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Gene expression profiles are useful for assessing the efficacy and side effects of drugs. In
this paper, we propose a new generative model that infers drug molecules that could
induce a desired change in gene expression. Our model—the Bidirectional Adversarial
Autoencoder—explicitly separates cellular processes captured in gene expression
changes into two feature sets: those related and unrelated to the drug incubation. The
model uses related features to produce a drug hypothesis. We have validated our model
on the LINCS L1000 dataset by generating molecular structures in the SMILES format for
the desired transcriptional response. In the experiments, we have shown that the
proposed model can generate novel molecular structures that could induce a given
gene expression change or predict a gene expression difference after incubation of a given
molecular structure. The code of the model is available at https://github.com/
insilicomedicine/BiAAE.

Keywords: deep learning, generative models, adversarial autoencoders, conditional generation, representation
learning, drug discovery, gene expression
INTRODUCTION

Following the recent advances in machine learning, deep generative models found many applications in
biomedicine, including drug discovery, biomarker development, and drug repurposing (Mamoshina
et al., 2016; Zhavoronkov, 2018). A promising approach to drug discovery is conditional generation,
where a machine learning model learns a distribution p(x | y) of molecular structures x with given
property y. Such models can generate molecules with a given synthetic accessibility, binding energy, or
even activity against a given protein target (Kadurin et al., 2016; Polykovskiy et al., 2018a).

In this paper, we studied how conditional models scale to a more complex biological property;
specifically, we have studied how drug incubation influences gene expression profiles. Using the
LINCS L1000 (Duan et al., 2014) dataset, we build a joint model p(x, y) on molecular structures x
and induced gene expression changes y.

In many conditional generation tasks, x completely defines y. For example, molecular structure
completely defines its synthetic accessibility score. For our task, however, some transcriptome
changes are unrelated to the drug effect on cells, and we cannot infer them only from an
incubated drug.
in.org April 2020 | Volume 11 | Article 2691
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We propose a new model—the Bidirectional Adversarial
Autoencoder—that learns a joint distribution p(x, y) of objects
and conditions. The model decomposes objects and their properties
into three feature parts: shared features s common to both x and y;
exclusive features zx relevant only to x and not y; and exclusive
features zy relevant only to y and not x: p(x, y) = p(s, zx, zy). For the
transcriptomes and drugs, shared features s may contain
pharmacophore properties, target protein information, binding
energy, and inhibition level; exclusive features zx may describe the
remaining structural information; and zy may represent unrelated
cellular processes. As features s are common to both x and y, the
model can extract them from both x and y.

The paper is organized into sections: Related Work surveys
related work; Models presents the proposed Bidirectional
Adversarial Autoencoder; Experimental Evaluation compares
and validates the models on two datasets: the toy Noisy
MNIST dataset of hand-written digits and LINCS L1000
dataset of small molecules with corresponding gene expression
changes; and Conclusion concludes the paper.
RELATED WORK

Conditional generative models generate objects x from a conditional
distribution p(x | y), with y usually being limited to class labels. The
Adversarial Autoencoder (AAE) (Makhzani et al., 2015) consists of
an autoencoder with a discriminator on the latent representation z
that tries to make the latent space distribution indistinguishable
from a prior distribution p(z); its conditional extension—Supervised
AAE (Makhzani et al., 2015)—works well for simple conditions but
can violate the conditions in other cases (Polykovskiy et al., 2018b).
Conditional Generative Adversarial Networks (CGAN) (Mirza and
Osindero, 2014) supplied the condition as an auxiliary input to both
generator and discriminator. Perarnau et al. (2016) inverted
CGANs, allowing us to edit images by changing the labels y. In
FusedGAN (Bodla et al., 2018), a GAN generated a generic
“structure prior” with no supervision, and a CGAN generated an
object x from condition y and the latent representation learned by
the unconditional GAN. Other papers explored applications of
Conditional AAE models to the task of image modification
(Antipov et al., 2017; Lample et al., 2017; Zhang et al., 2017).

