
Frontiers in Pharmacology | www.frontiers

Edited by:
Gerard Bannenberg,
GOED, United States

Reviewed by:
Ayse Kuruuzum-Uz,

Hacettepe University, Turkey
Giustino Orlando,

Università degli Studi G. d’Annunzio
Chieti e Pescara, Italy

*Correspondence:
Yue Jin

rutin@sina.com
Shuangyong Sun

sunshuangyong@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to
Inflammation Pharmacology,

a section of the journal
Frontiers in Pharmacology

Received: 02 December 2019
Accepted: 05 February 2020
Published: 28 February 2020

Citation:
Luo C, Zou L, Sun H, Peng J, Gao C,
Bao L, Ji R, Jin Y and Sun S (2020) A

Review of the Anti-Inflammatory
Effects of Rosmarinic Acid on

Inflammatory Diseases.
Front. Pharmacol. 11:153.

doi: 10.3389/fphar.2020.00153

REVIEW
published: 28 February 2020

doi: 10.3389/fphar.2020.00153
A Review of the Anti-Inflammatory
Effects of Rosmarinic Acid on
Inflammatory Diseases
Chunxu Luo1†, Lin Zou2†, Huijun Sun1,3, Jinyong Peng1,3, Cong Gao1, Liuchi Bao1,
Renpeng Ji1, Yue Jin1,3* and Shuangyong Sun4*

1 College of Pharmacy, Dalian Medical University, Dalian, China, 2 Department of Internal Cardiovascular, The Second
Affiliated Hospital of Dalian Medical University, Dalian, China, 3 Key Laboratory for Basic and Applied Research on
Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian,
China, 4 Research Center of Pharmacodynamic, Tianjin Institute of Pharmaceutical Research New Drug Evaluation Co., Ltd.,
Tianjin, China

Inflammatory diseases are caused by abnormal immune responses and are characterized
by an imbalance of inflammatory mediators and cells. In recent years, the anti-
inflammatory activity of natural products has attracted wide attention. Rosmarinic acid
(RosA) is a water-soluble phenolic compound that is an ester of caffeic acid and 3, 4-
dihydroxyphenyl lactic acid. It is discovered in many plants, like those of the Boraginaceae
and Lamiaceae families. RosA has a wide range of pharmacological effects, including anti-
oxidative, anti-apoptotic, anti-tumorigenic, and anti-inflammatory effects. The anti-
inflammatory effects of RosA have been revealed through in vitro and in vivo studies of
various inflammatory diseases like arthritis, colitis, and atopic dermatitis. This article mainly
describes the preclinical research of RosA on inflammatory diseases and depicts a small
amount of clinical research data. The purpose of this review is to discuss the anti-
inflammatory effects of RosA in inflammatory diseases and its underlying mechanism.
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INTRODUCTION

Inflammation is an integral part of innate immunity. It includes the body’s removal of harmful
signals and the initiation of protective responses and tissue healing processes (Medzhitov, 2008).
The inflammatory response is an essential physiological process that maintains the homeostasis of
the immune system. Inflammation is divided into acute inflammation and chronic inflammation,
both of them have a significant impact on human health (Yi et al., 2017). The acute inflammatory
Abbreviations: BDL, Bile-duct ligation; BBB, Blood-brain barrier; BMDCs, Bone-marrow-derived dendritic cells; CLP, Cecal
ligation and puncture; CCI, Chronic constriction injury; CP, Cisplatin; CRP, C-reactive protein; DEP, Diesel exhaust particles;
DEP, Doxorubicinx; EAC, Experimental allergic conjunctivitis; GFAP, Glial fibrillary acidic protein; HDF, Hemodialysis fluid;
HCC, Hepatocellular carcinoma; HMGB1, High-mobility group box 1; Iba-1, Ionized calcium-binding adapter molecule 1; I/R,
Ischemia-reperfusion; BME, Methanolic leaf extract of Baccaurea ramiflora; MCP-1, Monocyte chemoattractant protein-1;
NHDFs, Normal human dermal fibroblasts; OIPN, Oxaliplatin-induced peripheral neuropathy; PGE2, Prostaglandin E2; RAG,
Rosmarinic acid-4-O-b-D-glucoside; STAT3, Signal transducer and activator of transcription-3; SCI, Spinal cord injury; OGD,
Oxygen-glucose deprivation; TSLP, Thymic stromal lymphopoietin; TM, Tympanic membrane; MPP+, 1-methyl-4-
phenylpyridinium; MPTP, 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine; 8-OHdG, 8-Hydroxyguanosine.
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process is characterized by the rapid recruitment of granulocytes
(i.e., neutrophils, eosinophils, and basophils) into the body
(Maskrey et al., 2011). Disorders of sustained inflammatory
stimuli or ablation stages can lead to chronic inflammation,
including rheumatoid arthritis, systemic lupus erythematosus,
silicosis, atherosclerosis, and inflammatory bowel disease
(Sherwood and Toliver-Kinsky, 2004; Maskrey et al., 2011).
Macrophages and T lymphocytes are the primary immune cells
involved in chronic inflammation and generate cytokines and
enzymes that result in tissue destruction, manifested as tissue
fibrosis (Mohan and Gupta, 2018). Inadequate inflammation can
cause continuous infection of pathogens, while excessive
inflammation can lead to chronic or systemic inflammatory
diseases (Guo et al., 2015).

