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Synthetic lethality (SL), an important type of genetic interaction, can provide useful insight
into the target identification process for the development of anticancer therapeutics.
Although several well-established SL gene pairs have been verified to be conserved in
humans, most SL interactions remain cell-line specific. Here, we demonstrated that the
cell-line-specific gene expression profiles derived from the shRNA perturbation
experiments performed in the LINCS L1000 project can provide useful features for
predicting SL interactions in human. In this paper, we developed a semi-supervised
neural network-based method called EXP2SL to accurately identify SL interactions from
the L1000 gene expression profiles. Through a systematic evaluation on the SL datasets
of three different cell lines, we demonstrated that our model achieved better performance
than the baseline methods and verified the effectiveness of using the L1000 gene
expression features and the semi-supervise training technique in SL prediction.

Keywords: synthetic lethality, L1000 gene expression profiles, machine learning, semi-supervised neural network,
target identification

INTRODUCTION

Two genes are considered a synthetic lethal (SL) pair if perturbation of both genes induces a defect
in cell viability, while perturbation of either gene is not harmful to cell survival (Boone et al., 2007).
Different types of perturbations were considered to trigger SL in previous studies, including
knockdown, knockout, mutation, aberrant gene expression, copy number variation, and drug
treatment (Whitehurst et al., 2007; Jerby-Arnon et al., 2014; Han et al., 2017; Sinha et al,, 2017).
Studying synthetic lethal interactions may help gain novel insights into target identification. Many
cancer cells carry specific mutations in one gene (e.g., a tumor suppressor gene) of a synthetic lethal
pair, and thus its synthetic lethal partner becomes a promising drug target (O'Neil et al., 2017). For
example, the known synthetic lethal interactions between the tumor suppressor gene BRCA1/2 and
the drug target gene PARPI can be used to selectively kill cancer cells by triggering fatal DNA
damages (Bryant et al, 2005; Farmer et al., 2005). To this end, PARPI inhibitors have been
approved to treat certain types of BRCA-mutated cancers (Fong et al., 2009).

SL gene pairs can be experimentally screened by developing double-knockout strains in model
organisms and human cell lines. The synthetic lethality network in yeast has been well constructed
using synthetic genetic arrays (SGA) (Tong et al., 2001) and diploid synthetic lethality analysis with
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microarrays (ASLAM) (Pan et al., 2007). Nearly one million gene
pairs covering 90% of the whole yeast genome were screened in a
recent study (Costanzo et al., 2016). Compared to yeast strains,
which can undergo sexual reproduction to generate double-
knockout offspring from parents bearing different single
knockouts, it is more challenging to develop double-knockout
human cell lines in an efficient manner. Thus, a relatively low
number of human gene pairs (about hundreds or thousands) can
be screened by RNA interference (Whitehurst et al., 2007; Barbie
et al., 2009) and CRISPR-Cas9 (Shen et al,, 2017; Han et al,,
2017) based double-knockout experiments. Due to the difficulty
in the establishment of large-scale double-knockout systems in
human cell lines, the currently screened gene pairs only account
for a small fraction of all possible combinations of human genes.

To overcome the current difficulty in experimental screen and
generate more SL interactions in human, computational methods
have recently been proposed to predict novel human SL pairs
recently. The most direct idea is to leverage the abundant SL pairs
characterized in yeast to infer human SLs through ortholog
mapping (Deshpande et al., 2013; Wu et al., 2013; Srivas et al,
2016). The application of these methods was limited, as a large
number of human genes do not have evolutionarily close yeast
orthologs. Network-based methods predict human SLs through
analyzing the protein-protein interaction (PPI) networks,
metabolic networks, or signaling pathways (Folger et al.,, 2011;
Kranthi et al., 2013; Zhang et al,, 2015; Apaolaza et al,, 2017).
Statistical methods were also developed to identify SL gene pairs
from human cancer cells based on the principle that the
perturbations (e.g., mutation, aberrant gene expression, and copy
number variation) of both SL genes should be subject to negative
selection and exhibit a mutually exclusive pattern (Jerby-Arnon
etal.,2014; Sriharietal., 2015; Jacunski et al., 2015; Sinha et al., 2017;
Leeetal., 2018). Besides, there exist several machine-learning-based
approaches for predicting SL gene pairs. Most of these approaches
learn from the adequate amount of supervised information of yeast
(Wong et al., 2004; Pandey et al., 2010; Li et al,, 2011). Only a few
machine learning methods for predicting human SLs were
developed. For example, Das et al. used a Random Forest
classifier with multi-omics features (e.g., differential expression,
expression correlation, mutual exclusivity and shared pathways) to
predict SL pairs in human cancer (Das et al,, 2018); and Liu et al.
proposed a logistic matrix factorization model regularized by the
PPI similarity network and the gene ontology (GO) semantic
similarity network to predict SL pairs (Liu et al., 2019).

Although a number of SL interactions are conserved in humans,
most of them are only observed in specific cell lines or tissues (Ryan
etal, 2018). A recent study detected SL pairs in three cell lines and
found that only about 10% of SL interactions were shared by two cell
lines, and no SL pair was identified in all the three cell lines (Shen
et al., 2017). Despite the extensive applications of the above
computational methods in SL prediction, most of them make
predictions for the human genetic network without considering
the cell line or tissue context. Although one of the aforementioned
methods (Das etal., 2018) can predict SL in different human cancer
types, it is difficult to directly apply this method to cell lines, as the
homogenous genetic background of cell lines cannot provide

enough mutation-related omics data. To provide a feasible tool
for capturing the unique SL interaction networks for individual cell
types, we aim to develop a computational method to learn from the
experimentally measured SL interactions through considering the
cell-line specific genetic information.

In this paper, we have proposed a novel computational method,
EXP2SL, to predict cell-line specific SL interactions in human. The
cell-line specific gene expression profiles resulting from the shRNA
knockdown experiments in the LINCS L1000 project (Subramanian
etal., 2017) were used to capture the information of cell-line specific
genetic background. Since the available labeled data in single cell
lines are limited, a semi-supervised objective function is used to
exploit the large amount of unlabeled data. Tested on the
combinatorial CRISPR-Cas9 perturbation-based SL datasets in
three different cell lines, our model showed competitive
prediction ability compared to the baseline methods. We also
verified the effectiveness of the features derived from the L1000
gene expression profiles and the semi-supervised objective function.
Furthermore, we evaluated the importance of each gene included in
the L1000 gene expression profiles and found that the cell viability
related functions were enriched among the top attributing genes.

METHODS

Data Processing
The L1000 Gene Expression Profiles
The LINCS L1000 project (Subramanian et al., 2017) measured the
expression levels of 978 landmark genes under different
perturbations (i.e., shRNA or compounds) and control conditions
(i.e., empty vectors or solvents) in different human cell lines. Here,
we used the gene expression profiles resulting from shRNA
perturbations to construct the features of the corresponding
shRNA target genes, which were 978-dimensional vectors.
Specifically, the raw data from the LINCS L1000 project were
preprocessed based on the pipeline in the original paper
(Subramanian et al., 2017) with minor modifications; We first
directly obtained the Level 3 data from L1000, which contained
the quantile normalized gene expression profiles. The shRNA
profiles perturbed after 96 hours were used, as the data amount
for this time point was the largest. Based on this dataset, we
calculated the z-score for each dimension of a sShRNA perturbed
profile xeR*”® by

x — median(V)

- X meaam’¥) | 1
% = 14826 % MAD(V) ()

where z is a 978-dimensional z-score of the shRNA perturbation
profile x, V is the set of vector control profiles from the same
plate, median(V) and MAD(V) stand for the median value and
the median absolute deviation of V, and 1.4826 is a scaling factor
to make the resulted z-scores close to normal distribution.
Notably, in the original L1000 preprocessing pipeline
(Subramanian et al., 2017), the control profiles were replaced
by all the profiles on the plate, called population control. Here,
we argue that this data preprocessing scheme may cause a biased
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control distribution due to the specific perturbation design.
Thus, we use the expression levels treated with empty vectors
as the control for the shRNA perturbed profiles.

