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There is a strong relationship between palatable diet and pain sensitivity, and the
cannabinoid and opioid systems might play an important role in this correlation. The
palatable diet used in many animal models of obesity is the cafeteria (CAF) diet, based on
human food with high sugar, salt, and fat content. In this study, we investigated whether
long-term exposure to a CAF diet could modify pain sensitivity and explored the role of the
cannabinergic system in this modification. Male Sprague–Dawley rats were divided into
two groups: one fed with standard chow only (CO) and the other with extended access
(EA) to a CAF diet. Hot plate and tail flick tests were used to evaluate pain sensitivity. At the
end of a 40-day CAF exposure, EA rats showed a significant increase in the pain threshold
compared to CO rats, finding probably due to up-regulation of CB1 and mu-opioid
receptors. Instead, during abstinence from palatable foods, EA animals showed a
significant increase in pain sensibility, which was ameliorated by repeated treatment
with a fatty acid amide hydrolase inhibitor, PF-3845 (10 mg/kg, intraperitoneally), every
other day for 28 days. Ex vivo analysis of the brains of these rats clearly showed that this
effect was mediated by mu-opioid receptors, which were up-regulated following repeated
treatment of PF-3845. Our data add to the knowledge about changes in pain perception
in obese subjects, revealing a key role of CB1 and mu-opioid receptors and their possible
pharmacological crosstalk and reinforcing the need to consider this modulation in
planning effective pain management for obese patients.
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INTRODUCTION

The modern diet, or so-called Western diet, contains many
sweetened beverages and foods rich in sugar, salt, and fat
(Deshmukh-Taskar et al., 2009). The chronic consumption of
energy-rich foods is motivated not only by their nutritional value
but also the hedonic pleasure they impart (de Macedo et al.,
2016), and thus subjects break energy homeostasis (Ghanemi
et al., 2018), overeat, and become obese (Shafat et al., 2009).

To explain the lack of control of food intake, many studies
hypothesized the concept of food addiction (Avena and Gold,
2011; Micioni Di Bonaventura et al., 2012; D'Addario et al.,
2014), as these subjects seem to have an uncontrollable urge to
eat large amounts of palatable foods based on a state of reward
hyposensitivity comparable to that of drug addiction (Johnson
and Kenny, 2010; Avena and Gold, 2011). In fact, in a dynamic
similar to that of substance abuse, the eaters develop a
compulsive-feeding behavior in search of reward, despite the
negative consequences (Gold et al., 2003). Several studies
demonstrated that rodents have such high motivation to obtain
palatable food that they even expose themselves to extreme cold,
noxious heat pain, or aversive foot shock (Cabanac and Johnson,
1983; Foo and Mason, 2005; Oswald et al., 2011). Moreover, in
another study, mice fed with palatable food were much more
likely to spend time in an aversive environment in order to
obtain pleasant food compared to mice without experience of
this diet (Teegarden and Bale, 2007). Intake of sucrose solutions
and dietary fat alters pain sensitivity in animals, another finding
that points to a relationship between endogenous opioid peptides
and palatable foods (Davis et al., 1956; Blass et al., 1987; Klein
and Green, 1988; Markskaufman et al., 1988; Shide and Blass,
1989; Kanarek et al., 1991; Frye et al., 1992). Human studies have
produced similar observations. Consumption of a sucrose
solution alleviated pain reactions and decreased crying after
painful procedures in newborns (Blass and Hoffmeyer, 1991;
Smith et al., 1992; Blass and Shide, 1994; Smith and Blass, 1996;
Herschel et al., 1998; Overgaard and Knudsen, 1999). In children
(Miller et al., 1994) and adult male subjects (Kakeda et al., 2008),
sweet substances increased pain threshold, whereas a number of
other works have observed that in adults the intake of palatable
foods may have analgesic properties (Miller et al., 1994; Mercer
and Holder, 1997; Lewkowski et al., 2003). Taken together, these
results suggest that diet can modulate the action of central
nervous system (CNS) mechanisms involved in pain
sensitivity. This correlation extended to obesity and pain could
have important implications for the treatment of pain in obese
human subjects.