The pattern-recognition receptors (PRRs) on immune cells
sense “danger” from protein-associated molecular patterns
(PAMPs) linked to a pathogen or from danger-associated
molecular patterns (DAMPs) triggered by a large number of
endogenous stress signals from the host (Rea et al., 2018). The
interleukin 1 (IL-1) cytokine family (IL-1a, IL-1b, IL-18, IL-33,
IL-36a, IL-36b, and IL-36g) acts as DAMPs and stimulates sterile
inflammation caused by necrosis and increases the inflammation
with infection-related tissue damage (Martin, 2016). The
cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) pathways,
which are metabolized by arachidonic acid (AA), produce highly
pro-inflammatory lipid mediators that are involved in the classic
signs of inflammation, including redness, fever, pain, swelling,
and loss of function, which are designed to eliminate harmful and
harmful stimuli (Rea et al., 2018). A family of important
receptors that stimulate inflammation includes Toll-like
receptors (TLRs). TLR4 signaling mediated by the linker
MyD88 activates the transcription factor nuclear factor kappa
B (NF-kB), thereby inducing gene expression of pro-
inflammatory factors like tumor necrosis factor (TNF), IL-6,
and IL-1b (Foley, 2015). These proteins play an important role in
inflammatory diseases.

Rosmarinic acid (RosA, Figure 1) is an ester of caffeic acid
and 3, 4-dihydroxyphenyl lactic acid. It is usually discovered in
species of the Boraginaceae family and the subfamily
Nepetoideae of the Lamiaceae family (Petersen and Simmonds,
2003). RosA’s presence in medicinal plants, herbs, and spices is
linked to beneficial and health-promoting effects (Ferreira et al.,
2013). In plants, RosA is considered to be a cumulative defense
compound, while in human, RosA has many biological activities,
including antiviral, antibacterial, antioxidant, antimutagenic,
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and anti-inflammatory activities (Elufioye and Habtemariam,
2019). Many in vitro and in vivo studies have reported the anti-
inflammatory effects of RosA in inflammatory diseases. This
review systematically describes the therapeutic potential of RosA
for inflammatory diseases and discusses its possible mechanisms.
EFFECT OF ROSMARINIC ACID ON
INFLAMMATORY DISEASES

Arthritis
Arthritis is an inflammatory disease that involves damage to one
or more joints. It has more than one hundred types, the most
common of which are osteoarthritis and rheumatoid arthritis
(Petchi et al., 2013). Osteoarthritis (OA) is a progressive
degenerative disease characterized by inflammation of the
synovial, abrasion of the cartilage surface, subchondral
sclerosis, and osteophyte generation, leading to loss of pain
and movement (Yin et al., 2017). OA has long been considered
as a degenerative disease of cartilage and is the only result of any
process that causes increased pressure on a particular joint or the
fragility of the cartilage matrix. The pathogenesis of OA is
complicated and not fully understood, but an increasing
number of researches have indicated that inflammation exerts
a key role in the pathogenesis of OA (Berenbaum, 2013;
Robinson et al., 2016). Rheumatoid arthritis (RA) is a chronic
inflammatory autoimmune disease described as extensive
infiltration and activation of inflammatory and mesenchymal
cells, synovial cell proliferation, neovascularization, and
occasional cartilage and bone destruction (Hur et al., 2007;
Angelotti et al., 2017). RA is usually treated with nonsteroidal
anti-inflammatory drugs (NSAIDs) and disease-resistant
antirheumatic drugs (DMARDs), but they have adverse
reactions, potential toxicity, and high cost, thus limiting their
use. Presently, the field of arthritis study is rapidly developing in
the direction of herbal research to find safe and effective drugs
(Aloke et al., 2019).

OA is a multifactorial disease described primarily as the
destruction of articular cartilage (Jiang and Tuan, 2015).
Collagen 2 (COL2) and aggrecan (ACAN) are the main
components of cartilage extracellular matrix (ECM) (Luo et al.,
2017). The depletion of ACAN and COL2 results in the
degradation of cartilage in OA (Mankin and Lippiello, 1970).
A disintegrin and metalloproteinase with thrombospondin
motifs (ADAMTS)-4 and ADAMTS-5 are responsible for
ACAN depletion in osteoarthritic cartilage (Gendron et al.,
2007). The inflammatory cytokine interleukin-1-beta (IL-1b)
also exerts an important role in ECM degradation (Tu et al.,
2017). An effect of RosA on OA has been reported in rat
chondrocytes (Hu et al. , 2018). In this experiment,
chondrocytes were isolated from rat cartilage and incubated
with RosA in the presence of IL-1b. RosA was found to inhibit
IL-6 secretion and inhibit the gene and protein levels of
ADAMTS-4 and ADAMTS-5. Moreover, RosA also inhibited
the ACAN and COL2 gene expression induced by IL-1b. The
results indicate that RosA can degrade ECM in OA and may have
FIGURE 1 | The structure of RosA.
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a therapeutic effect on OA. Another study found that drinking
high-RosA spearmint tea can be a potential complementary
treatment for OA pain relief (Connelly et al., 2014). The study
indicated that taking high RosA tea for 16 weeks per day could
significantly improve stiffness and physical disability scores in
adults with knee OA and could significantly reduce pain.

T cells exert a crucial role in the development and progression
of RA, and the apoptosis of potentially pathogenic T cells is
considered to be an important therapeutic option. The study
found that RosA can induce apoptosis in activated T cell subsets
in RA patients by the mitochondrial pathway (Hur et al., 2007).
The results showed that RosA induced CD3+CD25+ activated T
cell apoptosis in 57.1% of RA patients in a dose-dependent
manner, and RosA showed stronger apoptotic activity against
the CD4+CD45RO+ effector T cell subset than the
CD4+CD45RA+ naive T cell subset. In addition, RosA
inhibited MMP destruction, reduced Bcl-2 expression, and
induced Cyt c release from mitochondria to the cytoplasm.
These results supported the view that RosA induced the
apoptosis of activated T cells from RA patients through the
mitochondrial pathway. Another experiment found that RosA
can improve arthritis symptoms in the mouse model of collagen-
induced arthritis (CIA) (Youn et al., 2003). RosA could
significantly reduce the arthritis index and the number of
affected paws. Histopathological images indicated that RosA
inhibits synovitis, and synovial tissue of RosA-treated mice
indicated a great reduce in the frequency of COX-2-expressing
cells. Therefore, the administration of RosA in a clinical setting
provided therapeutic effects in the treatment of RA.
Furthermore, it has been reported that RosA extracted from
pomegranate peel showed significant anti-arthritic potential in
arthritis induced by Freund’s complete adjuvant (FCA) (Gautam
et al., 2019).