CausalGAN (Kocaoglu et al., 2018) allowed components of
the condition to have a dependency structure in the form of a
causal model making conditions more complex. The Bayesian
counterpart of AAE, the Variational Autoencoder (VAE)
(Kingma and Welling, 2013), also had a conditional version
(Sohn et al., 2015a), where conditions improved structured
output prediction. CycleGAN (Zhu et al., 2017) examined a
related task of object-to-object translation.

Multimodal learning models (Ngiam et al., 2011) and multi-
view representation models (Wang et al., 2016a) explored
translations between different modalities, such as image to text.
Wang et al. (2016b) presented a VAE-based generative multi-
view model. Our Bidirectional Adversarial Autoencoder
provided explicit decoupling of latent representations and
brought the multi-view approach into the AAE framework,
Frontiers in Pharmacology | www.frontiersin.org 2
where the basic Supervised AAE-like models (Makhzani et al.,
2015) did not yield correct representations for sampling
(Polykovskiy et al., 2018b).

Information decoupling ideas have been previously applied in
other contexts: Yang et al. (2015) disentangled identity and pose
factors of a 3D object; adversarial architecture from Mathieu
et al. (2016) decoupled different factors in latent representations
to transfer attributes between objects; Creswell et al. (2017) used
VAE architecture with separate encoders for class label y and
latent representation z, forcing z to exclude information about y;
InfoVAE (Zhao et al., 2017) maximized mutual information
between input and latent features; and Li et al. (2019) proposed a
VAE modification that explicitly learns a “disentangled”
representation s to predict the class label and a “non-
interpretable” representation z that contains the rest of the
information used for decoding.

InfoGAN (Chen X. et al., 2016) maximized mutual
information between a subset of latent factors and the
generator distribution. FusedGAN (Bodla et al., 2018)
generated objects from two components, where only one
component contains all object-relevant information. Hu et al.
(2018) explicitly disentangles different factors in the latent
representation and maps a part of the latent code to a
particular external information.

Conditional Generation for Biomedicine
Machine learning has numerous applications in biomedicine and
drug discovery (Gawehn et al., 2016; Mamoshina et al., 2016;
Ching et al., 2018). Deep neural networks demonstrated positive
results in various tasks, such as prediction of biological age
(Putin et al., 2016; Mamoshina et al., 2018a; Mamoshina et al.,
2019), prediction of targets and side effects Aliper et al., 2017;
Mamoshina et al., 2018b; West et al., 2018), and applications in
medicinal chemistry (Lusci et al., 2013; Ma et al., 2015).

Alongside large-scale studies that measure cellular processes,
deep learning applications explore transcriptomics (Aliper et al.,
2016b; Chen Y. et al., 2016); these works study cellular processes
and their change following molecular perturbations. Deep
learning has also been applied to pathway analysis (Ozerov
et al., 2016), the prediction of protein functions (Liu, 2017),
the discovery of RNA binding proteins (Zheng et al., 2017), the
discovery of binding patterns of transcription factors (Qin and
Feng, 2017), medical diagnostics based on omics data
(Chaudhary et al., 2017), and the analysis of DNA and RNA
sequences (Budach and Marsico, 2018).

In drug discovery, apart from predicting pharmacological
properties and learning useful representations of small molecules
(Duvenaud et al., 2015; Aliper et al., 2016a; Kuzminykh et al., 2018),
deep learning is being widely applied to the generation of molecules
(Sanchez and Aspuru-Guzik, 2018). Multiple authors have
published models that generate new molecules that are similar to
the training data or molecules with predefined properties (Kadurin
et al., 2017a; Kadurin et al., 2017b; Segler et al., 2017 Gómez-
Bombarelli et al., 2018). AI-generated molecules have also been
tested in vitro (Polykovskiy et al., 2018b). Reinforcement learning
and generative models further enabled the generation of complex
non-differentiable objectives, such as novelty (Guimaraes et al.,
April 2020 | Volume 11 | Article 269
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2017; Putin et al., 2018a; Putin et al., 2018b). Generative models aim
to eliminate the bottleneck of traditional drug development
pipelines by providing promising new lead molecules for a
specific target and automating the initial proposal of lead
molecules with desired properties. Recently, Zhavoronkov et al.
(2019) developed a model GENTRL to discover potent inhibitors of
discoidin domain receptor 1 (DDR1) in 21 days.
MODELS