For each gene, typically more than one types of shRNA were
designed to knock down the expression of the corresponding gene
product. To eliminate the off-target effects of ShRNAs and obtain a
robust signature for each single gene, the z-scores obtained from the
replicated trials of the same shRNA were first processed using an
algorithm with L1000 Level 5 data (Subramanian et al., 2017), then
the same protocol was used to reduce the shRNAs targeting the
same gene. More specifically, the z-scores were weighted and
averaged according to the Spearman correlations to obtain a final
978-dimensional L1000 gene expression profile for each gene,
which was then used as the input gene features for our model and
other baseline models.

SL Labels

The SL labels in our datasets were constructed from the CRISPR
double-knockout experiments performed in human cell lines (Shen
etal.,,2017; Zhao etal., 2018; Najm et al., 2018). A recently proposed
computational approach called GEMINI (Zamanighomi et al.,
2019) was used to identify SL interactions from the combinatorial
CRISPR perturbation based cell viability studies. We adopted the
GEMINI scores to select the positive and negative SL pairs for
constructing our datasets. In particular, for each cell line, positive SL
pairs were selected from gene pairs satisfying two criteria: 1)
GEMINI “strong” scores larger than zero, which indicates the
existence of the synergic lethal effect, and 2) GEMINI “strong”
scores ranking among top 5%, to reduce the potential false positives.
The main reason for choosing this threshold is that the top 5% gene
pairs were considered as “the most significant hits in each screen” in
the GEMINI paper (Zamanighomi et al., 2019). To more
thoroughly evaluate the performance of our method, we also
tested another threshold (i.e., 10%) for choosing the positive SL
pairs (Tables S1-S2). Negative SL pairs were those gene pairs
satisfying 1) a GEMINI “strong” score less than zero, which
means that there exists no synergic lethal effect between these two
genes, and 2) a GEMINI “strong” score among the bottom 50%, to
remove the potential false negatives. The gene pairs that were not
selected as positive or negative SL pairs were considered as
unknown pairs. Finally, cell lines with adequate numbers (>100)
of gene pairs with both SL labels and L1000 gene expression profiles,
including A549, A375, and HT29, were used in our study. The
numbers of training samples for the cell lines are summarized in
Table 1.

The Workflow of EXP2SL

The basic idea of our EXP2SL model is to extract useful
information from the L1000 expression profiles to accurately
predict cell-line specific SL interactions. To achieve this goal, a

TABLE 1 | Number of labeled training samples for each cell line.

A549 A375 HT29
Positive SL gene pairs 126 18 18
Negative SL gene pairs 1106 44 128
Total 1232 62 141

semi-supervised objective function was designed to fully exploit
the large amount of unlabeled data (Figure 1).

The Network Architecture of EXP2SL
For a given cell line, suppose that there are N genes (marked as the
indices 1, 2,..., N) with measured shRNA data from the LINCS
L1000 project (Subramanian etal.,2017). The corresponding L1000
gene expression profiles can be represented as a set offeature vectors
{f R

For a given cell line, our model first encodes the gene features
through E sequential fully-connected layers, that is,

hf = ReLU(Wincoderh?I + bincoder)’ (2)

e=12,..,Ei=12,...,N,

where h? = f;, ReLU(x) stands for the rectifier linear activation
function ReLU(x) = max(0,x), W! . € R we &
R™(e=2,...,E), and b’,,,, € RY(e=1,...,E) denote the
learnable parameters (d is the dimension of the hidden layers).

After E encoding layers, the updated gene features {hF}Y, are
then used to predict SL interactions. More specifically, for a gene
pair (4, ), i, j = 1,2,..., Nand i # j, a confidence score is calculated
through a linear layer to predict the potential of SL interaction
between this gene pair, that is,

Sij = % (Wout [hih]E] + Wou [hf) hﬂ) + bout> (3)
where W,,,€R">* and b,,,€R stand for learnable parameters.
Note that the pairs (i, j) and (j, 7)) are equivalent to each other, so
we calculate the average prediction scores of concatenations of
[k, k] and [}, h}] to obtain the equivalent prediction results
for input pairs (i, j) and (j, i).

The Semi-Supervised Objective Function
As described in SL Labels, the gene pairs with different SL labels
can be classified into positive, negative, and unknown sets,
denoted as P, N, and U, respectively. Here, we designed a
semi-supervised loss function that utilizes information from all
three sets to optimize the parameters of our model. More
specifically, our loss consisted of three parts:

The first part of our objective function is the mean squared
error (MSE) of positive and negative samples, calculated as

Luse= > (-5 (4)
(i) EPUN
where $; ;=1if (i,j) € P, §; ;= - 1if (i, j) € N, and s; ; stands for
the potential score of gene pair (4, j) predicted by EXP2SL.

The second part of the objective function is inspired by the semi-
supervised Bayesian personalized ranking (BPR) loss (Rendle et al.,
2009), which uses the unknown labels to boost the prediction
performance. In particular, the BPR loss is defined as

Lgpr = E

(ab)EP,(cd)EU

log G(Sa,b - 5c,d>

+ > log O'(Sc)d - sef), (5)
(ed)EU(ef )EN
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where o stands for the sigmoid function o(x) = ﬁ This
objective function aims to enlarge the margins of the predicted
scores between positive SL and unknown pairs, as well as those
between the unknown and negative SL pairs. To calculate this
loss, we sample the negative and unknown pairs with the sample
number equal to the positive pairs during model training.

The above MSE and BPR objective functions are further
combined with an L2 regularizier over all the learnable model
parameters to construct the final objective function of our
EXP2SL model, that is,

L(6) = Ly + A1 Lgpg + A,/ 6] | (6)

where 6 denotes the model parameters, and A, and A, stand for
the weight parameters controlling the contributions of the BPR
loss and the L2 regularization term, respectively.

To train the EXP2SL model, we used the Adam optimizer
(Kingma and Ba, 2014) with the default learning rate 0.001 and
the number of training epochs 1,000. We also clipped the gradient if
it was larger than 5 to stabilize the training process. We
implemented our model with PyTorch 1.0.1 (Paszke et al., 2017).