Colitis
Inflammatory bowel disease (IBD) is a chronic recurrent
intestinal inflammation that includes Crohn’s disease (CD) and
ulcerative colitis (UC). IBD is thought to be caused by an
abnormal and sustained immune response to microorganisms
in the intestine caused by the genetic susceptibility of the
individual (Zhang and Li, 2014). UC is a chronic disease
described as diffuse inflammation of the colon and rectal
mucosa. The typical clinical symptom of UC is bloody diarrhea
(da Silva et al., 2014). In contrast to CD, the inflammation of UC
is limited to the colonic mucosa and the affected colon (Adams
and Bornemann, 2013). In recent decades, the incidence of IBD
has elevated in some areas of the world, especially in developing
countries (da Silva et al., 2014). Consequently, the need for
effective and safe natural compounds is increasing for
IBD patients.

Studies have found that RosA can improve dextran sulfate
sodium (DSS)-induced colitis (Jin et al., 2017; Zhao et al., 2018).
In this study, RosA markedly decreased the disease activity index
(DAI) and inhibited DSS-stimulated colon length shortening and
splenomegaly in mice. RosA significantly improved
inflammatory cell infiltration in the DSS-induced colitis model.
RosA inhibited the induction of COX-2 and iNOS expression
Frontiers in Pharmacology | www.frontiersin.org 3
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Immunohistochemistry analysis indicated that RosA
significantly inhibited the expression of NF-kBp65 and
pSTAT3 and their transport to the nucleus in the inflamed
mucosa. Western blot analysis indicated that RosA inhibited
the increase in NF-kB and STAT3-associated proteins in the
colon of colitis mice. Another article showed the effect of RosA
and black rice anthocyanin-rich extract (BRAE) alone or in
combination on colitis induced by DSS (Zhao et al., 2018). At
the appropriate dose, the combination of BRAE and RosA
significantly reduced the DAI and inhibited the NO content,
serum IL-1b and TNF-a expressions as well as IL-1b and TNF-a
mRNA expression. Furthermore, the combination of BRAE and
RosA exerted its anti-inflammatory activity through decreasing
myeloperoxidase (MPO) and NO expressions as well as the
mRNA levels of IL-6, IL-1b, and iNOS.

Some researchers have modified RosA to reduce its
hydrophilicity, effectively inhibiting hypoxia-inducible factor-
prolyl hydroxylase-2 (HPH) and causing the activation of
hypoxia-inducible factor (HIF)-1 to exert anti-TNBS-induced
colitis effects in rats (Jeong et al., 2015).

Atopic Dermatitis
Atopic dermatitis (AD), also known as atopic eczema, is a
chronic recurrent inflammatory skin disease (Avena-Woods,
2017). The clinical features of the disease are the exacerbation
and relief of eczema skin, accompanied by inflammation, itching
and flaking, desquamation, dry skin and susceptibility to skin
bacteria, and mold infections (Cabanillas et al., 2017). The
pathophysiology of AD is intricate and multifactorial,
including barrier dysfunction, cell-mediated immune response
changes, IgE-mediated hypersensitivity, and environmental
factors (David Boothe et al., 2017). Currently, a lot of
researchers are energetically trying to develop therapeutic
drugs with great anti-inflammatory effects and few side reactions.

T cells play an important role in AD’s pathogenesis (Kurita
et al., 2019). AD is a bipolar inflammatory skin disease that can
be thought of as having two distinct stages. In the acute phase,
AD skin lesions are infiltrated by CD4+ T cells, which chiefly
secrete the Th2 cytokines IL-4, IL-5, and IL-13. However, in the
chronic phase, Th1 cells secrete interferon-g (IFN-g) (Jin et al.,
2009). Some researchers have reported that RosA can alleviate 2,
4-dinitrofluorobenzene (DNFB)-induced AD in NC/Nga mice
and have revealed the mechanism of its involvement (Jang et al.,
2011). The authors showed in this report that RosA could
significantly inhibit the generation of IFN-g and IL-4 by
activated CD4+ T cells. RosA significantly inhibited the
development of skin lesions and the thickness of the ear and
reduced serum total IgE levels. RosA suppressed the infiltration
of CD4+ T cells, CD8+ T cells, and mast cells into DNFB-induced
skin lesions in NC/Nga mice. The above results indicated that
RosA inhibited the development of AD-like dermatitis in DNFB-
stimulated NC/Nga mice by decreasing the production of IFN-g
and IL-4 via activated T cells and the level of total serum IgE.
Furthermore, RosA had the effect of improving AD in clinical
studies (Lee et al., 2008). This effect was observed by the topical
application of a RosA (0.3%) emulsion twice daily to the elbow
February 2020 | Volume 11 | Article 153
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flexion of 21 patients with mild AD. It was found that RosA
could significantly reduce the statistically significant Severity
Scoring of Atopic Dermatitis (SCORAD) score and reduce
pruritus and transepidermal water loss (TEWL). In the patch
test, no patient responded, indicating that RosA could be safely
applied to human skin. These consequences indicate that RosA
was able to be used as a therapeutic agent for AD. The author
also suggested at the end of the article that RosA could improve
AD symptoms by inhibiting IKK-b.