In this section, we introduce Unidirectional and a Bidirectional
Adversarial Autoencoders and discuss their applications to
conditional modeling. While we have focused on an example
of molecular generation for transcriptome changes, in general,
our model is not limited to these data types and can be used for
generation in other domains.

Supervised Adversarial Autoencoder
Our model for conditional generation is based on a Supervised
Adversarial Autoencoder (Supervised AAE, SAAE) (Makhzani
et al., 2015) shown in Figure 1. The Supervised AAE learns three
neural networks—an encoder Ex, a generator (decoder) Gx, and a
discriminator D. The encoder maps a molecule x onto a latent
representation z = Ex(x), and a generator reconstructs the
molecule back from z and gene expression changes y: Gx(z, y).
Frontiers in Pharmacology | www.frontiersin.org 3
We trained a discriminator D to distinguish latent codes from
samples of the prior distribution p(z) and modified the encoder
to make the discriminator believe that encoder’s outputs are
samples from the prior distribution:

min
Ex ,Gx

 max
D

 l1Ex,y∼pd x,yð Þl
x
rec x,Gx Ex xð Þ, yð Þð Þ

+Ez∼p zð Þ log  D zð Þ + Ex∼pd xð Þ log  (1 − D Ex xð Þð Þ),
(1)

where lxrec is a similarity measure between the original and
reconstructed molecule, and pd(x, y) is the data distribution.
Hyperparameter l1 balances reconstruction and adversarial
losses. We trained the model by alternately maximizing the
loss in Equation 1 with respect to the parameters of D and
minimizing it with respect to the parameters of Ex and Gx

(Goodfellow et al., 2014).
Besides passing gene expression changes y directly to the

generator, we could also train an autoencoder (Ey, Gy) on y and
pass its latent codes to the molecular decoder Gx (Figure 2). We
call this model a Latent Supervised Adversarial Autoencoder
(Latent SAAE). Its optimization problem is:

min
Ex ,Ey ,Gx ,Gy

max
D

 l1Ex,y∼pd x,yð Þl
x
rec x,Gx Ex xð Þ,Ey yð Þ� �� �

+l2Ey∼pd yð Þl
y
rec y,Gy Ex yð Þð Þ� �

+ Ez∼p zð Þ log  D zð Þ
+Ex∼pd xð Þ log  (1 − D Ex xð Þð Þ) :

(2)
FIGURE 1 | The Supervised Adversarial Autoencoder model (SAAE).
FIGURE 2 | The Latent Supervised Adversarial Autoencoder model (Latent SAAE).
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Hyperparameters l1 and l2 balance object and condition
reconstruction losses as well as the adversarial loss.
Bidirectional Adversarial Autoencoder
Both SAAE and Latent SAAE models learn conditional
distribution p(x | y) of molecules for specific transcriptome
changes. In this paper, we learned a joint distribution p(x, y)
instead. Our model is symmetric in that it can generate both x for
a given y and y for a given x. We assume that the data are
generated with a graphical model shown in Figure 3. Latent
variables zx and zy are exclusive parts that represent features
specific only to molecules or transcriptome changes. Latent
variable s represents a shared part that describes features
significant for both molecules and expression changes. To
produce a new data point, we sampled exclusive (zx, zy) and
shared (s) parts independently and used generative distributions
Gx (x | s, zx) and Gy (y | s, zy) to produce x and y.