Hyper-Parameters
The hyper-parameters of our model include the weight of the
BPR loss A, from [16, 32, 64, 128], the weight of the L2

Gene expression
profiles Semi-supervised learning
] .. Encoding layers (" +1 )
e pemmmmmmmm————— Positive
-~ L]
) ! A . SL Score — +1
O O|: Concatenation
Gene A 'O Ol layer BPR loss Unknown
H ° : AR SL Score € (-1,+#1)
S 88l MY
1] . ' .
10 (@) .. . Negative
. ‘O ol . 1 SLScore -1
' : . J
s T o ] ] 1
LINCS ]
L1000 GEMINI
\—/ SL
Shared weights score
B ot !
' O O :,*"
- ‘1O Ol: i Positive
L] 1 H -
GeneB , HolsslOfi | MSE loss, Sk seore = 1
(O ° |0 [] Negative
I 1O (@) ] SL Score = -1
4 1]
" 1
FIGURE 1 | Workflow of the EXP2SL model. For a pair of gene, their L1000 gene expression profiles derived from knockdown conditions are the inputs of the
encoding layers. Then, the updated features for both genes in a given pair are concatenated to predict the confidence score of being an SL pair by a linear
combination. In addition, a semi-supervised objective function is used to train the model parameters, which aims to utilize the information from both known (positive
and negative) and unknown SL gene pairs.

regularization A, from [0.1, 0.05, 0.01, 0.005, 0.0001], the
number of encoding layers from [0, 1, 2, 3, 4], and the
dimension of hidden features d from [32, 64, 128, 256]. For
each cell line, a grid search was performed to select the best
combination of hyper-parameter settings from the above
mentioned ranges, according to the AUC scores achieved by
five repeats of 5-fold cross validations under the “split pair”
setting (i.e., gene pairs were randomly split into training and test
sets). Details about the cross-validation settings can be found in
Performance Evaluation. The baseline models were tuned using
the same strategy, and the ranges for hyper-parameters in each
baseline model are described in the Baseline Models.

Extraction of Feature Importance

Here, we used the saliency map-based approach proposed in
(Simonyan et al,, 2013) to evaluate the importance of each
position along the 978-dimensional input features {f;}Y,. The
basic idea of this method is to calculate the gradients of the
output score with respect the to the input features, and the larger
absolute values of gradients would suggest the more importance
of the corresponding feature dimension. After the training
process, the positive and negative SL pairs of each cell line are
fed into the EXP2SL model, and the corresponding importance
for each input feature dimension is calculated by
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ds.
w= 3 |2u

|+
e PuN O

9s; )
of;

where s; ; is the predicted confidence score of gene pair (i, j), and
wis a 978-dimensional vector containing the importance score of
each dimension of the input L1000 gene expression profiles. To
reduce the variance caused by random initialization of network
parameters and random sampling of the unknown and negative
gene pairs for calculating the BPR loss during the training
process, we also take the summation of w vectors from 10
trained EXP2SL models to obtain the final importance scores
for the 978 feature dimensions. The top 50 ranked features are
then selected for each cell line. We examined the overlaps of the
selected features between cell lines and calculated the over-
representations of functional gene sets and pathways using the
WebGestalt server (Liao et al., 2019).

Baseline Models

Logistic Regression

We used the logistic regression (LR) model implemented based
on scikit-learn (Buitinck et al., 2013). The L1000 expression
profiles were used as input to the LR model. For each pair of
input genes (i,j), the features of genes i and j (denoted as f; and f;,
respectively) were concatenated before being fed into the LR
model. Since LR may produce different results for pairs (i, j) and
(j, 1), each of the two pairs were treated as an individual input
with the same label in the training phase. In the test phase, the
prediction values from both inputs were then averaged to obtain
the final prediction score. The inverse of regularization strength
(a hyper-parameter) was chosen from [10, 1, 0.5, 0.1, 0.05, 0.01].

Random Forest

We used the random forest (RF) classifier implemented based on
scikit-learn (Buitinck et al., 2013). The input and output of RF
were the same as those of LR described above. The number of
trees was selected from [32, 64, 128] and the maximum depth of
the trees was selected from [8, 16, None], where “None” means
that the trees will keep expanding until no node can be split.

Support Vector Machine

We used the support vector machine (SVM) classifier implemented
based on scikit-learn (Buitinck et al., 2013). The input and output of
SVM were the same as those of LR and RF described above. The only
hyper-parameter, the inverse of regularization strength, was
selected from [100, 50, 10, 5, 1, 0.5, 0.1].

Gradient Boosting Decision Tree

We used the gradient-boosting decision tree (GBDT) classifier
implemented by the XGBoost project (Chen and Guestrin, 2016).
The input and output of GBDT were the same as other classifiers
described above. The number of trees was selected from [32, 64, 128]
and the maximum depth of the trees was selected from [4, 8, 16].

NetLapRLS

NetLapRLS (Xia et al., 2010) (a semi-supervised regressor) was
implemented based on pyDTI (https://github.com/stephenliu0423/
PyDTI). As NetLapRLS treats symmetric gene pairs (i, j) and (j, i) in

the same way, there is no need to average the predictions of both
pairs. Three types of similarity matrices were used as the input to
NetLapRLS: 1) The protein-protein interaction (PPI) similarity
matrix Sy, i.e., the pairwise PPI similarities between all pairwise
genes used in the cell line. The human PPI data were obtained from
the STRING database v11 (Szklarczyk et al., 2014). Protein pairs
marked with STRING scores larger than 0.8 were considered
positive interaction pairs in the PPI network. The PPI similarity
between two proteins (7, j) were calculated as the Jaccard similarity
of their interaction partners in the PPI network, that is,

_ ING) N NG

) = INGUNG)

o (02)
where N(x) stands for the neighbors of protein x in the PPI
network. 2) The L1000 profile similarity matrix S, ie., the
absolute values of the pairwise L1000 profile similarities
between all the genes used in the cell line. The L1000 profile
similarity between two genes were calculated as the Pearson
correlation between their L1000 gene expression profiles. 3) The
combination of both PPI and L1000 similarities, calculated as 1 -
(1 - 8,)(1 = S)). The best hyper-parameter settings were selected
from all the combinations over 7y, = v; from [0.0001, 0.001, 0.01,
0.1, 1] and B, = B; from [0.003, 0.03, 0.3,3, 30].

(8)

RESULTS

Cell-Line Specificity of SL Interactions

To demonstrate the cell-line specificity of SL interactions, we
examined 378 CRISPR knockout pairs screened in different cell
lines from the Big Papi SynLet library (Najm et al., 2018). Their
SL scores were calculated by GEMINI (Zamanighomi et al.,
2019), a computational tool for identifying SL interactions
from pairwise CRISPR knockout screens. Three cell lines were
used in our performance evaluation, including A549, A375, and
HT29. Among these three cell lines, A549 and A375 exhibited
relatively high correlation (Pearson correlation 0.71, Figure 2A)
in GEMINI scores, which measure the strength of the SL
interactions. Meanwhile, the correlations between HT29 and
the other two cell lines are relatively low (Pearson correlations
0.36 and 0.28, Figure 2A). These results indicate that the SL
interaction patterns between the same gene pairs in different cell
lines can be quite different.

Next, we examined the positive and negative SL samples
selected from the Big Papi dataset according to the criteria
described in SL Labels. By comparing the SL labels of the same
gene pairs in the three cell lines, we found that most gene pairs
have inconsistent labels cross different cell lines (Figure 2B). There
are 38 gene pairs with at least one positive label in the three cell
lines, but only one of them (i.e., the BRCAI-PARPI gene pair) is
always labeled as a positive SL. Among these 38 gene pairs, 16 have
negative labels in one cell line but positive labels in another one.

Based on the above observation that most SL pairs were not
conserved across different cell lines, we built prediction models
for each cell line separately. In addition to the Big Papi dataset,
we also included the data from other literature (Shen et al., 2017;
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A375 GEMINI score
o
8 of
o
HT29 GEMINI score
HT29 GEMINI score

-11°. corr=0.71

o
corr=0.36

-1 0 1 -1 0 1

A549 GEMINI score A549 GEMINI score

Positive SL pairs

All gene pairs

Zhao et al., 2018), which further enlarged the SL data of cell line
A549. The overlaps of gene pairs used as labeled training samples
between the three cell lines are shown in Figure 2C.