Asthma
Asthma is a common chronic airway disease described as a
complicated interaction between airway obstruction, bronchial
hyperresponsiveness (BHR), and airway inflammation
(Manuyakorn et al., 2013). Lots of cells and cellular
components exert a role in this process, especially mast cells,
eosinophils, T lymphocytes, macrophages, neutrophils, and
epithelial cells (Mims, 2015).

RosA has been found to inhibit ovalbumin (Ova)-stimulated
airway inflammation in a mouse model of asthma (Liang et al.,
2016). The mitogen-activated protein kinases (MAPKs) regulate
the synthesis and secretion of pro-inflammatory mediators
during the inflammatory process, and their family contains
three different stress-activated protein kinase pathways: p38,
JNK, and ERK (Li et al., 2017). Constant activation of NF-kB
has been found in allergic asthma, and the suppression of the
NF-kB pathway attenuates asthma induced by OVA (Gu et al.,
2017). In this experiment, RosA significantly inhibited the
increase in inflammatory cells and Th2 cytokines in
bronchoalveolar lavage fluid (BALF), decreased total IgE and
Ova-specific IgE concentrations, and significantly improved
airway hyperresponsiveness (AHR). Histological analysis
showed that RosA significantly reduced the number of
inflammatory cells and excessive mucus secretion in the
airways. Pretreatment with RosA led to a significant decrease
in AMCase, CCL11, CCR3, Ym2, and E-selectin mRNA levels in
lung tissue and a significant regulation of NF-kB and MAPK
activation. Therefore, this study suggested that RosA may be a
promising candidate for asthma treatment. The protective effect
of RosA may be through the inhibition of ERK, JNK, and p38
phosphorylation and the activation of NF-kB.

Another experiment evaluated the immunomodulatory
effects of Ocimum gratissimum (Og) and RosA in a mouse
respiratory allergy model caused by Blomia tropicalis (Bt) mite
(Costa et al., 2012). This experiment found that RosA
significantly inhibited the number of total inflammatory cells
and eosinophils. Lung histopathology images showed that
treatment with RosA reduced inflammatory cell infiltration
around the bronchi and perivascular areas and inhibited
mucus secretion in lung tissue. In addition, RosA could reduce
the level of IL-4. The results of this experiment strongly
supported the potential use of RosA as an anti-inflammatory
drug for the treatment of allergic asthma. In addition, an article
reported the effect of rosmarinus officinalis extracts on asthmatic
subjected resistant to routine treatments (Mirsadraee et al.,
2018). It was found that the Asthma Control Test (ACT) score
displayed marked improvement after treatment with rosmarinus
Frontiers in Pharmacology | www.frontiersin.org 4
officinalis. Clinical evaluation revealed that cough, sputum
generation, and wheezing were markedly improved in the
rosmarinus officinalis group. At the same time, Exhaled Nitric
Oxide (FENO) was significantly reduced after treatment with
rosmarinus officinalis. The author finally concluded that
rosmarinus officinalis and RosA had the potential to
treat asthma.
Allergic Rhinitis
Allergic rhinitis (AR) is a symptomatic nose inflammation
caused by immunoglobulin E (IgE)-mediated endocardial
inflammation (Bousquet et al., 2008). AR is one of the most
common chronic diseases in the world, influencing 10 to 20% of
the population (Devillier et al., 2014; Comert et al., 2016). Pollen
is the biggest reported reason of seasonal al lergic
rhinoconjunctivitis (SAR) (Caillaud et al., 2015). Prospective
researches indicate that SAR may be a predisposing factor for
the development of asthma (Kopp et al., 2009).

RosA improved inflammation in the OVA-induced AR
animal model (Oh et al., 2011). Administrate RosA could
decrease elevated IgE levels in the serum, spleen, and nasal
mucosa of OVA-sensitized mice. After treatment with RosA,
the level of histamine in the serum was also significantly reduced.
RosA suppressed the protein expressions and mRNA expressions
of IL-1b, IL-6, and TNF-a in nasal mucosa or spleen as well. The
article also found that the increase in mast cell and eosinophil
infiltration caused by OVA sensitization was reduced in the
drug-administered group. Furthermore, COX-2 expression and
caspase-1 activity can be prevented by administering RosA in
nasal mucosa tissue. In activated human mast cells, RosA
suppressed the activation of NF-kB and caspase-1. The above
consequences demonstrated the therapeutic potential of RosA
for allergic rhinitis and allergic rhinoconjunctivitis.