To train a model, we used inference networks that predict
values of s, zx, and zy: Ex(zx | x), Ey(zy | y), and E(s | x, y) = Ex(s | x)
= Ey(s | y). Note that we used two separate networks for inference
of s from one of x and y to perform conditional sampling (when
only one of x or y is known). For example, to sample p(x | y), we
would do the following steps:

s ∼ Ey(sjy), zx ∼ p zxð Þ, x ∼ Gx s, zxð Þ : (3)

For the molecule, s may describe its pharmacophore—
binding points that are recognized by macromolecules. For the
gene expression, s may describe affected proteins. Note that we
can infer pharmacophore from a list of affected genes and vice
versa. The exclusive part zx of a molecule describes the remaining
structural parts besides the pharmacophore points. The exclusive
part zy of a transcriptome describes cellular processes that
influence the expression but are not caused by the drug.

Figure 4 shows the proposed Bidirectional AAE architecture.
We used two deterministic encoders Ex and Ey that infer latent
codes from molecules and transcriptomes:

zx, sxð Þ = Ex xð Þ,  zy , sy
� �

= Ey yð Þ : (4)
Frontiers in Pharmacology | www.frontiersin.org 4
Two deterministic decoders (generators) Gx and Gy

reconstruct molecules x and gene expression changes y back
from the latent codes:

x = Gx zx, sxð Þ, y = Gy zy , sy
� �

(5)

The objective function consists of three parts, each capturing
restrictions from the graphical model—the structure of the
shared representat ion, reconstruct ion qual i ty , and
independence of shared and exclusive representations.

Shared loss ensures that shared representations extracted
from the molecule sx and gene expression sy are close to each
other, as suggested by the graphical model:

min
Ex ,Ey

 Lshared = Ex,y∼Pd x,yð Þ  ‖ sx − sy ‖22 : (6)

Reconstruction loss ensures that decoders reconstruct
molecules and gene expressions back from the latent codes
produced by the encoders. We also use a cross-reconstruction
loss, where molecular decoder Ex uses shared part sy from a gene
expression encoder Ey for reconstruction and vice versa:

min
Ex ,Ey ,Gx

Lx
rec = Ex∼pd xð Þl

x
rec x,Gx zx , sxð Þð Þ

+ Ex,y∼pd x,yð Þl
x
rec x,Gx zx, sy

� �� �
(7)

min
Ex ,Ey ,Gy

Ly
rec = Ey∼pd yð Þl

y
rec y,Gx zy , sy

� �� �

+ Ex,y∼pd x,yð Þl
y
rec y,Gy zx, sy

� �� �
(8)

where lxrec and lyrec are some distance measures in the
molecules and gene expression space.

Discriminator loss is an objective that encourages
distributions p(s), p(zx), and p(zy) to be independent, which
means that shared and exclusive parts must learn different
features. This restriction comes from a graphical model. It also
encourages p(s), p(zx), and p(zy) to be standard Gaussian
distributions N(0, I) to perform a sampling scheme from
Equation 3. We optimized the discriminator in an adversarial
manner (Goodfellow et al., 2014) similar to SAAE:
FIGURE 3 | The underlying graphical model of the data: molecules x, gene expression changes y, three latent variables correspond to the exclusive (zx, zy) and
shared (s) features between x and y.
April 2020 | Volume 11 | Article 269
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min
Ex ,Ey ,Gx ,Gy

max
D

Ladv = Es0 ,z 0x ,z 0y∼p sð Þp zxð Þp zyð Þ log  D z 0x , s
0, z 0y

� �

+ 1
2 Ex,y∼pd x,yð Þ log  1 − D(zx, sx, zy)

� �

+ 1
2 Ex,y∼pd x,yð Þ log   1 − D(zx, sy , zy)

� �
(9)

Note that since the target distribution for adversarial training
is factorized, we expected that the trained model would learn
independence of s, zx, and zy.