Different works have examined pain perception in obese
animals and humans compared to nonobese subjects, but the
debate is still open (Chin et al., 2019). A recent systematic review
(Torensma et al., 2016) included two studies suggesting that
obese subjects have a lower pain threshold than nonobese
subjects (Pradalier et al., 1981; McKendall and Haier, 1983),
but four studies indicating that obese subjects have a higher one
(Zahorska-Markiewicz et al., 1988; Miscio et al., 2005; Maffiuletti
et al., 2011; Dodet et al., 2013). Other findings concluded that
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body mass index and body fat may influence the pain threshold
(Bohnert et al., 2013; Price et al., 2013; Tashani et al., 2017;
Torensma et al., 2017), and the intensity of the perception of
stimuli changes proportionally with the levels of subcutaneous
fat in the affected body area. Price et al. (2013) reported that
obese people have a higher pain threshold in the abdominal area
compared to the hands and forearms. Tashani et al. (2017)
showed different results: obese individuals were more sensitive
to pressure pain but not to thermal pain, suggesting a more
complex relationship between fat distribution and pain
sensitivity. In the same year, in a study comparing obese
patients and control patients in their pain perception and
ability to grade pain, Torensma et al. (2016) reported that in
experiments obese patients revealed hypoalgesia to noxious
electrical stimuli and had difficulty grading noxious thermal
and electrical stimuli set between the pain threshold and the
tolerance level. In summary, all these studies indicate that pain
perception may be altered in obese subjects, but the variability in
the findings, related to different methodologies, pain tests, and
selection of participants, makes it difficult to determine
appropriate pain relief strategies for such patients. In this
context, the study of cannabinoids and opioids may help our
understanding of the mechanisms involved in overeating and
pain perception.

Cannabinoids and opioids share many pharmacological
properties, including analgesia and control of hunger (Fattore
et al., 2005; Micioni Di Bonaventura et al., 2013). It has been
reported that the opioid antagonist naloxone inhibited
antinociception induced by a cannabinoid (Manzanares et al.,
1998), and another study found that the antinociceptive
properties of subeffective doses of both drugs were synergistic
(Massi et al., 2001).

Repeated treatment with CB1 agonist increases proenkephalin
gene expression and mu-opioid receptors (Corchero et al., 1997a;
Corchero et al., 1997b; Corchero et al., 1999). In feeding regulation,
the hyperphagic effect of endocannabinoid and the appetite
suppression resulting from the blockade of CB1 have been clearly
documented (see recent reviews, Koch, 2017; Tarragon and
Moreno, 2019).

Similarly, opioid receptor agonists increase the intake of high-
fat diets, whereas antagonists decrease it (reviewed in (Le Foll
and Goldberg, 2005; Micioni Di Bonaventura et al., 2019). The
interaction between these two systems may indicate that their
relationship plays a role in the rewarding value of food and in the
regulation of ingestive behavior (Cota et al., 2006).

Based on these considerations, we investigated in male
Sprague–Dawley rats (i) how long-term exposure to a
palatable diet and then abstinence from it could modify pain
sensitivity and (ii) the possible role of the cannabinergic and
opioidergic systems. For this purpose, we used the “cafeteria
(CAF) diet,” consisting of energy-dense foods such as cheese,
processed meats, chocolate, and cookies, which reflects the
variety of the unhealthy human foods and CAF is used in
many animal obesity models (Sclafani and Springer, 1976;
Sampey et al., 2011). Pain sensitivity was evaluated at the end
of 40 days of CAF exposure, and in the middle and at the end of
March 2020 | Volume 11 | Article 266
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the abstinence period from CAF (at days 54 and 68,
respectively). To assess the involvement of the cannabinergic
and opioidergic systems, during the abstinence period, we used
PF-3845, a selective and long half-life fatty acid amide hydrolase
(FAAH) inhibitor (Ahn et al., 2009; Mileni et al., 2010), in order to
increase the acylethanolamide tone. With the choice of PF-3845, we
were able to avoid the undesirable side effects that are observed with
direct CB1 agonists.
MATERIALS AND METHODS

Animals
Male Sprague–Dawley rats (300–350 g, 10–11 weeks old) were
purchased from Charles River Laboratories (Calco, Italy) and
housed in single plastic cages (40 × 60 × 30 cm) on fresh bedding
with free access to food and water. The environment was controlled
with a 12-h light–dark cycle and a room temperature of 22.0°C ±
2.0°C. The animals did not show any signs of stress (except
nociception-related behavior) or illness throughout the
experiment. All animal procedures in this study were conducted
in strict accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals (ItalianMinistry of Health,
protocol n.887/2015-PR; 19/01/2017) and associated guidelines
from European Communities Council Directive (2010/63/EU), as
well as the ethical standards of the International Association for the
Study of Pain (Zimmermann, 1983).