Some researchers have studied whether oral RosA is effective
in patients with SAR through clinical trials, and animal
experiments have estimated the anti-inflammatory mechanism
of RosA in the ear edema model (Osakabe et al., 2004). In clinical
trials, the addition of RosA significantly reduced the rate of
remission of each symptom compared with placebo. RosA
markedly reduced the number of neutrophils and eosinophils
in nasal lavage fluid as well. In the 12-tetradecanoylphorbol 13-
acetate (TPA)-stimulated mouse ear edema model, the up-
regulation of ICAM-1, VCAM-1 cyclooxygenase-2 (COX-2),
keratinocyte chemoattractant (KC), and Macrophage
inflammatory protein-2 (MIP-2) through TPA was
significantly decreased by pretreatment with RosA. RosA can
reduce neutrophil infiltration, as demonstrated by histological
examination with hematoxylin-eosin staining. Another article
also reported that RosA had a therapeutic effect on patients with
SAR (Takano et a l . , 2004) . Compared to placebo
supplementation, supplementation with RosA-enriched Perilla
frutescens extract led to a marked augment in responder rates for
itchy nose, watery eyes, itchy eyes, and total symptoms. RosA
could effectively treat mild SAR at least in part by inhibiting the
infiltration of polymorphonuclear leukocytes (PMNLs) into
the nostrils.
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Periodontal Diseases
Periodontal disease (PD) is thought to be a multifactorial disease
caused by pathogenic infections, promoted by inflammation, and
immune responses to bacteria, and altered by different
environmental and genetic factors (Pietropaoli et al., 2010).
The complex composition and organization of the periodontal
ligament may be affected by damage to the steady-state
equilibrium between the oral microbiome and the host, which
may cause two main illnesses: gingivitis and periodontitis (Marty
et al., 2017). Gingivitis is caused by microbial plaques that
accumulate at or near the gingival sulcus. It was determined
that gingivitis was mainly caused by B lymphocytes and plasma
cells (Page, 1986). Gingivitis is thought to be an early periodontal
disease that may or may not develop into periodontitis (Van
Dyke et al., 1986). Periodontitis is a chronic inflammatory
disease of dental support tissue with high incidence and
alternating relief and acute exacerbation (Zhang et al., 2017).
Periodontitis is described as persistent leukocyte infiltration,
possibly regulated by the production of topical chemokine, but
its pathogenesis has not been fully elucidated (Bostrom
et al., 2015).

An article has reported the effects of the topical anti-
inflammatory drugs ebselen and RosA on plaque-induced
gingivitis progression in a rhesus monkey model (Van Dyke
et al., 1986). Nonparametric indicators (G.I.) and plaque
accumulation index (P.I.) were used to ascertain the extent of
gingival inflammation and plaque accumulation. G.I. ranges
from 0 (without erythema or edema) to 4 (serious erythema or
edema, spontaneous bleeding, and ulceration). P.I. ranges from 0
(no plaque) to 4 (tooth completely covered by plaque). In this
study, animals treated with RosA and ebselen showed lower G.I.
and P.I. levels than controls. Therefore, the article drew a
conclusion that, at least in the short term, RosA and ebselen
were effective in decreasing gingival inflammation and plaque
buildup when using a skin graft macaque model.

In addition, researchers have detected the effects of Prunella
vulgaris L. (PVE) and its composition RosA on oxidative damage
and inflammation in human gingival fibroblasts induced by LPS
(Zdarilova et al., 2009). The pathogenesis of periodontitis is
related to the imbalance of homeostasis between reactive oxygen
species (ROS) and antioxidant defense systems (Liu C. et al.,
2017). The authors pointed out that PVE and RosA reduced the
production of ROS, the consumption of intracellular glutathione
(GSH) and lipid peroxidation in LPS-treated cells. PVE and
RosA not only inhibited the upregulation of IL-1b, IL-6, and
TNF-a induced by LPS, but also inhibited the expression of
iNOS. These results indicated that PVE and RosA may slow the
progression of periodontitis by reducing the inflammatory
response and the production of oxidative mediators in
gingival fibroblasts.
Acute Pancreatitis
Acute pancreatitis (AP) is an inflammatory disease described as
acute inflammation and necrosis of the pancreatic parenchyma
(Irrera et al., 2014). AP is considered to be a topical inflammatory
Frontiers in Pharmacology | www.frontiersin.org 5
response including premature intracellular activation of digestive
enzymes in acinar cells, resulting in tissue self-digestion and
possibly involving distant organs. Secretory acinar cells are
considered to release chemokines and cytokines as well, which
recruit white blood cells and trigger an inflammatory response
that causes pancreatic edema and neutrophil accumulation
(Makhija and Kingsnorth, 2002). The prognosis of AP patients
depends largely on the incidence of organ failure and infected
pancreatic necrosis. Despite the increasing incidence, there are
currently no drugs to alleviate the symptoms of the disease and
its course (Kambhampati et al., 2014).

RosA may have a protective effect on sodium taurocholate
(NaTC)-induced AD (Fan et al., 2015). The pathology of NaTC-
induced rat AP is very similar to that of severe acute pancreatitis
(SAP) in humans, characterized by rapid onset of necrosis and
inflammation of the pancreas and/or peripancreatic tissue.
Inflammatory responses, pro-inflammatory cytokines like IL-
1b, IL-6, and TNF-a, and the activation of NF-kB exert a crucial
role in AP (Ma et al., 2018). The consequences indicated that
RosA pretreatment markedly ameliorated pathological change in
the pancreas; decreased serum amylase and lipase activity;
decreased pancreatic myeloperoxidase activity; decreased
systemic and pancreatic leukocyte IL-1b, IL-6, and TNF-a
expression; and suppressed NF-kB translocation in the
pancreas. RosA appeared to reduce the damage to AD caused
by NaTC and reduced the release of inflammatory cytokines via
suppressing the activation of NF-kB.
Mastitis
Mastitis is a breast inflammation which is usually caused by a
bacterial infection and is able to influence any mammal that is
lactating (Sordillo, 2011). Human epidemiological studies have
found that more than one-third of all lactating women develop
mastitis, and the clinical manifestations of this illness are the
main reason for mothers to stop breastfeeding. The development
of mastitis is related to the extent to which the breast is exposed
to bacterial pathogens. Multiple Gram-positive and Gram-
negative pathogens lead to mastitis (Aitken et al., 2011). Gram-
negative bacterial lipopolysaccharide (LPS) is considered to be an
important factor in establishing animal models of inflammation
(Gong et al., 2018).