Additional discriminator losses We also added additional
discrimination objective to explicitly encourage independence of
zx from (sy, zy) and zy from (sx, zx):

min
Ex ,Ey ,Gx ,Gy

max
D

Linfo = Ex,y∼pd x,yð ÞEy0∼pd yð Þ

log  D zx , sx, zy
� �

+ log 1 − D (zx , sx, z
0
y)

� �� �

+Ex,y∼pd x,yð ÞEx0∼pd xð Þ log  D zx, sy , zy
� �

+ log   1 − D (z 0x, sy , zy)
� �� �

,

(10)

where z0x is an exclusive latent code of x′, and z0y is an exclusive
latent code of y′. In practice, we obtain zx′ and zy′ by shuffling zx
and zy in each batch.

Combining these objectives, the final optimization problem
becomes a minimax problem that can be solved by alternating
gradient descent with respect to encoder and decoder
parameters, and gradient ascent with respect to the
discriminator parameters:

min
Ex ,Ey ,Gx ,Gy

max
D

l1Lshared + l2Lx
rec + l3Ly

rec + Ladv + Linfo : (11)

The hyperparameters l1, l2, and l3 balance different
objectives. In general, we optimize lambdas based on the
performance of BiAAE on the holdout set in terms of the
target metrics, such as estimated negative conditional log-
likelihood. In practice, we found that optimal values of
Frontiers in Pharmacology | www.frontiersin.org 5
lambdas yielded the gradients of loss components on a
similar scale.

Unidirectional Adversarial Autoencoder
The Bidirectional AAE can generate molecules that cause given
transcriptome changes and transcriptome changes caused by a
given molecule. However, if we only need conditional generation
of molecules p(x | y), we simplify the model by removing the
encoder of sx. The encoder Ex returns only an exclusive part: zx =
Ex(x). For this model, we derived the objective from Equation 11
by setting sx equal to sy (Figure 5).
EXPERIMENTAL EVALUATION

In this section, we have described the experimental setup and
presented numerical results on the toy Noisy MNIST dataset
and a LINCS L1000 dataset (Duan et al., 2014) of gene
expression data.

Noisy MNIST
We start by validating our models on the Noisy MNIST (Wang
et al., 2015) dataset of image pairs (x, y), for which we know the
correct features in the shared representation s. The image x is a
handwritten digit randomly rotated by an angle in [−p/4,p/4].
The image y is also a randomly rotated version of another image
containing the same digit as x but with strong additive Gaussian
noise. As a result, the only common feature between x and y is
the digit. Bidirectional and Unidirectional AAEs should learn to
store only the information about the digit in s.

The train-validation-test splits contain 50,000, 10,000, and
10,000 samples respectively. We set the batch size to 128 and
the learning rate to 0.0003, and we used the Adam (Kingma and
Ba, 2015) optimizer with b1 = 0.5, b2 = 0.9 for models with
FIGURE 4 | The Bidirectional Adversarial Autoencoders model. The discriminators ensure that three latent code components are independent and indistinguishable
from the prior distribution.
April 2020 | Volume 11 | Article 269
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adversarial training and b1 = 0.99 and b1 = 0.999 for others with a
single update of autoencoders per a single update of the
discriminator. Encoder and decoder architectures were the same
for all models, with 12-dimensional zx, zy and 4-dimensional s.
The encoder had 2 convolutional layers with a number of channels
1 ! 32 ! 16 with 2D dropout rate 0.2 followed by three fully-
connected layers of size 64 ! 128 ! 128 ! 16 with batch
normalization. The decoder consisted of 2 fully connected layers
followed by 3 transposed convolution layers; the discriminators
have two hidden layers with 1024! 512 units. We set the weights
for Lrec to 10 and 0.1 for Lshared. Other l were set to 1. For
Unidirectional AAE, we increased weight for Linfo to 100. For
baseline models we used similar architectures. Please refer to the
Supplementary Material for additional hyperparameters.