All behavioral experiments were performed by experimenters
who were blinded to the experimental groups and treatments.
Drugs
N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-
methyl-1Hpyrazole-3-carboxyamide hydrochloride (SR141716A,
SR1) was obtained from the National Institute on Drug Abuse;
naloxone hydrochloride (Nal) was purchased from Tocris (Bristol,
UK), and N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]
oxy]phenyl]methyl]-1-piperidinecarboxamide (PF-3845) was
purchased from Selleck Chemicals (Aurogene, Rome, Italy). SR1
or Nal was dissolved in PEG400 and Tween 80 2:1 (Sigma-Aldrich,
Milan, Italy) and kept overnight under gentle agitation with a micro
stirring bar. Before injection, sterile saline was added, so that the
final concentrations of PEG400 and Tween 80 were 20% and 10%
vol/vol, respectively. SR1 was administered intraperitoneally (IP) at
the dose of 1 mg/kg (La Rana et al., 2006); Nal was administered IP
at the dose 1 mg/kg (Wager-Srdar et al., 1987).

PF-3845 was dissolved in a vehicle of PEG 400/Tween 80/
saline (5%/5%/90%, vol/vol/vol) and was administered IP on
alternating days at the dose of 10 mg/kg. All compounds were
injected in a volume of 1 mL/kg.

The dose of PF-3845 was chosen on the basis of previous
published work demonstrating that systemic administration of
PF-3845 increased brain levels of FAAH substrates such as
anandamide and oleoylethanolamide (Ahn et al., 2009; Booker
et al., 2012; Nasirinezhad et al., 2015; Rock et al., 2015; Henry
et al., 2017).
Frontiers in Pharmacology | www.frontiersin.org 3
CAF Diet
The CAF diet consists of mortadella (3.2 kcal/g), cookies (4.8
kcal/g, Macine; Mulino Bianco, Novara, Italy), chocolate muffins
(4.5 kcal/g, Mr Day; Vicenzi Group, San Giovanni Lupatoto,
Verona, Italy), cheese chips (Fonzies; Mondelez, Milano, Italy;
5.3 kcal/g), cheese (4.3 kcal/g), sippets (5.5 kcal/g; San Carlo,
Milano), and lard (9 kcal/g) which were individually weighed
before being made available to the rats. Caloric intake from the
various foods was calculated based on the nutritional
information provided by the manufacturer. Body weight and
food intake (expressed as mean kcal/kg ingested ± SEM) were
measured daily.

Experimental Procedure
In the first experiment (Figure 1), we evaluated the pain
threshold following CAF diet and during abstinence period.
Rats were individually caged and randomly divided into two
experimental groups as follows: (1) animals fed with standard
chow only (CO) [4RF18; Mucedola, Settimo Milanese, Italy (2.6
kcal/g)] and (2) animals fed with both standard chow and
extended access (EA) (24 h/24 h) to CAF diet for 40 days.
From day 41, the EA group started a period of abstinence from
CAF diet, receiving only chow until day 68, whereas CO rats
were maintained with the same chow-only regimen as in the
previous 40 days. Pain behavioral tests (hot plate and tail flick)
were performed in the morning on days 40, 54, and 68. Rats were
sacrificed on days 40 and 68, and their brains collected.

In the following second and third experiments, CO and EA
groups were subjected to the same diet protocol described in the
first experiment, but during the abstinence they were treated
every other day either with vehicle or with the selective FAAH
inhibitor, PF-3845 (10 mg/kg, IP) from days 41 to 54.

In the second experiment, the hot plate test was performed on
day 54, after which rats were sacrificed, and their
brains collected.

Instead, in the third experiment, after PF-3845 treatment, CO
and EA rats received on day 54 an acute IP administration of
either CB1 or mu-opioid receptor antagonists, SR or Nal, 1 h
before the hot plate test was performed.

Hot Plate Test
Commonly used for evaluating thermal pain sensitivity, the hot
plate test provides rapid and precise screening of analgesic drug
properties in animals (Le Bars et al., 2001). During the
experiment, the rat is introduced into an open-ended
cylindrical space with a floor consisting of a plate heated to a
constant temperature (55.2°C ± 1°C). As the animal passes
through the cylinder, paw licking and jumping, two
supraspinally integrated responses, are measured in terms of
their reaction times expressed in seconds. This test can only be
performed once in each animal, once the jumping response is
evaluated. A 60-s cutoff was imposed to avoid tissue damage.