Recently, an article reported the anti-inflammatory effect of
RosA on LPS-induced mouse mastitis (Jiang et al., 2018). This
experiment found that RosA treatment significantly improved
mammary gland structura l damage and decreased
myeloperoxidase activity. ELISA and qPCR consequences
showed that RosA reduced the level of TNF-a, IL-1b, and IL-6
in tissues and mMECs in a dose-dependent manner. TLRs are a
vital class of pathogen recognition receptors. TLR4 is the most
characteristic member of the TLR family and exerts a key role in
the innate immune response to LPS infection (Mateu et al., 2015).
A developing number of studies have shown that TLR4 can bring
the production of inflammatory cytokines and regulate the
activation of the NF-kB signaling pathway (Liao et al., 2018).
RosA dose-dependently decreased TLR4 level in HEK293-
February 2020 | Volume 11 | Article 153
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TABLE 1 | The anti-inflammatory effect of RosA on different disease models.

Experimental model Major outcomes References

Extrahepatic
cholestasis in rats

BDL rats exhibit increased liver NF-kB/AP-1 activity, inflammatory cell infiltration/accumulation and cytokine formation,
while RosA improved these symptoms of hepatitis. Dietary RosA supplementation was possibly beneficial in the matter
of ameliorating cholestasis-related liver injury by mechanisms including the resolution of oxidative burden and down-
regulation of HMGB1/TLR4, NF-kB, AP-1, and TGF-b1/Smad pathway.

(Lin et al., 2017)

LPS-induced acute
lung injury in mice

RosA significantly reduced LPS-induced TNF-a, IL-6, and IL-1b production; RosA plays an anti-inflammatory effect on
the acute lung injury in mice by inhibiting ERK/MAPK signaling in a dose-dependent manner.

(Chu et al., 2012)

DEP-induced lung
injury in mice

RosA inhibited lung expression of KC, IL-1b, MCP-1 and MIP-1a, and inhibited the level of iNOS mRNA in the lung and
the generation of nitrotyrosine and 8-OHdG. RosA inhibited DEP-stimulated lung injury through decreasing the level of
pro-inflammatory molecules.

(Sanbongi et al.,
2003)

H2O2-induced NHDF
damage

RosA decreased NF-kB activity in NHDFs; RosA markedly dose-dependently reduced the levels of TNF-a and IL-6.
RosA inhibited H2O2-induced inflammatory response in NHDFs.

(Hahn et al., 2017)

Carrageenan-induced
paw edema, liver I/R
and thermal injury
models in rat

RosA could significantly reduce the increase in paw volume by inhibiting the inflammatory process associated with
edema formation; RosA inhibited inflammatory processes associated with hepatic I/R, thereby reducing persistent liver
damage following reperfusion; RosA reduced the systemic release of pro-inflammatory cytokines and reduced lung
damage caused by scalding. The mechanism might be related to the activation of the NF-kB pathway and the
suppression of MMP-9 activation.

(Rocha et al.,
2015)

Poly (I:C)-induced
inflammatory reaction
of epidermal
keratinocytes

RosA significantly inhibited the expression of IL-1b, IL-6, IL-8, CCL20, and TNF-a and down-regulated the NF-kB
pathway. In the aspect of reducing the levels of NLRP3 and ASC and the secretion of activated IL-1b and caspase-1,
RosA the inhibited poly (I: C)-induced activation of inflammatory bodies.

(Zhou et al., 2016)

Type 1 diabetic mice RosA treatment reduced the levels of IL-6, TNF-a and PGE2 in the liver and the activity of COX-2. RosA might be an
effective protective agent against liver damage in diabetes.

(Wen and Yin,
2017)

CCl-induced
neuropathic pain in
rats

RosA was able to prevent and attenuate CCl-stimulated behavioral characteristics in prophylactic and treatment groups,
respectively. RosA inhibited the levels of TNF-a, iNOS, Iba-1, TLR-4, and GFAP. The anti-inflammatory effects of RosA
might play an important role in the observed antinociceptive properties.

(Rahbardar et al.,
2018)

LPS-induced
microglia activation in
the N9 murine
microglial cell line

RosA attenuated the level of the M1-labeled iNOS and the expressions of pro-inflammatory factors, involving TNF-a, IL-
1b, and IL-6. RosA inhibited the level of M2-labeled Arg-1 by inhibiting the activation of cleaved caspase-3. RosA
attenuated microglial cells activation in N9 mice by downregulating the expression of inflammatory cytokines and
caspase-3.

(Coelho et al.,
2017)

LPS-stimulated
HUVECs

The addition of RosA to HDF did not affect the morphology or viability of HUVECs and inhibited inflammatory responses
stimulated by LPS, containing the level of IL-1b, IL-6, TNF-a, and iNOS, as well as NO generation. Using HDF to
supplement RosA could reduce inflammation and ameliorate long-term treatment in patients with dialysis-induced renal
failure.

(Wang et al., 2017)

Cardiac I/R injury RosA pretreatment suppressed the expressions of inflammatory cytokines (IL-6, TNF-a, and CRP), upregulated PPARg
level and downregulated NF-kB level. RosA attenuated heart damage by activating PPARg and downregulating NF-kB-
mediated pathways, thereby suppressing inflammation and cardiomyocyte apoptosis in cardiac I/R injury models.

(Han et al., 2017)

H22 tumor-bearing
mice

By adjusting the secretion of cytokines related to inflammation and angiogenesis and inhibiting the level of NF-kB p65 in
the xenograft microenvironment, RosA could effectively inhibit tumor growth and had fewer toxic effects. RosA was a
potential drug for the treatment of HCC.

(Cao et al., 2016)

Unilaterally
myringotomized
Sprague-Dawley rats

Topical and oral administration of RosA inhibited inflammation, reduced the thickness of the TM, and prevented spinal
sclerosis in rats that had undergone tonsillectomies.

