNT7A could induce
b-catenin accumulation in the nucleus. Thus, our data indicated
that EGF-induced migration of OSCC cells was associated with
the activation of the WNT7A/b-catenin pathway. Accordingly,
we speculated that WNT7A played a critical role via canonical
Wnt signaling in the regulation of OSCC cell migration.

Given our observation that EGF especially stimulated
WNT7A expression at mRNA and protein levels, it would be
meaningful to elucidate how EGF regulates the expression of
WNT7A. The previous study reported that MEK/ERK and PI3K/
AKT could regulate EGFR signaling (Li et al., 2019). We
hypothesized that the two pathways might also be involved in
the EGF-specific regulation of WNT7Aexpression in OSCC cells
and therefore investigated their role in the regulation. We proved
that EGF induced a time-dependent increase in ERK and AKT
phosphorylation, which happened before the increase in
WNT7A and MMP9 expression. Additionally, when MEK/
ERK and PI3K/AKT signalings were blocked, EGF-induced
migration was dramatically diminished, suggesting that both of
them played a role in the process.

Interestingly, we also found that EGF-induced increase of the
expression of WNT7A and MMP9 was dependent on AKT
activation and that inhibition of AKT phosphorylation but not
ERK phosphorylation could reverse the EGF-induced WNT7A
expression and b-catenin accumulation in the nucleus.
Therefore, we speculated that the phosphorylation of AKT
might affect WNT7A expression via the canonical Wnt/b-
catenin pathway. Intriguingly, our results also revealed that
ERK might regulate EGF-induced migration by directly
targeting MMP9, independent of WNT7A. Hence, our results
indicate that the PI3K/AKT but not the MEK/ERK pathway is
involved in the EGF-induced WNT7A/b-catenin signaling.
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Besides, the FZD family is themost crucial receptor family in the
Wnt/b-catenin pathway, and abnormal expression of FZDs is
closely related to carcinogenesis. In our study, we found that
FZD3 and FZD6 were highly expressed in CAL27 and HSC3
cells. A recent study revealed that the FZD3-mediated Wnt/b-
Catenin signaling pathway was activated in breast cancer cells (Mo
et al., 2019). Other studies indicated that FZD6 contributes to the
metastasis of colorectal cancer and themalignancy of acutemyeloid
leukemia cells through activating Wnt/b-catenin signaling (Xu et
al., 2019;Yuan et al., 2019).Combiningour resultswith theprevious
researchdata,wehypothesize thathowthe cells respondtoWNT7A
may depend on the FZD receptor that is expressing.

In summary, the results in this paper confirm that EGF
induces the expression of WNT7A via activating AKT and that
WNT7A/b-catenin signaling increases the expression of MMP9.
Both of them enhance the migration of OSCC cells. These
findings suggest that WNT7A is a promoter of the progression
of OSCC, having potential pathophysiological importance for the
study of OSCC, and providing new insights for the therapeutic
targets of this cancer.
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FIGURE S1 | FZDs, LRP, EGFR, MMP9, and WNT7A expression in CAL27 and
HSC3 cells. (A–C). The results of qPCR showed that FZDs, LRP, EGFR, MMP9,
and WNT7A were highly expressed in the OSCC cells. Western blotting results
Frontiers in Pharmacology | www.frontiersin.org 14
showed that in CAL27 cells, the EGFR, MMP9, and WNT7A levels were higher than
in HSC3 cells (D).

FIGURE S2 | WNT7A mRNA expression after EGF treatment in the absence or
presence of U0126 and LY294002. The results showed that treatment with
LY294002 rather than U0126 had an effect on WNT7A mRNA expression in both
CAL27 and HSC3 cells (A, B). *P < 0.05, **P < 0.01, in the cells treated with EGF
combined with U0126 or LY294002 versus the cells in the control group. #P < 0.05,
in the cells treated with EGF combined with U0126 or LY294002 versus the cells
treated with EGF only.
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