Tail Flick Test
This nociceptive test used in rodents measures the latency of the
avoidance response to thermal stimulus (Le Bars et al., 2001). In
March 2020 | Volume 11 | Article 266
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the standard method, radiant heat is focused on the dorsal
surface of the tail, and the number of seconds it takes until the
animal flicks the tail away from the beam is measured. This tail
flick latency is a measure of nociceptive sensitivity and spinal
nociceptive reflex. A 30-s cutoff was imposed to prevent
tissue damage.

Western Blot Analysis
At days 40, 54, and 68, animals were sacrificed, and whole brains
were extracted and homogenized in ice-cold lysis buffer [20 mM
Tris–HCl (pH 7.5), 10 mM NaF, 150 mM NaCl, 1% Nonidet P-
40, 1 mM phenylmethylsulfonyl fluoride, 1 mM Na3VO4,
leupeptin and trypsin inhibitor 10 mg/mL; 0.25/50 mg tissue].
After 1 h, tissue lysates were obtained by centrifugation at
20,000g for 15 min at 4°C. Protein concentrations were
estimated by the Bio-Rad protein assay (Bio-Rad Laboratories,
Milan, Italy) using bovine serum albumin as standard.

Brain lysate proteins (50 mg) were dissolved in Laemmli
sample buffer, boiled for 5 min, and separated by sodium
dodecyl sulfate–polyacrylamide gel electrophoresis, and then
transferred to a nitrocellulose membrane (240 mA for 40 min
at room temperature). The filter was then blocked with 1×
phosphate-buffered saline (PBS) and 3% nonfat dried milk for
40 min at room temperature and probed with anti–cannabinoid
receptor (CB) 1 (dilution 1:1,000; cat. no. NB120-23703; Novus
Biologicals, Cambridge, UK) or anti–mu-opioid receptor
antibody (dilution 1:1,000; cat. no. NBP1-96656; Novus
Biologicals) in 1× PBS, 3% nonfat dried milk, and 0.1% Tween
20 at 4°C overnight. The secondary antibody was incubated for 1
h at room temperature. Subsequently, the blot was thoroughly
washed with PBS and then developed using enhanced
chemiluminescence detection reagents (Amersham Pharmacia
Biotech, Piscataway, NJ, USA) according to the manufacturer's
Frontiers in Pharmacology | www.frontiersin.org 4
instructions, and the immune complex was visualized by Image
Quant (GE Healthcare, Milan, Italy). The protein bands were
scanned and densitometrically analyzed with a model GS-700
imaging densitometer (Bio-Rad Laboratories). To ascertain that
blots were loaded with equal amounts of protein lysates, they
were also incubated in the presence of the antibody against the b-
actin protein (Sigma-Aldrich).

Statistical Analysis
In vivo and ex vivo data are presented as mean ± SEM. For the
hot plate test and the tail flick test, data were presented as time of
response express in seconds. The data were analyzed with
analysis of variance (ANOVA) (Systat Software 10.0, San Jose,
CA, USA) using the factors described in the Results. We used
post hoc tests to follow up on significant interaction or main
effects (P < 0.05) from the factorial ANOVAs. Resistant rats were
excluded because they did not significantly increase body weight
and did not develop obese phenotype (Cifani et al., 2015).
RESULTS

Body Weight
In the first experiment, the statistical analysis, which included the
between-subject factor of diet (CO, EA) and the within-subject
factor of time (day), showed a significant difference in body
weight (F(1,22) = 20.44; P < 0.01) and food intake (F(1,22) = 985.1;
**P < 0.01) between the groups during the 40 days of free access
to CAF and/or chow. Post hoc tests showed that EA rats
immediately increased their food intake (**P < 0.01) (data not
shown), and after 8 days of this diet, the body weight of EA rats
increased significantly compared to that of CO rats (*P < 0.05)
until day 40 (Figure 2).
FIGURE 1 | Experimental design for animal model, behavioral studies, and biochemical and molecular analysis. In the first experiment, we evaluated pain threshold
following cafeteria diet and during abstinence period. Rats were fed with chow only (CO) or fed 24 h with both chow and extended access to cafeteria diet (EA) for
40 days. On day 41, EA group was fed with only chow until day 68. Pain behavioral tests and Western blot analysis were performed on days 40, 54, and 68. In the
second experiment, the CO and EA groups were treated with a selective FAAH inhibitor, PF-3845 (10 mg/kg, IP) from days 41 to 68. Pain behavioral tests were
performed on days 54 and 68. Moreover, in the third experiment, at day 54, CB-1 and mu-opioid receptor antagonists were administrated 1 h before performing hot
plate test.
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During the abstinence period (days 41–68), when only
standard chow was available, EA rats displayed a significant
reduction in caloric intake (F(1,10) = 144.92; **P < 0.01) and a
progressive decrease in body weight (F(1,10) = 8.53; *P < 0.05).
Post hoc tests are shown in Figure 2.