(Ozdemir et al.,
2019)

Aorta of diabetic rats RosA protected the aortic endothelium-dependent relaxation and ultrastructure and prevented damage caused by
diabetes. The anti-inflammatory effects of RosA appeared to be involved in this protective mechanism.

(Sotnikova et al.,
2013)

MKN45 human gastric
cancer cells and
mouse xenograft
models established
using MKN45 cells

RosA inhibited pro-inflammatory cytokines and microRNAs associated with inflammation, suggesting that RosA may
inhibit Warburg effects through the inflammatory pathway, like IL-6/STAT3. MiR-155 was a key mediator of the
relationship between inflammation and tumorigenesis. MiR-155 was a target gene that regulated the Warburg effect
through inactivating the IL-6/STAT3 pathway. RosA inhibited the Warburg effect in vivo. RosA was a possible therapeutic
drug that inhibited the Warburg effect of gastric cancer.

(Han et al., 2015)

Ovariectomized rats
treated with D-
galactose

RosA exerted an anti-inflammatory effect and inhibited the synthesis of PGE2, thereby benefiting the treatment of AD.
RosA treatment reduced memory impairment by improving oxidative stress and inflammatory responses and was a
potential candidate for slowing the progression of the disease.

(Kantar Gok et al.,
2015)

CP-induced
nephrotoxicity

RosA inhibited the expression of NF-kB and TNF-a, indicating that inflammation was inhibited. RosA improved renal
oxidative stress, inflammation and apoptosis induced by CP. RosA’s renal protective activity might be at least partially
due to a decrease in CYP2E1 level.

(Domitrovic et al.,
2014)

Carrageenan-induced
paw edema model of
inflammation in rats

BME (rich in RosA) significantly impeded the onset of inflammation and dose-dependently reduced paw edema at 4
hours. BME treatment markedly decreased the generation of IL-1b and TNF-a. The article suggested that RosA and
similar phenolic compounds could be used to treat inflammation-related damage.

(Usha et al., 2014)

TSLP-stimulated
human mast cell line,
HMC-1 cells, and
short ragweed pollen-
induced allergic

RosA inhibited TSLP-induced mast cell proliferation via down-regulating MDM2 and up-regulating p53. RosA significantly
reduced the generation of TNF-a, IL-1b and IL-6 stimulated by TSLP in HMC-1 cells. It also prevented the generation of
pro-inflammatory cytokines in the EAC in vivo model and decreased the expressions of IgE, TSLP, and IL-4. The article
showed that RosA had a great anti-inflammatory effect on TSLP-stimulated inflammatory responses. RosA could be
used to treat allergic inflammation caused by a rise in the number of mast cells.

(Yoou et al., 2016)
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mTLR4/mMD-2 cells, suggesting that RosA can interdict the
inflammatory response by straight targeting TLR4. The levels of
the downstream signaling factors MyD88, IRAK1, TRAF6, and
IKKb of the TLR4 pathway were also significantly reduced.
Furthermore, the administration of RosA significantly
suppressed the phosphorylation of IkB and the activation of
p65. The DNA binding activity assay further confirmed the
similar suppression of the nuclear translocation of NF-kB via
RosA. Therefore, RosA can attenuate LPS-induced mastitis
through suppressing the TLR4/MyD88/NF-kB signaling pathway.
Frontiers in Pharmacology | www.frontiersin.org 7
Effect of Rosmarinic Acid on Other
Inflammatory Diseases
In addition, studies have found that RosA has been reported in
Japanese encephalitis and neuritis. RosA reduced the mortality of
murine infected with Japanese encephalitis virus (JEV). The viral
load and pro-inflammatory cytokine levels of JEV-infected
animals receiving RosA were significantly reduced 8 to 9 days
after infection compared to the levels of untreated infected mice
(Swarup et al., 2007). RosA greatly decreased the level of TLR4
and CD14 and the activation of NF-kB and NLRP3
TABLE 1 | Continued

Experimental model Major outcomes References

conjunctivitis mouse
model
LPS-stimulated
BMDCs

RosA reduced the migration of cells by inducing expression of LPS-induced mature BMDC-specific chemokine
receptors. RosA markedly decreased the expression of MCP-1 and MIP-la in LPS-stimulated BMDCs and inhibited the
activation of MAPK and the nuclear translocation of NF-kB stimulated by LPS. RosA had attractive new pharmacological
properties that inhibited the LPS-induced upregulation of inflammatory chemokines in BMDCs.

(Kim et al., 2008)

UVB-induced HaCaT
cells

When used simultaneously with radiation, RosA significantly reduced the expression of UVB-induced IL-6, IL-8, MCP-1,
and TNF-a. RosA could avoid and/or limit the inflammatory cascade induced by UVB by reducing pro-inflammatory
mediators and enhancing IL-10 and its protective function.

(Lembo et al.,
2014)

LPS- and CLP‐
mediated HMGB1
release

RosA effectively inhibited the release of HMGB1 in human endothelial cells and downregulated HMGB1-dependent
inflammatory responses; RosA supressed HMGB1-mediated high permeability and leukocyte migration in mice; RosA
decreased CLP-stimulated HMGB1 release and sepsis-related mortality. The article suggested that RosA ought to be
considered as a candidate therapeutic for treating all kinds of inflammatory diseases by inhibiting the HMGB1 pathway.
RosA was a potential treatment for curing serious vascular inflammatory diseases like sepsis and septic shock.