Performance Evaluation
We compared the performance of our model to that of several
baseline methods through cross-validation on the aforementioned
datasets for the three cell lines. LR, RF, SVM, and GBDT were
selected as the baseline methods because they are the machine
learning baseline models and accept vector input, which is suitable
for our case. NetLapRLS is also used as a baseline model, as it is a
well-established semi-supervised method that accepts network
input and which can be used to test the effectiveness of other
features, such as the PPI network. Two settings were used to split the
training and test samples. The first one was called “split pair” in
which gene pairs were randomly split into training and test sets. The
second one was called “split gene” in which, for each test gene pair,
atleast one gene is not seen in training data. The “split gene” setting
was mainly used to test whether the prediction can be generalized to
unseen genes, which is more challenging. Note that the splitting was
performed over positive and negative SL pairs, and our model also
utilized the unknown pairs during the training process.

Area under the receiver operating characteristic curve (AUC),
area under the precision-recall curve (AUPR), F1 score, accuracy,
precision, sensitivity and selectivity were used to evaluate the

m=m positive
B unknown

&
&

%
%2

; N
— t 1]
negative <

BRCA1,BRCA2
BRCA1,PARP1
BRCA1,MAPK3
AKT2,BRCA1
BRCA1,MAPK1
BRCA2,WEE1
BRCA2,PARP1
BRCA2,MAPK3
AKT2,BRCA2
BRCA2,MCL1

.
corr=0.28

BRCA2,MAPK1
CHEK1,UBC
CHEK1,WEE1
CHEK1,MTOR
AKT2,WEE1
AKT2,PARP1
AKT2,MTOR
HSP90AA1,WEE1
HSP90AA1,PARP1
HSP90AA1,MTOR
PARP1,WEE1
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-1 0 1
A375 GEMINI score

38 gene pairs

Negative SL pairs

-
1059 721 5

FIGURE 2 | SL datasets for three human cell lines. (A) Correlations of the GEMINI scores between three different cell lines for the same gene pairs measured in the
Big Papi dataset. (B) The binary SL labels for the gene pairs in the Big Papi dataset. The 38 gene pairs measured in all the three cell lines and with at least one
positive SL label are included in the figure. (C) The Venn diagrams of all labeled SL pairs, positive SL pairs, and negative SL pairs used in our dataset, which were
constructed from the Big Papi dataset and other available CRISPR-Cas9 based experimental screens in the literature.

classification performance (Tables 2 and 3). The receiver
operating characteristic (ROC) and precision-recall (PR) curves
achieved by EXP2SL and the baseline models are shown in Figures
§2-S3. Under the “split pair” setting, all the models achieved
relatively high performance, which indicates that the prediction
problem defined under this setting was relatively easy. The
performance of our model was comparable with the top-
performing baseline methods under this setting. However, under
the more practical “split gene” setting in which we wished to predict
SL pairs containing novel genes without experimental screen data
(due to the limited existing experimental data), the SL prediction
task became difficult as all the models achieved relativelylower AUC
and AUPR scores than those under the “split pair” setting. However,
our model exhibited a significantly better performance than that of
all the baseline models under this “split gene” setting. EXP2SL
achieved the best performance in atleast 6/7 metrics for all the three
cell lines (Table 3). We also tested our model and the baseline
methods with aless strict threshold for defining the positive SL pairs
(i.e., 10%), and our model also achieved a better performance than
that of the baseline methods (Tables S1-S2).

Ablation Study and Feature Comparison

To evaluate the contribution of the semi-supervised objective
function to the final prediction, we tested our EXP2SL model
without the BPR loss. That is, we modified the objective function
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TABLE 2 | Performance evaluation in three different cell lines under the “split pair” setting. The mean and standard deviation (in brackets) of metrics over 10 repeats of
5-fold cross-validations are shown. The best results for each cell line and each metric are marked in bold.

Dataset Model name AUC AUPR F1 Accuracy Precision Sensitivity Specificity
AB49 LR 0.863 (0.041) 0.556 (0.089) 0.577 (0.068) 0.913 (0.030) 0.622 (0.109) 0.573 (0.033) 0.952 (0.032)
RF 0.854 (0.039) 0.552 (0.076) 0.567 (0.069) 0.912 (0.027) 0.600 (0.104) 0.559 (0.032) 0.952 (0.026)
SVM 0.809 (0.038) 0.505 (0.084) 0.555 (0.060) 0.914 (0.019) 0.610 (0.104) 0.523 (0.037) 0.958 (0.019)
GBDT 0.847 (0.039) 0.520 (0.086) 0.552 (0.065) 0.908 (0.029) 0.573 (0.120) 0.552 (0.037) 0.948 (0.033)
NetLapRLS(L1000)’ 0.760 (0.044) 0.344 (0.088) 0.407 (0.068) 0.845 (0.034) 0.357 (0.119) 0.512 (0.039) 0.883 (0.038)
NetLapRLS(PPI) 2 0.760 (0.045) 0.344 (0.090) 0.407 (0.079) 0.845 (0.034) 0.357 (0.130) 0.512 (0.032) 0.883 (0.037)
NetLapRLS(combined) ® 0.827 (0.042) 0.488 (0.091) 0.519 (0.061) 0.898 (0.025) 0.523 (0.100) 0.539 (0.017) 0.938 (0.027)
EXP2SL(no BPR loss) * 0.866 (0.038) 0.576 (0.086) 0.583 (0.071) 0.916 (0.032) 0.638 (0.135) 0.565 (0.036) 0.955 (0.035)
EXP2SL(PPI) © 0.870 (0.041) 0.574 (0.078) 0.583 (0.055) 0.915 (0.020) 0.636 (0.081) 0.573 (0.039) 0.954 (0.020)
EXP2SL 0.871 (0.044) 0.573 (0.083) 0.582 (0.070) 0.914 (0.024) 0.634 (0.084) 0.579 (0.063) 0.952 (0.023)
A375 LR 0.994 (0.004) 0.983 (0.006) 0.981 (0.011) 0.989 (0.007) 0.967 (0.018) 1.000 (0.015) 0.984 (0.011)
RF 0.997 (0.004) 0.990 (0.015) 0.987 (0.016) 0.993 (0.007) 0.977 (0.028) 1.000 (0.010) 0.990 (0.010)
SVM 0.991 (0.004) 0.978 (0.017) 0.972 (0.020) 0.984 (0.008) 0.962 (0.033) 0.991 (0.000) 0.983 (0.009)
GBDT 0.999 (0.009) 0.997 (0.013) 0.993 (0.019) 0.996 (0.013) 0.993 (0.020) 0.994 (0.022) 0.997 (0.012)
NetLapRLS(L1000) ' 0.989 (0.005) 0.983 (0.006) 0.969 (0.014) 0.976 (0.013) 0.956 (0.026) 0.990 (0.012) 0.966 (0.022)
NetLapRLS(PPI) 2 0.990 (0.002) 0.985 (0.003) 0.972 (0.012) 0.978 (0.010) 0.956 (0.021) 0.995 (0.000) 0.966 (0.017)
NetLapRLS(combined) ® 0.994 (0.007) 0.990 (0.007) 0.983 (0.016) 0.987 (0.018) 0.971 (0.026) 1.000 (0.000) 0.979 (0.033)
EXP2SL(no BPR loss) * 1.000 (0.003) 1.000 (0.011) 1.000 (0.013) 1.000 (0.008) 1.000 (0.023) 1.000 (0.000) 1.000 (0.012)
EXP2SL(PPI)® 1.000 (0.008) 1.000 (0.010) 1.000 (0.015) 1.000 (0.014) 1.000 (0.026) 1.000 (0.000) 1.000 (0.023)
EXP2SL 1.000 (0.012) 1.000 (0.029) 1.000 (0.026) 1.000 (0.016) 1.000 (0.043) 1.000 (0.000) 1.000 (0.021)
HT29 LR 0.967 (0.015) 0.861 (0.049) 0.851 (0.032) 0.958 (0.012) 0.855 (0.053) 0.895 (0.048) 0.968 (0.017)
RF 0.955 (0.020) 0.821 (0.067) 0.824 (0.030) 0.947 (0.005) 0.792 (0.039) 0.899 (0.073) 0.955 (0.005)
SVM 0.949 (0.017) 0.765 (0.079) 0.808 (0.065) 0.943 (0.015) 0.744 (0.069) 0.942 (0.100) 0.941 (0.018)
GBDT 0.973 (0.016) 0.880 (0.061) 0.855 (0.029) 0.960 (0.015) 0.861 (0.065) 0.897 (0.040) 0.969 (0.021)
NetLapRLS(L1000) 0.935 (0.017) 0.738 (0.094) 0.778 (0.064) 0.941 (0.025) 0.786 (0.139) 0.836 (0.053) 0.954 (0.034)
NetLapRLS(PPI) 2 0.927 (0.024) 0.729 (0.086) 0.772 (0.053) 0.939 (0.008) 0.787 (0.048) 0.822 (0.056) 0.953 (0.009)
NetLapRLS(combined) © 0.939 (0.019) 0.764 (0.094) 0.784 (0.054) 0.939 (0.020) 0.778 (0.107) 0.850 (0.035) 0.949 (0.026)
EXP2SL(no BPR loss* 0.957 (0.026) 0.834 (0.071) 0.826 (0.043) 0.943 (0.017) 0.779 (0.088) 0.926 (0.051) 0.946 (0.023)
EXP2SL(PPI)® 0.967 (0.018) 0.869 (0.033) 0.851 (0.026) 0.956 (0.011) 0.838 (0.067) 0.912 (0.084) 0.962 (0.022)
EXP2SL 0.969 (0.008) 0.880 (0.027) 0.866 (0.027) 0.959 (0.012) 0.872 (0.055) 0.903 (0.049) 0.968 (0.018)