Conditional generative model p(x | y) should produce
images with the same digit as image y, which we evaluate by
training a separate convolutional neural network to predict
the digit from x and comparing the most probable digit to the
actual digit of y known from the dataset. We also estimated a
conditional mutual information MI(x,sy|y) using a Mutual
Information Neural Estimation (MINE) (Belghazi et al., 2018)
algorithm for BiAAE, UniAAE, JMVAE, and VCCA models.
For SAAE, LatentSAAE, CVAE, and VIB we estimated MI(x,
s|y) since these models do not separate embeddings into
shared and exclusive parts explicitly. Models with high
mutual information extract relevant information from y. A
neural network for MINE consisted of a convolutional
encoder for x and fully-connected encoder for sy. We then
passed a concatenated embedding through a fully-connected
neural network to get a final estimate of mutual information.
Results in Table 1 suggest that the BiAAE model extracted
relevant mutual information which, besides all, contained
information about the digit of y. In Figure 6, we show
example samples from the model.
Frontiers in Pharmacology | www.frontiersin.org 6
Differential Gene Expression
In this section, we have validated Bidirectional AAE on a gene
expression profiles dataset with 978 genes. We use a dataset of
transcriptomes from the Library of Integrated Network-based
Cellular Signatures (LINCS) L1000 project (Duan et al., 2014).
The database contains measurements of gene expressions before
and after cells react with a molecule at a given concentration.

For each cell line, the training set contains experiments
characterized by the control (geb∈R978) and perturbation-
induced (gea∈R978) gene expression profiles. We represented
molecular structures in the SMILES format (Weininger, 1988;
Weininger et al., 1989). We augmented the dataset by randomly
matching control and perturbation-induced measurements from
the same plate.

We preprocessed the training dataset by removing molecules
with a molecular weight less than 250 and more than 550 Da. We
then removed molecules that did not contain any oxygen or
nitrogen atoms or contained atoms besides C, N, S, O, F, Cl, Br,
and H. Finally, we removed molecules that contained rings with
FIGURE 5 | The Unidirectional Adversarial Autoencoder: a simplified version of a Bidirectional Adversarial Autoencoder for generating from p(x|y). The discriminator
part ensures that the three latent code components are independent, and the object’s exclusive latent code is indistinguishable from the prior distribution.
TABLE 1 | Quantitative results for a Noisy MNIST experiment. Conditional
Generation section evaluates how often the model produced a correct digit.
Latent Codes section estimates the Mutual Information between zx and s (y for
SAAE).

Model Accuracy, % MI(x,sy|y) MI(x,s|y)

SAAE (Makhzani et al., 2015) 43.68 — 1.665
Latent SAAE 34.76 — 1.681
CVAE (Sohn et al., 2015b) 0.4583 — 0.3074
JMVAE (Suzuki et al., 2017) 5.38 0.9515 —

VIB (Alemi et al., 2017) 43.6 — 1.121
VCCA (Wang et al., 2016b) 23.35 1.239 —

BiAAE (our) 49.21 1.432 —

UniAAE (our) 47.61 1.627 —
April 2020
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more than eight atoms or tetracyclines. The resulting dataset
contained 5,216 unique SMILES. Since the dataset is small, we
pretrained an autoencoder on the MOSES (Polykovskiy et al.,
2018a) dataset and used its encoder and decoder as initial
weights in all models.

For all baseline models on differential gene expressions, we
used similar hyperparameters shown in Table 2 (please refer to
the Supplementary Material for the exact hyperparameters). In
all experiments, we split our dataset into train, validation, and
test sets, all containing different drugs. To construct a training
example, we sampled a drug-dose pair, a perturbation for this
drug and dose, and a control expression from the same plate as
the perturbed expression.