(Yang et al., 2013)

MPTP-induced
Parkinson’s disease
in mice and MPP+ and
a-synuclein-induced
Parkinson’s disease
in BV-2 cells

RosA treatment could improve the motor function of Parkinson’s disease mice, increase the number of tyrosine-
hydroxylase-positive cells, reduce the generation of pro-inflammatory cytokines, and inhibit the activation of microglia in
the ventral midbrain; RosA reduced MPP+- or a-synuclein-induced secretion of pro-inflammatory cytokines; RosA
administration decreased the levels of HMGB1, TLR4, and Myd88 in Parkinson’s disease animals and cell models and
inhibited NF-kB nuclear expression. RosA could attenuate the inflammatory response by inhibiting the HMGB1/TLR4/
NF-kB pathway, which might be beneficial for its activity against Parkinson’s disease.

(Lv et al., 2019)

CLP-induced sepsis
in rats and LPS-
induced RAW264.7
cells

RosA down-regulated the expressions of TNF-a, IL-6, and high-mobility box-1 proteins in vivo, suppressed the IkB
kinase pathway, and regulated NF-kB. Intravenous injection of RosA alone or in combination with imipenem could
downregulate serum TNF-a, IL-6, high-mobility group box 1 protein, triggering receptor expressed on myeloid cells and
endotoxin and upregulate IL-10 serum levels. RosA had the ability to inactivate the inflammatory response in sepsis.
RosA’s anti-inflammatory mechanism might be related to inhibition of the IkB kinase activity and thus inhibition of NF-kB
signaling pathway activation.

(Jiang et al., 2009)

Acute lung injury in
mice infected with
influenza virus

RAG could regulate the expression of inflammatory cytokines induced by influenza virus, especially by reducing the
expression of Th1 cytokines IFN-g and TNF-a and increasing the expression of Th2 cytokines IL-4 and IL-5. After RAG
administration, cell migration and infiltration were similarly reduced. RAG had a pleiotropic effect on viral pneumonia.

(Liu J.X. et al.,
2017)

DOX-induced
neurotoxicity in rats

RosA treatment ameliorated pro-inflammatory cytokines like TNF-a and iNOS and reduced oxidative stress biomarkers
and brain monoamines. RosA could effectively prevent DOX-induced neurotoxicity, and the underlying mechanism of
neuroprotection was possibly related to its antioxidant, anti-inflammatory, and anti-apoptotic effects.

(Rizk et al., 2017)

Spinal cord injury RosA prevented the rise in the SCI-induced nuclear localization of NF-kB and the corresponding reduction in the nuclear
localization of Nrf-2. RosA inhibited neuronal apoptosis through targeting ROS and inflammatory responses in SCI.

(Shang et al.,
2017)

Experimental
diabetes with
cerebral ischemia

RosA inhibited NF-kB activation and decreased HMGB1 expression in vitro and in vivo. RosA protected the brain against
I/R injury by attenuating diabetic brain I/R injury and alleviating the destruction of the BBB, and its protective effect might
include the HMGB1 and NF-kB pathways. RosA had therapeutic potential as an anti-inflammatory lead compound useful
in primary brain I/R injury in diabetes.

(Luan et al., 2013)

Oxaliplatin-induced
peripheral neuropathy
in rats

AMPK activation could be involved in oxaliplatin-induced mitochondrial dysfunction and glial-cell-mediated inflammation,
thereby reducing OIPN. RosA relieved neuropathic pain caused by oxaliplatin through preventing mitochondrial
dysfunction and glial-cell-mediated inflammation.

(Areti et al., 2018)

Carrageenan-induced
paw edema and
cotton-pellet-induced
granuloma formation
in two mouse models

RosA significantly inhibited carrageenan-stimulated paw edema and inhibited cotton-pellet-induced granuloma formation.
RosA had central and peripheral antinociceptive activity and had an anti-inflammatory effect on acute and chronic
inflammation. The article highlighted the potential use of RosA in relieving pain and treating inflammatory diseases.

(Boonyarikpunchai
et al., 2014)

Cadmium-induced
ototoxicity

RosA suppressed Cd+-induced cell death, ROS production, IL-6 and IL-1b increase, cyt c release, caspase-3 activation,
and AIF translocation into the nucleus of auditory cells. RosA offset ototoxicity via inhibiting the damage of the hair cell
arrays in the rat organ of Corti primary explants. The protective effect of RosA occurs by modulating inflammatory
cytokines in cadmium-induced ototoxicity.

(Kim et al., 2013)
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inflammatory bodies, which is associated with anti-
neuroinflammation (Wei et al., 2018).
ANTI-INFLAMMATORY EFFECTS OF
ROSMARINIC ACID ON DIFFERENT
DISEASE MODELS

In addition to its therapeutic effects in inflammatory diseases,
RosA also exerts an anti-inflammatory effect on other diseases.
The anti-inflammatory effects of RosA on different disease
models are presented in Table 1.
CONCLUSION

Inflammation is an acute reaction to infection and tissue lesion to
prevent damage to the body (Strowig et al., 2012). Excessive
inflammation can lead to chronic or systemic inflammatory
diseases. In the past few decades, the prevalence of
inflammatory diseases has been on the rise, especially in
developed countries (Xin et al., 2019). Rosmarinic acid is a
class of aqueous phenolic compounds. Many reports have
Frontiers in Pharmacology | www.frontiersin.org 8
demonstrated that RosA has an important role in treating
inflammatory diseases through multiple mechanisms, and
RosA exerts anti-inflammatory effects to treat various diseases.
Of all retrieved articles, we found that there was less clinical data
of RosA in inflammatory diseases. Therefore, we mainly outlined
the therapeutic potential of RosA in inflammatory diseases and
its possible mechanisms in preclinical research. We hope that
this review can obtain a reference for the future treatment of
inflammatory disorders.
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