In the second and third experiments, EA rats significantly
increased both their food intake (data not shown) and body
weight in comparison to CO rats during the 40 days of CAF.
During the abstinence days, the same reduction in body weight
of Experiment 1 was recorded; thus, PF-3845 treatment did not
affect feeding behavior (data not shown).
Pain Evaluation and Involvement of CB1
and Mu-Opioid Receptors After CAF Diet
and During Abstinence Period
In the first behavioral experiment, the pain threshold at the end
of the CAF exposure (day 40) and at the middle (day 54) and
end (day 68) of the abstinence period was evaluated by hot
plate and tail flick tests. At day 40, EA rats showed a significant
increase of pain threshold in both the hot plate (F(1,10) = 22.59;
**P < 0.01) (Figure 3A) and the tail flick (F(1,10) = 26.07; **P <
0.01) (Figure 3B) compared to CO animals. At day 54, in the
middle of the abstinence period, EA rats showed increased pain
sensitivity, but only in the hot plate test (F(1,10) = 13.70; *P <
0.05) (Figure 3C), as no significant effect was observed in the
tail flick experiment (F(1,10) = 1.41; P > 0.05) (Figure 3D).
Finally, at the end of the abstinence period on day 68, no
difference was found between EA (F(1,10) = 2.78; P > 0.05) and
CO (F(1,10) = 0.50; P > 0.05) animals in either test (Figures
3E, F).

In order to correlate the increased pain threshold and the
cannabinoid and opioid systems, CB1 and mu-opioid receptors
expression was evaluated. At day 40, a significant increase in CB1
(F(1,10) = 16.45; **P < 0.01) and mu-opioid (F(1,10) = 22.91; **P <
0.01) receptors was found in the brain of EA rats (respectively,
Figures 4A, B). While the variation in mu-opioid receptor
expression has already been reported (Will et al., 2003), this
Frontiers in Pharmacology | www.frontiersin.org 5
article shows for the first time the correlation between CB1
receptors and highly palatable food.

On day 68, no difference was observed between EA and CO
animals in CB1 (F(1,10) = 0.15; P > 0.05) and mu-opioid receptors
(F(1,10) = 3.37; P > 0.05) (Figures 4C, D).
Effect of PF-3845, A Selective FAAH
Inhibitor, on Hypersensitivity by Cafeteria
Abstinence and Role of Cannabinergic
System
The statistical analysis, which included the between-subjects factors of
diet (CO, EA) and treatment (vehicle, PF-3845), showed a significant
interaction between the two factors (F(1,20) = 7.93; P < 0.05). Repeated
treatment with PF-3845, administered every other day from days 41
to 54 during the second experiment, reduced pain sensitivity in PF-
3845–CO rats, as compared to vehicle CO animals, as measured by
the hot plate test (Figure 5; *P < 0.05). Similar effects were also found
in the EA group. In fact, PF-3845–treated animals had a longer time
of reaction to thermal stimulus than did vehicle-administered EA
animals (Figure 5; ##P < 0.01)

Next, we evaluated whether PF-3845 treatment was able to
modify CB1 and mu-opioid receptor expression. On day 54, via
Western blot analysis, we observed that PF-3845 treatment did
not modify CB1 expression both in the CO (F(1,10) = 1.32; P >
0.05) and EA groups (F(1,10) = 1.83; P > 0.05) (Figure 6A),
whereas mu-opioid receptor expression was increased in the CO
(F(1,10) = 7.35; P < 0.05) and EA groups (F(1,10) = 24.47; P < 0.05)
(Figure 6B).