We used a two-step encoder for y = (h, Dge) shown in Figure
7, where Dge=gea−geb. We first embedded Dge with a fully-
connected neural network, and then concatenated the obtained
representation with a logarithm of concentration h. We passed
the resulting vector through a final encoder. The decoder has a
symmetric architecture.

Generating Molecular Structures for Gene
Expression Profiles
The proposed BiAAE model can generate molecules for given
gene expression changes and vice versa. We started by
experimenting with the molecular generation (Table 3). In the
experiment, we reported a negative log-probability of generating
the exact incubated drug x given the dose and gene expression
Frontiers in Pharmacology | www.frontiersin.org 7
change averaged over tokens log p(x|Dge,h). We also estimated a
Mutual Information MI(x,sy|Dge,h) similar to the MNIST
experiment described above. For each h and Dge, we generated
a set of molecules G and estimated a fraction of valid molecules
and internal diversity of G:

IntDiv Gð Þ = 1 −
1

Gj j Gj j − 1ð Þ o
m1,m2 ∈ G

m1 ≠ m2

T m1,m2ð Þ, (12)

where T is a Tanimoto similarity on Morgan fingerprints.
This metric shows whether a model can produce multiple
candidates for a given gene expression or collapses to a
single molecule.
FIGURE 6 | Qualitative results on a Noisy MNIST dataset. The figure shows generated images x for a noisy image y (left column) as a condition. Generated images
must have the same digit as y.
FIGURE 7 | The architecture of the condition encoder for changes in the transcriptome. The input to the expression encoder is the difference between the control
and perturbed expressions. We passed the dose to the last layers of the encoder.
TABLE 2 | Hyperparameters for neural networks training on gene expression
data. All neural networks are fully connected, and decoders have an architecture
symmetric to the encoders.

Hyperparameter Value

Molecular Encoder GRU; hidden size 128; 2 layers
Expression Encoder IN(978)!256!OUT(128)
Difference Encoder IN(129)!128!OUT(10 + 10)
Discriminator IN!1024!512!OUT(1)
Batch Normalization After each linear layer in encoders
Activation Function LeakyReLU
Learning Rate 0.0003
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The proposed BiAAE and UniAAE architectures show the
ability to capture the dependencies in the training set and
generalize to new objects from the validation set. The BiAAE
model provides better mutual information while preserving valid
diverse molecules.

Comparing Generated Molecular Structures to
Known Active Molecules
In this experiment, we show that the proposed generative model
(BiAAE) can produce biologically meaningful results. We used a
manually curated database of bioactive molecules ChEMBL 24.1
(Gaulton et al., 2016) and additional profiles of gene expression
knockdown from LINCS L1000 (Duan et al., 2014).

The first experiment evaluates molecular generation given a
transcriptome change of a small molecule inhibitor of a specific
protein. The ChEMBL dataset has experimental data on
molecules that inhibit a certain human protein. We chose
template molecules that are present in both LINCS molecule
perturbation dataset and ChEMBL dataset. We used molecules
that had inhibition concentration less than 10 mM IC50 for only
one protein.

The condition for molecular generation is a transcriptome
change and a dose of a template molecule. Specifically, the
condition is a shared part sy of the gene expression and dose
embedding. The model is expected to generate molecules that are
similar to known drugs. In Figure 8, for several protein targets,
Frontiers in Pharmacology | www.frontiersin.org 8
we show a known inhibitor and generated molecules that could
induce similar transcriptome profile changes.

The second experiment evaluates molecular generation given
a transcriptome change of a specific gene knockdown. The
LINCS dataset contains gene knockdown transcriptomes that
the model was not trained on. For each gene knockdown, we
found a corresponding human protein in the ChEMBL dataset.
We chose template molecules that had a proven IC50 less than
10mM for only one protein. The condition for molecular
generation is a transcriptome change of a gene knockdown and
the most common dose 10 mM in LINCS. The model is expected
to generate molecules that produce the same transcriptome
change of gene knockdowns.