"The NetLapRLS method using only the L1000 similarity.

2The NetLapRLS method using only the PPI similarity.

3The NetLapRLS method using the combination of L1000 and PP similarities.
“The EXP2SL model without the BPR Ioss.

5The EXP2SL model with additional PPI information incorporated by a graph convolution module.

in Equation 6 and used only the MSE loss and the L2 regularization
term; our model can thus be trained in a supervised manner. An
obvious decrease in performance under the “split gene” setting
could be observed when we removed the BPR loss (see the “EXP2SL
(no BPR loss)” row in Table 3). Therefore, the results demonstrated
that the semi-supervised objective function had an important
contribution to the prediction performance of our model.

One of the baseline models, NetLapRLS, can also incorporate
different similarity matrices (i.e., the L1000 profile similarities,
the PPI similarities, and the combined similarities, as described
in NetLapRLS), thus allowing the comparison between different
settings using different input information. The NetLapRLS
models with L1000 profile similarities and with PPI similarities
as the input features achieved similar performance, and the
combination of both features only led to a slight increase in
performance in most cases. In general, the performance of
NetLapRLS was worse than EXP2SL.

We also incorporated the PPI network into our EXP2SL
framework (denoted as EXP2SL (PPI) in Tables 2 and 3) using
a graph convolution network (Lei et al., 2017), as described in
Supporting Material and Figure S1. In this case, no significant
improvement in AUC and AUPR scores was observed after
adding the PPI network information (p values larger than 0.1

for all the cell lines in both conditions, Wilcoxon rank-sum test).
These results indicate that using only the L1000 gene expression
profiles is adequate to enable the models to capture useful
features for accurately predicting SL interactions.

Feature Importance Analysis
We used the scheme described in Extraction of Feature
Importance to extract the important features based on the
saliency map approach (Simonyan et al,, 2013). Those features
(i.e., the corresponding expression levels of 978 genes) ranked
among the top 50 (about 5% from the 978-dimensional features)
were selected as the important features for each cell line. Among
the selected feature sets, there is only one gene shared across all
the three cell lines, that is, AKT1. AKT1 is known as a serine/
threonine protein kinase, which regulates many viability related
cellular processes, including proliferation, apoptosis, and cell
survival (Chen et al., 2001; Lee et al., 2011). Most features were
considered as the top 50 important features only in one cell line
(47, 46, and 46 unique important features for A549, A375, and
HT?29, respectively), which suggests that the prediction may rely
on the specific gene expression landscapes in different cell lines.
We also checked the over-representation of functional gene sets
and pathways among the selected important features of the three
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TABLE 3 | Performance evaluation in three different cell lines under the “split gene” setting. The mean and standard deviation (in brackets) of metrics over 10 repeats of
5-fold cross-validations are shown. The best results for each cell line and each metric are marked in bold.