Finally, in order to evaluate CB1 and opioid receptor
involvement, at day 54 of the third experiment, we
administered a CB1 antagonist/inverse agonist, SR1 (1 mg/kg),
or an opioid antagonist, naloxone (Nal, 1 mg/kg) in CO and EA
rats. The statistical analysis in the CO group showed a significant
effect of the treatment (F(3,20) = 8.38; P < 0.01). CB1 or mu-opioid
antagonists were able to blunt the effect of FAAH inhibitor
(Figure 7; *P < 0.05 and **P < 0.01). Analysis of variance in the
EA group showed a significant effect of the treatment (F(3,20) =
FIGURE 2 | Body weight measured throughout the experimental period. After 8 days, CAF diet significantly increased body weight in EA rats (black spot) if
compared to CO rats (white spot) until day 40 (*P < 0.05). During the abstinence period (days 41–68), when only standard chow was available, a progressive and
significant decrease in body weight in EA rats was observed. Data are shown as means ± SEM for the CO and EA groups (n = 6).
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18.75; P < 0.01). CB1 or mu-opioid antagonist reduced the effect
of PF-3845 (Figure 7; #P < 0.05 and ##P < 0.01).
DISCUSSION

Cannabinoid–opioid receptor cross-talk has been studied
extensively, especially regarding the interaction between the
molecular and cellular mechanisms in pain threshold (Vigano
et al., 2005a; Parolaro et al., 2010), as well as its function in eating
behavior (Cota et al., 2006). It is now generally accepted that both
systems and the activation of their receptors play a key role in
acute and chronic pain modulation (Vigano et al., 2005a;
Parolaro et al., 2010; Siuda et al., 2017). Many authors have
Frontiers in Pharmacology | www.frontiersin.org 6
underlined the important contribution of these two systems in a
wide range of physiological processes, including appetite
regulation and eating behaviors (Calignano et al., 1998;
Pagotto et al., 2006; Cota, 2008). Although it is still unclear
whether obesity can alter pain sensitivity (Hitt et al., 2007;
Somers et al., 2011), several authors have shown a correlation
between an increase of body weight and a significant alteration of
pain sensitivity (Torensma et al., 2016; Chin et al., 2019). Obesity
is usually associated with musculoskeletal system disorders such
as back pain or osteoarthritis. Moreover, many studies indicate
that it could be one of the risk factors in some nociceptive pain
conditions, and more recently, it has been demonstrated that
obesity is associated with worsening in neuropathic pain
intensity (Hozumi et al., 2016). On the other hand, patients
FIGURE 3 | Pain threshold by hot plate and tail flick test were performed at the end of CAF exposure (day 40) and during abstinence period (54 and 68 days). EA
rats showed a significant increase of pain threshold both in hot plate (A) and tail flick (B) tests compared to CO animals (**P < 0.01) at day 40. At day 54, in EA rats,
pain sensitivity was significantly increased only in hot plate test (C; *P < 0.05). No significant effect was observed in tail flick test (D). At day 68, no difference was
observed between EA and CO animals in both tests (E, F). Data are shown as mean ± SEM for the CO and EA groups (n = 6).
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with intense chronic pain more frequently suffer from eating
disorders (Godfrey et al., 2018) and eat more sweet-tasting food
when they feel pain, particularly if they are not able to control
their impulses (Darbor et al., 2017). In recent years, more
attention has been devoted to obesity and to the behavioral
alterations due to continuous and compulsive consumption of
highly palatable foods (Zheng and Berthoud, 2007). In fact,
obesity from palatable diet induces a change in different
neurotransmitter systems leading to changes in several CNS
areas, such as the Ventral Tegmental Area (VTA),
hypothalamus, and Nucleus Accumbens (NAc), the same
zones involved in the reward system (Sampey et al., 2011). In
this context, the CAF diet is a valid tool for imitating the
contemporary diet, which is characterized by high salt content
and high-calorie fatty and sugary foods (Johnson and Kenny,
Frontiers in Pharmacology | www.frontiersin.org 7
2010; Sampey et al., 2011). Extended exposure to this kind of diet
induces a significant modification of several signaling pathways
related to physiological control, such as food intake and
stimulation of the reward system. This suggests that palatable
foods could lead to addiction through mechanisms that are
similar to those in drug abuse (Pelchat, 2002; Wang et al.,
2004; Johnson and Kenny, 2010). In this scenario, opioid and
cannabinergic systems are significantly involved (Zhang et al.,
2003; Erlanson-Albertsson, 2005).