The condition is different compared to the previous
experiment in a way that the gene knockdown expression
profile is not induced by a small molecule but rather shows the
desired behavior of the potential drug. In Figure 9, we show
generated molecules and compare them to known inhibitors of a
protein corresponding to a knocked down gene. We expect these
molecules to produce similar effects in gene expression to
gene knockdown.

Predicting Gene Expression Profiles for an
Incubated Drug
We experimented with predicting gene expression changes after
drug incubation (Table 4). First, we report estimated mutual
information MI(Dge,h ,sx|x) similar to the previous
experiments. We also report the R2 metric, which measures the
determination coefficient between the real and predicted (Dge, h)
for a given molecule. Finally, we report a top-1 precision metric,
which shows the fraction of samples for which the largest
absolute change in real and predicted Dge matched.

To compute R2 and top-1 precision, we only used drugs that
were administered at h = 10 mM concentration. Since we are only
interested in a certain concentration, we discarded generated
(Dge, h) tuples if h was far from 10 mM (outside the range [−6.5,
−5.5] in log10 scale). Note that VIB was not able to generate any
gene expression changes near 10 mM.
TABLE 3 | Validation results of conditional generation p(x|Dge,h).

Model NLL MI
(x,sy|Dge,h)

MI
(x,s|Dge,h)

Internal
Diversity

Validity

SAAE 0.55 — 0.11 0.85 0.64
Latent SAAE 0.55 — 0.00 0.85 0.62
CVAE 1.22 — 0.00 0.84 0.58
JMVAE 1.42 0.00 — 0.61 0.82
VIB 1.46 — 0.00 0.17 0.29
VCCA 1.36 0.00 — 0.53 0.71
BiAAE 0.77 0.32 — 0.85 0.76
UniAAE 0.53 0.00 — 0.85 0.61
FIGURE 8 | The examples of generated molecules conditioned on gene expression changes from a protein inhibitor; Real most similar inhibitors from ChEMBL are
provided for comparison.
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The experiment demonstrates that proposed UniAAE,
BiAAE, and LatentSAAE models generalize well the symmetric
t a sk and show good metr i c s on pred ic t ing gene
expression changes.
DISCUSSION

The key advantage of the proposed model compared to the
previous works is the joint adversarial learning of latent
representations of paired objects. This representation improves
conditional generation metrics and shows promising results in
molecular generation for desired transcriptome changes.

Three discriminator neural networks ensure that the latent
representations divided into shared and exclusive parts are more
meaningful and useful for the conditional generation. Two
additional discriminator losses help the model learn a more
expressive shared part and make sure that all three parts are
mutually independent.

However, adversarial training slightly complicates the
training procedure for the BiAAE model. In comparison with
other baseline models, the training loss contains more terms,
each with a coefficient to tune. In general, we tune these
coefficients using grid search, and we select the best coefficients
according to the generative metrics on the validation set. In
practice, we simplify the grid search and use the same coefficient
Frontiers in Pharmacology | www.frontiersin.org 9
for the adversarial terms l1=l4=l5 since the corresponding
losses have values on the same scale. We choose the search
space for coefficients l2,l3 in a way that the second and third
terms provide the gradient in the same scale as the other terms.

Another problem that arises when we use the adversarial
approach is the instability of training. The instability is the
consequence of the minimax nature of adversarial training
(Goodfellow et al., 2014). To overcome the instability, we use
approaches described in (Bang and Shim, 2018), i.e., we use
sha l low discr iminators and Adam opt imizer wi th
parameters b1=0.5,b2=0.9.
CONCLUSION

In this work, we proposed a Bidirectional Adversarial
Autoencoder model for the generation of molecular structures
for given gene expression changes. Our AAE-based architecture
extracts shared information between molecule and gene
expression changes and separates it from the remaining
exclusive information. We showed that our model outperforms
baseline conditional generative models on the Noisy MNIST
dataset and the generation of molecular structures for the desired
transcriptome changes.
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