Dataset Model name AUC AUPR F1 Accuracy Precision Sensitivity Specificity
AB49 LR 0.709 (0.039) 0.328 (0.050) 0.373 (0.039) 0.816 (0.044) 0.404 (0.070) 0.435 (0.059) 0.853 (0.058)
RF 0.715 (0.037) 0.348 (0.052) 0.379 (0.038) 0.850 (0.024) 0.461 (0.058) 0.394 (0.038) 0.896 (0.027)
SVM 0.708 (0.026) 0.340 (0.051) 0.380 (0.032) 0.838 (0.020) 0.433 (0.037) 0.432 (0.060) 0.876 (0.030)
GBDT 0.715 (0.030) 0.333 (0.051) 0.363 (0.032) 0.841 (0.043) 0.401 (0.094) 0.399 (0.057) 0.888 (0.054)
NetLapRLS(L1000) ' 0.668 (0.024) 0.252 (0.038) 0.321 (0.021) 0.815 (0.016) 0.294 (0.057) 0.407 (0.029) 0.858 (0.018)
NetLapRLS(PPI) 2 0.668 (0.030) 0.252 (0.048) 0.321 (0.041) 0.815 (0.016) 0.294 (0.070) 0.407 (0.036) 0.858 (0.019)
NetLapRLS(combined) ® 0.685 (0.032) 0.331 (0.043) 0.371 (0.035) 0.863 (0.021) 0.426 (0.083) 0.368 (0.046) 0.918 (0.027)
EXP2SL(no BPR loss) * 0.699 (0.032) 0.358 (0.053) 0.389 (0.035) 0.857 (0.033) 0.450 (0.083) 0.401 (0.043) 0.906 (0.042)
EXP2SL(PPI) © 0.755 (0.024) 0.390 (0.044) 0.419 (0.034) 0.861 (0.041) 0.465 (0.079) 0.450 (0.047) 0.908 (0.054)
EXP2SL 0.756 (0.030) 0.392 (0.043) 0.419 (0.024) 0.863 (0.048) 0.458 (0.073) 0.448 (0.050) 0.907 (0.061)
A375 LR 0.945 (0.026) 0.884 (0.050) 0.874 (0.046) 0.930 (0.034) 0.866 (0.054) 0.897 (0.031) 0.925 (0.033)
RF 0.947 (0.028) 0.886 (0.045) 0.891 (0.038) 0.934 (0.032) 0.865 (0.039) 0.938 (0.025) 0.917 (0.027)
SVM 0.924 (0.027) 0.860 (0.047) 0.873 (0.035) 0.916 (0.026) 0.864 (0.044) 0.915 (0.032) 0.905 (0.030)
GBDT 0.923 (0.019) 0.852 (0.056) 0.875 (0.048) 0.920 (0.022) 0.862 (0.047) 0.926 (0.040) 0.909 (0.047)
NetLapRLS(L1000) ' 0.915 (0.050) 0.822 (0.054) 0.821 (0.085) 0.895 (0.052) 0.827 (0.020) 0.889 (0.112) 0.933 (0.069)
NetLapRLS(PPI) 2 0.915 (0.033) 0.823 (0.063) 0.821 (0.046) 0.895 (0.036) 0.827 (0.047) 0.889 (0.029) 0.933 (0.025)
NetLapRLS(combined) ® 0.921 (0.022) 0.837 (0.054) 0.840 (0.045) 0.912 (0.030) 0.858 (0.063) 0.869 (0.024) 0.955 (0.025)
EXP2SL(no BPR loss) * 0.952 (0.035) 0.895 (0.052) 0.905 (0.042) 0.943 (0.031) 0.873 (0.045) 0.967 (0.032) 0.922 (0.033)
EXP2SL(PPI) © 0.976 (0.028) 0.936 (0.028) 0.932 (0.022) 0.966 (0.024) 0.919 (0.046) 0.959 (0.062) 0.961 (0.055)
EXP2SL 0.976 (0.023) 0.935 (0.055) 0.926 (0.046) 0.964 (0.030) 0.902 (0.045) 0.965 (0.038) 0.960 (0.025)
HT29 LR 0.754 (0.056) 0.417 (0.075) 0.531 (0.041) 0.823 (0.050) 0.505 (0.059) 0.709 (0.048) 0.841 (0.067)
RF 0.846 (0.030) 0.494 (0.062) 0.587 (0.037) 0.858 (0.028) 0.524 (0.057) 0.763 (0.057) 0.869 (0.026)
SVM 0.827 (0.034) 0.465 (0.044) 0.595 (0.043) 0.857 (0.032) 0.539 (0.066) 0.792 (0.056) 0.863 (0.036)
GBDT 0.823 (0.057) 0.452 (0.071) 0.546 (0.044) 0.822 (0.046) 0.495 (0.055) 0.758 (0.026) 0.839 (0.057)
NetLapRLS(L1000) ' 0.801 (0.043) 0.441 (0.056) 0.542 (0.042) 0.826 (0.042) 0.475 (0.079) 0.755 (0.070) 0.837 (0.055)
NetLapRLS(PPI) 2 0.794 (0.026) 0.423 (0.047) 0.525 (0.030) 0.818 (0.022) 0.458 (0.069) 0.761 (0.040) 0.828 (0.034)
NetLapRLS(combined) ° 0.814 (0.029) 0.464 (0.081) 0.550 (0.045) 0.840 (0.043) 0.479 (0.062) 0.758 (0.073) 0.853 (0.055)
EXP2SL(no BPR loss) * 0.788 (0.035) 0.481 (0.040) 0.577 (0.059) 0.830 (0.037) 0.531 (0.086) 0.752 (0.040) 0.835 (0.048)
EXP2SL(PPI) © 0.865 (0.032) 0.553 (0.038) 0.612 (0.024) 0.872 (0.012) 0.563 (0.049) 0.766 (0.046) 0.882 (0.018)
EXP2SL 0.866 (0.039) 0.558 (0.066) 0.620 (0.046) 0.877 (0.028) 0.577 (0.065) 0.756 (0.065) 0.890 (0.035)

"The NetLapRLS method using only the L1000 similarity.

2The NetLapRLS method using only the PPI similarity.

3The NetLapRLS method using the combination of L1000 and PP similarities.
“The EXP2SL model without the BPR Ioss.

5The EXP2SL model with additional PPI information incorporated by a graph convolution module.

cell lines using the WebGestalt server (Liao et al., 2019). The gene
ontology (GO) related to biological processes was first used to
examine the enriched functional annotations of the selected
feature sets (Tables S3-S5). The enriched GO terms were
ranked according to the false discovery rate (FDR) scores and p
values. As a result, the top 10 enriched functional annotations for
the selected features of HT29 contains the regulation of cell death,
proliferation, and apoptosis (p values < 10°° and FDRs < 107%),
which are cell viability related functions. Then, we also checked the
over-representation of selected genes among the KEGG pathways
using the WebGestalt server (Liao et al., 2019) (Tables S6-S8).
Among the top 10 enriched pathways ranked according to the
FDR scores and p values, we found multiple cancer-related
pathways for cell line HT29 and also cell cycle or cancer-
regulatory pathways for A375 and A549, e.g., the p53 and ERBB
signaling pathways. All these results indicated that the selected
features are probably related to the regulation of cell viability.

CONCLUSION

In this paper, we proposed a semi-supervised neural network
based method, EXP2SL, to accurately predict cell-line specific SL
interactions. Our method exploits the L1000 expression profiles

measured from the shRNA knockdown experiments performed
in different cell lines to learn the cell-line specific SL interactions
from the labeled data generated by CRISPR-Cas9 double-
knockout based screens. In addition, a semi-supervised
objective function is designed to make use of the large amount
of unlabeled data. Tests on three datasets corresponding to three
different cell lines showed that our model achieved better
performance than the baseline models. At the same time, we
verified that the L1000 gene expression profiles and the semi-
supervised objective function are useful in SL prediction.
Moreover, we analyzed the most important genes among the
whole L1000 gene expression profiles, and found that the top
attributing genes are related to the regulation of cell viability,
which suggested that our model may pay more attention to such
meaningful components of the whole gene expression profiles.
The major contributions of our work are the demonstration of
L1000 expression profiles as effective features for SL prediction, and
a novel semi-supervised neural network algorithm to accurately
capture SL interactions. To our best knowledge, our model is the
first computational approach for predicting cell-line specific
synthetic lethal interactions, which may potentially benefit the
target identification for specific tissue or cancer types. However, the
application of our model may be limited in certain cancer types
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with high heterogeneity. Another limitation of our model is the
dependence of the available L1000 gene expression profiles as input
to EXP2SL. Although the L1000 expression profiles of more than
3,500 genes have been measured by shRNA knockdown
experiments in the three cell lines analyzed in this work, there
exist some cell lines with a paucity of data, which may thus limit the
applications of our model on such cell lines.

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study can be found in the L1000
datasets GSE92742 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgitacc=GSE92742) and the GEMINI datasets (Additional
file 2 in https://genomebiology.biomedcentral.com/articles/10.
1186/s13059-019-1745-9#additional-information). Codes and
processed data for this study can be found in https://github.
com/FangpingWan/EXP2SL.

AUTHOR CONTRIBUTIONS

JZ, DZ, and FW conceived the project. FW, SL, and TT designed
the method. FW, SL, YL, and DZ performed the analyses. All the
authors contributed to the writing of the manuscript.

REFERENCES

Apaolaza, I, San José-Eneriz, E., Tobalina, L., Miranda, E., Garate, L., Agirre, X.,
et al. (2017). An in-silico approach to predict and exploit synthetic lethality in
cancer metabolism. Nat. Commun. 8, 459. doi: 10.1038/s41467-017-00555-y

Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Moody, S. E., Dunn, L. E,, et al.
(2009). Systematic RNA interference reveals that oncogenic KRAS-driven
cancers require TBK1. Nature 462, 108. doi: 10.1038/nature08460

Boone, C., Bussey, H., and Andrews, B. J. (2007). Exploring genetic interactions
and networks with yeast. Nat. Rev. Genet. 8, 437. doi: 10.1038/nrg2085

Bryant, H. E,, Schultz, N., Thomas, H. D., Parker, K. M., Flower, D., Lopez, E., et al.
(2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly
(ADP-ribose) polymerase. Nature 434, 913. doi: 10.1038/nature03443

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., et al.
(2013). API design for machine learning software: experiences from the scikit-
learn project. arXiv preprint arXiv:1309.0238.