The aim of our study was not only to study the correlation
between obesity and pain in rats with an extended access to
palatable foods, a topic still debated (Hitt et al., 2007; Somers
et al., 2011), but also to evaluate the responses to pain during the
period of abstinence from a highly palatable diet (Sampey et al.,
2011). In particular, we studied (i) the difference in pain
FIGURE 4 | Expression of CB1 (A, B) and mu-opioid receptors (C, D) in CO and EA rat brain at the end of cafeteria exposure (day 40) and at the end of the
abstinence period (day 68). On day 40, a significant increase in CB1 and mu-opioid receptor expression was found in EA rats brains (A, B) if compared to CO rats
(**P < 0.01). On day 68, no difference was observed between the EA and CO rats (C, D). Representative immunoblots are shown, and densitometric analyses of
protein bands of CB1 receptor and mu-opioid receptor are performed on three separate experiments. All data are expressed as mean ± SEM. Equal loading was
confirmed by b-actin staining.
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perception between animals fed for 40 days with extended access
to CAF (EA rats) and rats fed with standard chow (CO rats); (ii)
the contribution of the opioidergic and cannabinergic systems,
through the involvement of CB1 and mu-opioid receptors in the
brain. Results clearly indicate that, at the end of the CAF diet, EA
animals showed a significant increase in pain threshold
compared to rats fed with standard diet, perhaps due to an up-
regulation of CB1 and mu-opioid receptors. Surprisingly, in this
study, we have shown that palatable food increased CB1 receptor
expression in the brain, suggesting that the observed analgesic
effect was probably mediated by both the opioid and the
cannabinoid systems.

Our results are in agreement with previous reports in which
obese subjects were less sensitive to painful stimuli (Zahorska-
Markiewicz et al., 1983; Zahorska-Markiewicz et al., 1988;
Khimich, 1997). Taking into account that endogenous opioid
levels were increased in obese humans (Givens et al., 1980;
Cozzolino et al., 1996; Karayiannakis et al., 1998; Martinez-
Guisasola et al., 2001) and animals (Smith et al., 2002; Barnes
et al., 2003), the decrease in pain sensitivity observed here may be
associated with these changes.

Regarding the CB1 receptor, studies have shown that CB1
antagonists reduce the intake of palatable sugar in rats (Gardner,
2005; Mathes et al., 2008) and prevent the orexigenic effect of the
endocannabinoid agonist anandamide on food intake (Cota et al.,
2006). Furthermore, endocannabinoids induce a neuromodulation
in specific brain areas (e.g., NAc), and this neurochemical response
FIGURE 5 | Pain threshold by hot plate test was performed during
abstinence period (day 54) after repeated PF-3845 (PF, 10 mg/kg, IP)
administration. In CO rats, PF treatment reduced pain sensitivity compared to
vehicle CO animals (*P < 0.05). A similar effect was observed in EA rats; in
fact, PF treatment increased time of reaction to thermal stimulus compared to
vehicle EA animals (##P < 0.01). Data are shown as mean ± SEM for all
groups (n = 6).
FIGURE 6 | Expression of CB1 (A) and mu-opioid receptor (B) in CO and EA rat brain after FAAH inhibitor PF treatment at day 54. This drug did not modify CB1
expression (A), whereas mu-opioid receptor expression was significantly increased both in PF-CO and PF-EA rats if compared to their vehicle group (*P < 0.05 vs.
CO, #P < 0.05 vs. EA) (B). Representative immunoblots are shown, and the densitometric analyses of protein bands of CB1 receptor and mu-opioid receptor are
performed on three separate experiments. All data are expressed as mean ± SEM. Equal loading was confirmed by b-actin staining.
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contributes to subjective reward and positive reinforcement. These
findings support a role of endocannabinoids in the hedonistic effects
of natural rewards such as palatable food in eating disorders
(Gardner, 2005; Parsons and Hurd, 2015; Pucci et al., 2016; Pucci
et al., 2018; Pucci et al., 2019).Wehave also evaluated pain sensitivity
after withdrawal of CAF diet, because deprivation of highly palatable
food induces a neuroadaptive response associated with behavioral
alteration (depression and anxiety) (Johnson and Kenny, 2010; de
Macedo et al., 2016). Fourteen days after the end of theCAFdiet (day
54), we observed a weak increase of pain sensitivity, which was
significant in the hot plate test, but not in the tail flick test. These
different results may suggest that there were alterations in the brain
rather than in the spinal cord. In fact, it is well known that the hot
plate test is a classic pain model for supraspinal stimuli, whereas the
tail flick test is amodel for spinal stimuli (Langerman et al., 1995). In
agreement with these observations, Western blot analysis showed a
slight increase of mu-opioid receptor expression in the brain of rats
that previously had extended access to the CAF diet, but no
Frontiers in Pharmacology | www.frontiersin.org 9
difference was observed in spinal cord tissues between these two
groups (data not shown).