Chen, T., and Guestrin, C. (2016). “XGBoost: A scalable tree boosting system,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, vol. KDD ‘16. (New York, NY, USA: Association
for Computing Machinery), 785-794. ACM. doi: 10.1145/2939672.2939785

Chen, W. S, Xu, P.-Z., Gottlob, K., Chen, M.-L,, Sokol, K., Shiyanova, T., et al. (2001).
Growth retardation and increased apoptosis in mice with homozygous disruption
of the aktl gene. Genes Dev. 15, 2203-2208. doi: 10.1101/gad.913901

Costanzo, M., VanderSluis, B., Koch, E. N., Baryshnikova, A., Pons, C., Tan, G.,
et al. (2016). A global genetic interaction network maps a wiring diagram of
cellular function. Science 353, aaf1420. doi: 10.1126/science.aaf1420

Das, S., Deng, X., Camphausen, K., and Shankavaram, U. (2018). DiscoverSL: an R
package for multi-omic data driven prediction of synthetic lethality in cancers.
Bioinformatics 35, 701-702. doi: 10.1093/bioinformatics/bty673

Deshpande, R., Asiedu, M. K., Klebig, M., Sutor, S., Kuzmin, E., Nelson, J., et al.
(2013). A comparative genomic approach for identifying synthetic lethal
interactions in human cancer. Cancer Res. 73, 6128-6136. doi: 10.1158/0008-
5472.CAN-12-3956

Farmer, H., McCabe, N., Lord, C. J., Tutt, A. N., Johnson, D. A., Richardson, T. B.,
et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a
therapeutic strategy. Nature 434, 917. doi: 10.1038/nature03445

FUNDING

This work was supported in part by the National Natural Science
Foundation of China [61872216, 81630103, 31900862]. The
authors declare that this study received funding from the
Turing AI Institute of Nanjing and the Zhongguancun Haihua
Institute for Frontier Information Technology. The funders were
not involved in the study design, collection, analysis,
interpretation of data, the writing of this article or the decision
to submit it for publication.

ACKNOWLEDGMENTS

The authors are grateful to Ms. Jitong Cai for her helpful
discussions about this work.

SUPPLEMENTARY MATERIALS

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2020.
00112/full#supplementary-material

Folger, O., Jerby, L., Frezza, C., Gottlieb, E., Ruppin, E., and Shlomi, T. (2011).
Predicting selective drug targets in cancer through metabolic networks. Mol.
Syst. Biol. 7. doi: 10.1038/msb.2011.35

Fong, P. C, Boss, D. S, Yap, T. A, Tutt, A,, Wu, P., Mergui-Roelvink, M., et al.
(2009). Inhibition of poly (ADP-ribose) polymerase in tumors from BRCA
mutation carriers. New Engl. J. Med. 361, 123-134. doi: 10.1056/NEJM0a0900212

Han, K, Jeng, E. E., Hess, G. T., Morgens, D. W., Li, A,, and Bassik, M. C. (2017).
Synergistic drug combinations for cancer identified in a CRISPR screen for
pairwise genetic interactions. Nat. Biotechnol. 35, 463. doi: 10.1038/nbt.3834

Jacunski, A., Dixon, S. J., and Tatonetti, N. P. (2015). Connectivity homology
enables inter-species network models of synthetic lethality. PloS Comput. Biol.
11, €1004506. doi: 10.1371/journal.pcbi.1004506

Jerby-Arnon, L., Pfetzer, N., Waldman, Y. Y., McGarry, L., James, D., Shanks, E.,
et al. (2014). Predicting cancer-specific vulnerability via data-driven detection
of synthetic lethality. Cell 158, 1199-1209. doi: 10.1016/j.cell.2014.07.027

Kingma, D. P, and Ba, J. (2014). Adam: a method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Kranthi, T., Rao, S., and Manimaran, P. (2013). Identification of synthetic lethal
pairs in biological systems through network information centrality. Mol.
Biosyst. 9, 2163-2167. doi: 10.1039/c3mb25589a

Lee, M. W, Kim, D. S,, Lee, J. H,, Lee, B. S, Lee, S. H,, Jung, H. L, et al. (2011).
Roles of akt] and akt2 in non-small cell lung cancer cell survival, growth, and
migration. Cancer Sci. 102, 1822-1828. doi: 10.1111/j.1349-7006.2011.02025.x

Lee, J. S., Das, A., Jerby-Arnon, L., Arafeh, R., Auslander, N., Davidson, M., et al.
(2018). Harnessing synthetic lethality to predict the response to cancer
treatment. Nat. Commun. 9, 2546. doi: 10.1038/541467-018-04647-1

Lei, T., Jin, W., Barzilay, R., and Jaakkola, T. (2017). “Deriving neural architectures
from sequence and graph kernels,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70 (Sydney, NSW, Australia: JMLR.
org), 2024-2033.

Li, B,, Cao, W., Zhou, J,, and Luo, F. (2011). Understanding and predicting
synthetic lethal genetic interactions in saccharomyces cerevisiae using domain
genetic interactions. BMC Syst. Biol. 5, 73. doi: 10.1186/1752-0509-5-73

Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z., and Zhang, B. (2019). Webgestalt 2019:
gene set analysis toolkit with revamped Uls and APIs. Nucleic Acids Res. 47
(W1), W199-W205. doi: 10.1093/nar/gkz401

Frontiers in Pharmacology | www.frontiersin.org

February 2020 | Volume 11 | Article 112


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1745-9#additional-information
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1745-9#additional-information
https://github.com/FangpingWan/EXP2SL
https://github.com/FangpingWan/EXP2SL
https://www.frontiersin.org/articles/10.3389/fphar.2020.00112/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2020.00112/full#supplementary-material
https://doi.org/10.1038/s41467-017-00555-y
https://doi.org/10.1038/nature08460
https://doi.org/10.1038/nrg2085
https://doi.org/10.1038/nature03443
https://doi.org/10.1145/2939672.2939785 
https://doi.org/10.1101/gad.913901
https://doi.org/10.1126/science.aaf1420
https://doi.org/10.1093/bioinformatics/bty673
https://doi.org/10.1158/0008-5472.CAN-12-3956
https://doi.org/10.1158/0008-5472.CAN-12-3956
https://doi.org/10.1038/nature03445
https://doi.org/10.1038/msb.2011.35
https://doi.org/10.1056/NEJMoa0900212
https://doi.org/10.1038/nbt.3834
https://doi.org/10.1371/journal.pcbi.1004506
https://doi.org/10.1016/j.cell.2014.07.027
https://doi.org/10.1039/c3mb25589a
https://doi.org/10.1111/j.1349-7006.2011.02025.x
https://doi.org/10.1038/s41467-018-04647-1
https://doi.org/10.1186/1752-0509-5-73
https://doi.org/10.1093/nar/gkz401
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Wan et al.