These findings help to explain the results of our study of
standard chow intake during abstinence from the CAF diet;
ingestion behavior alone is probably insufficient to elicit
analgesia, and instead the hedonic value from palatable food
may be needed to inhibit the response to pain (Foo and Mason,
2009). Indeed, de Freitas et al. (2012) found that acute oral
administration of sucrose can induce antinociception mediated
by the actions of endogenous opioid peptide and mu-opioid
receptor (de Freitas et al., 2012).

Opioids and cannabinoids share several pharmacological
actions that may be relevant in understanding the therapeutic
potential of cannabinoids, particularly as analgesics (Manzanares
et al., 1999). These two systems are widely distributed
throughout the CNS and have key role in both reward-related
feeding (Cota et al., 2006; Pagotto et al., 2006) and modulating
pain thresholds. The strong relationship between cannabinergic
and opioidergic systems and the capability of a system to activate
the other one is well known; in fact, CB1 agonists induce
antinociception increasing opioid precursors' gene expression
or releasing endogenous opioids (Houser et al., 2000; Valverde
et al., 2001). It has be shown that extended treatment with a
cannabinoid agonist induced a significant increase of mRNA
levels of endogenous precursor opioid peptides in several CNS
areas (Corchero et al., 1997a; Manzanares et al., 1998) and that
CB1 agonist can induce down regulation of its receptor and
enhance brain reward function producing reward effects (Daigle
et al., 2008). On the other hand, it has been suggested that opioid
receptor–mediated analgesia might be enhanced by an increase
in endocannabinoid levels (Bushlin et al., 2010), because
morphine-induced analgesia was enhanced by FAAH initiator
in the CNS, as already reported (Pacheco Dda et al., 2009).

For these reasons, in this study, we used an indirect agonist, the
selective endocannabinoid clearance inhibitor, PF-3845. Specifically,
this FAAH inhibitor was used to evaluate the contribution of the
CB1 receptor to pain perception during an abstinence period from
the CAF diet. Our results clearly showed that repeated PF-3845
treatment decreased pain sensitivity in CO and EA rats compared to
the respective vehicle groups. Surprisingly, a significant effect
between in abstinence (EA + PF-3845) and normal (CO + PF-
3845) rats was observed. This activity was mainly mu-opioid
receptor mediated: Western blot analysis showed a significant up-
regulation of this receptor following PF-3845 treatment. In support
of our data, Vigano et al. (2005b) showed that repeated treatment
with CB1 agonist significantly increased mu-opioid receptor density
in the lateral hypothalamus and in the periaqueductal gray. Finally,
we performed behavioral experiments to study pain, using both CB1
and opioid antagonists (SR1 and naloxone, respectively) to confirm
our hypothesis. In fact, results showed that pretreatment with
cannabinoid and even better opioid antagonists reduced PF-3845–
increased sensitivity.

Our findings point out that an extended exposure to palatable
food followed by abstinence from it induced a significant change
in pain perception, leading to increased pain sensitivity. In this
scenario, the cannabinergic system played a key role in
FIGURE 7 | Pain threshold by hot plate test performed at day 54 for
evaluating CB1 and opioid receptor involvement. CB1 antagonist, SR1416A
(SR1, 1 mg/kg), and an opioid antagonist, naloxone (Nal, 1 mg/kg), were
administered in CO and EA rats 1 h before performing hot plate test. In PF-
CO and PF-EA rats, treatment with both CB1 and mu-opioid receptors
antagonists was able to blunt the effect of FAAH inhibitor (*P < 0.05, **P <
0.01 vs. PF-CO; #P < 0.05 and ##P < 0.01 vs. PF-EA; °P < 0.05 and °°P <
0.01 vs. veh). Data are shown as mean ± SEM for all groups (n = 6).
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regulating, “compulsive” food intake behavior and pain response.
Further work is necessary in this field to improve our

understanding of the modulation of pain sensitivity in obese
subjects. This is extremely important in order to plan
appropriate pain management strategies for overweight
patients, further considering that obesity is a rapidly growing a
global pandemic problem (Collaborators et al., 2017; Chooi
et al., 2019).
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