EXP2SL: Synthetic Lethality Prediction

Liu, Y., Wu, M,, Liu, C,, Li, X,, and Zheng, J. (2019). SL2ZMF: Predicting synthetic
lethality in human cancers via logistic matrix factorization. IEEE/ACM Trans.
Comput. Biol. Bioinf. doi: 10.1109/TCBB.2019.2909908

Najm, F. J., Strand, C., Donovan, K. F., Hegde, M., Sanson, K. R., Vaimberg, E. W.,
et al. (2018). Orthologous CRISPR-Cas9 enzymes for combinatorial genetic
screens. Nat. Biotechnol. 36, 179. doi: 10.1038/nbt.4048

O'Neil, N. J., Bailey, M. L., and Hieter, P. (2017). Synthetic lethality and cancer.
Nat. Rev. Genet. 18, 613. doi: 10.1038/nrg.2017.47

Pan, X,, Yuan, D. S., Ooi, S.-L., Wang, X., Sookhai-Mahadeo, S., Meluh, P., et al.
(2007). dslam analysis of genome-wide genetic interactions in saccharomyces
cerevisiae. Methods 41, 206-221. doi: 10.1016/j.ymeth.2006.07.033

Pandey, G., Zhang, B., Chang, A. N,, Myers, C. L., Zhu, J., Kumar, V., et al. (2010).
An integrative multi-network and multi-classifier approach to predict genetic
interactions. PloS Comput. Biol. 6, €1000928. doi: 10.1371/journal.pcbi.1000928

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z, et al. (2017).
Automatic differentiation in PyTorch.

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2009). “BPR:
Bayesian personalized ranking from implicit feedback,” in Proceedings of the
twenty-fifth conference on uncertainty in artificial intelligence (Montreal,
Quebec, Canada: AUAI Press), 452-461.

Ryan, C. J., Bajrami, I, and Lord, C. J. (2018). Synthetic lethality and cancer—penetrance
as the major barrier. Trends In Cancer 4, 671-683. doi: 10.1016/j.trecan.2018.08.003

Shen, J. P., Zhao, D,, Sasik, R., Luebeck, J., Birmingham, A., Bojorquez-Gomez, A.,
et al. (2017). Combinatorial CRISPR-Cas9 screens for de novo mapping of
genetic interactions. Nat. Methods 14, 573. doi: 10.1038/nmeth.4225

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv
preprint arXiv:1312.6034.

Sinha, S., Thomas, D., Chan, S., Gao, Y., Brunen, D., Torabi, D., et al. (2017).
Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer
human primary tumor data. Nat. Commun. 8, 15580. doi: 10.1038/ncomms15580

Srihari, S., Singla, J., Wong, L., and Ragan, M. A. (2015). Inferring synthetic lethal
interactions from mutual exclusivity of genetic events in cancer. Biol. Direct 10,
57. doi: 10.1186/s13062-015-0086-1

Srivas, R,, Shen, J. P, Yang, C. C,, Sun, S. M, Li, ], Gross, A. M,, et al. (2016). A
network of conserved synthetic lethal interactions for exploration of precision
cancer therapy. Mol. Cell 63, 514-525. doi: 10.1016/j.molcel.2016.06.022

Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X,,
et al. (2017). A next generation connectivity map: L1000 platform and the first
1,000,000 profiles. Cell 171, 1437-1452. doi: 10.1016/j.cell.2017.10.049

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-
Cepas, J., et al. (2014). STRING v10: protein-protein interaction networks,
integrated over the tree of life. Nucleic Acids Res. 43, D447-D452. doi: 10.1093/
nar/gkul003

Tong, A. H. Y., Evangelista, M., Parsons, A. B., Xu, H,, Bader, G. D., Pagé, N,, et al.
(2001). Systematic genetic analysis with ordered arrays of yeast deletion
mutants. Science 294, 2364-2368. doi: 10.1126/science.1065810

Whitehurst, A. W., Bodemann, B. O., Cardenas, J., Ferguson, D., Girard, L.,
Peyton, M., et al. (2007). Synthetic lethal screen identification of
chemosensitizer loci in cancer cells. Nature 446, 815. doi: 10.1038/nature05697

Wong, S. L., Zhang, L. V., Tong, A. H,, Li, Z., Goldberg, D. S., King, O. D., et al.
(2004). Combining biological networks to predict genetic interactions. Proc.
Natl. Acad. Sci. 101, 15682-15687. doi: 10.1073/pnas.0406614101

Wu, M, Li, X,, Zhang, F., Li, X., Kwoh, C.-K,, and Zheng, J. (2013). “Meta-analysis of
genomic and proteomic features to predict synthetic lethality of yeast and human
cancer,” in Proceedings of the International Conference on Bioinformatics,
Computational Biology and Biomedical Informatics (Washington, DC, USA:
ACM), 384.

Xia, Z., Wu, L.-Y., Zhou, X., and Wong, S. T. (2010). Semi-supervised drug-protein
interaction prediction from heterogeneous biological spaces. BMC Syst. Biol.
(BioMed Central). 4, S6. doi: 10.1186/1752-0509-4-S2-S6

Zamanighomi, M., Jain, S. S., Ito, T,, Pal, D., Daley, T. P., and Sellers, W. R. (2019).
GEMINIL: a variational bayesian approach to identify genetic interactions from
combinatorial CRISPR screens. Genome Biol. 20, 137. doi: 10.1186/s13059-
019-1745-9

Zhang, F., Wu, M,, Li, X.-J,, Li, X.-L., Kwoh, C. K., and Zheng, J. (2015). Predicting
essential genes and synthetic lethality via influence propagation in signaling
pathways of cancer cell fates. J. Bioinf. Comput. Biol. 13, 1541002. doi: 10.1142/
$0219720015410024

Zhao, D., Badur, M. G., Luebeck, J., Magana, J. H., Birmingham, A., Sasik, R, et al.
(2018). Combinatorial CRISPR-Cas9 metabolic screens reveal critical redox
control points dependent on the KEAP1-NRF2 regulatory axis. Mol. Cell 69,
699-708. doi: 10.1016/j.molcel.2018.01.017

Conflict of Interest: YL was employed by company Silexon AI Technology Co.
Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Wan, Li, Tian, Lei, Zhao and Zeng. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Pharmacology | www.frontiersin.org

February 2020 | Volume 11 | Article 112


https://doi.org/10.1109/TCBB.2019.2909908
https://doi.org/10.1038/nbt.4048
https://doi.org/10.1038/nrg.2017.47
https://doi.org/10.1016/j.ymeth.2006.07.033
https://doi.org/10.1371/journal.pcbi.1000928
https://doi.org/10.1016/j.trecan.2018.08.003
https://doi.org/10.1038/nmeth.4225
https://doi.org/10.1038/ncomms15580
https://doi.org/10.1186/s13062-015-0086-1
https://doi.org/10.1016/j.molcel.2016.06.022
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1126/science.1065810
https://doi.org/10.1038/nature05697
https://doi.org/10.1073/pnas.0406614101
https://doi.org/10.1186/1752-0509-4-S2-S6
https://doi.org/10.1186/s13059-019-1745-9
https://doi.org/10.1186/s13059-019-1745-9
https://doi.org/10.1142/S0219720015410024
https://doi.org/10.1142/S0219720015410024
https://doi.org/10.1016/j.molcel.2018.01.017
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

	EXP2SL: A Machine Learning Framework for Cell-Line-Specific Synthetic Lethality Prediction
	Introduction
	Methods
	Data Processing
	The L1000 Gene Expression Profiles
	SL Labels

	The Workflow of EXP2SL
	The Network Architecture of EXP2SL
	The Semi-Supervised Objective Function
	Hyper-Parameters
	Extraction of Feature Importance

	Baseline Models
	Logistic Regression
	Random Forest
	Support Vector Machine
	Gradient Boosting Decision Tree
	NetLapRLS


	Results
	Cell-Line Specificity of SL Interactions
	Performance Evaluation
	Ablation Study and Feature Comparison
	Feature Importance Analysis

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Materials
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


