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Alzheimer's disease (AD) is a complex neurodegenerative disease characterized by
cognitive dysfunction. Kai-Xin-San (KXS) is a traditional Chinese medicine (TCM)
formula that has been used to treat AD patients for over a thousand years in China.
However, the therapeutic mechanisms of KXS for treating AD have not been fully explored.
Herein, we used a comprehensive network pharmacology approach to investigate the
mechanism of action of KXS in the treatment of AD. This approach consists of
construction of multiple networks and Gene Ontology enrichment and pathway
analyses. Furthermore, animal experiments were performed to validate the predicted
molecular mechanisms obtained from the systems pharmacology-based analysis. As a
result, 50 chemicals in KXS and 39 AD-associated proteins were identified as major active
compounds and targets, respectively. The therapeutic mechanisms of KXS in treating AD
were primarily related to the regulation of four pathology modules, including amyloid beta
metabolism, tau protein hyperphosphorylation process, cholinergic dysfunction, and
inflammation. In scopolamine-induced cognitive dysfunction mice, we validated the
anti-inflammatory effects of KXS on AD by determining the levels of inflammation
cytokines including interleukin (IL)-6, IL-1b, and tumor necrosis factor (TNF)-a. We also
found cholinergic system dysfunction amelioration of KXS is correlated with upregulation
of the cholinergic receptor CHRNB2. In conclusion, our work proposes a comprehensive
systems pharmacology approach to explore the underlying therapeutic mechanism of
KXS for the treatment of AD.
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INTRODUCTION

Alzheimer's disease (AD), as the most common form of
dementia, has become one of the leading causes of morbidity
and mortality in the aged population. According to the World
Alzheimer Report, up to 2019, there were over 50 million people
living with dementia (Cao et al., 2018b; Gaugler and Al, 2019).
Patients with AD suffer from a decline in learning and memory,
cognitive deficits, and behavioral/personality changes, which
lead to a heavy public health burden (Jia et al., 2018; Kumar
and Tsao, 2019). As a complex multifactorial disease, AD is
driven by extracellular deposition of beta amyloid (Ab) and
intracellular accumulation of tau protein. Current treatments can
only provide limited symptomatic-relief benefits but fail to stop
or reverse disease progression. Moreover, adverse effects,
including diarrhea, nausea, and nightmares, further restrict the
clinical treatment of AD (Masters et al., 2015). Therefore, there is
an urgent need to discover novel therapeutic drugs with new
mechanisms of action (MOAs) for treating AD.

Traditional Chinese medicine (TCM), which embraces
centuries of knowledge and practical experience, has been used
to treat many complex diseases in China for over 2,000 years
(Cooper and Ma, 2017; Jiang et al., 2017). TCM has advantages
for multi-targeting in intervention and treatment and has
provided comprehensive prospects for understanding
physiopathology and drug development for neurodegenerative
diseases, including AD (Ho et al., 2010; Law et al., 2017). Kai-
Xin-San (KXS) is a widely used TCM formula initially recorded
in Beiji Qianjin Yaofang for treating dementia and depression in
China since the Tang Dynasty. It is comprised of four herbs:
Panax ginseng C. A. Mey (RENSHEN, RS), Polygala tenuifolia
Willd (YUANZHI, YZ), Acorus tatarinowii (SHICHANGPU,
SCP), and Poria (FULING, FL) (Cao et al., 2018a). Previous
studies of KXS mainly focused on the mechanism of a single
target-oriented pathway or neurotransmitter regulation, which
cannot comprehensively illuminate the therapeutic effects and
Frontiers in Pharmacology | www.frontiersin.org 2
mechanism of action (MOA) of KXS for AD treatment (Lu et al.,
2017; Wang et al., 2017; Cao et al., 2018a; Gao et al., 2018).
Herein, there is a need to investigate the overall beneficial effects
of KXS for treating AD using advanced approaches.

Systems pharmacology is a cutting-edge methodology that
combines computational and experimental tools toward
discovering novel therapeutic agents and understanding the
therapeutic mechanisms of complex diseases. (Fang et al.,
2017a; Fang et al . , 2019). In recent years, systems
pharmacology-based approaches have provided new insights
into elucidating the mechanisms of TCM in the treatment of
diseases such as cardiovascular diseases and AD (Zhou and
Wang, 2014; Fang et al., 2017a; Cai et al., 2018). In this study,
we employed a systems pharmacology approach to identify
potential compounds, candidate targets, and therapeutic
mechanisms of KXS against AD disease from a holistic
prospect (Figure 1). Briefly, we first determined the
comprehensive AD-associated genes and ingredients of KXS
after integrating different data sources. We further predicted
candidate targets based on a balanced substructure-drug-target
network-based inference approach (bSDTNBI). Subsequently,
the targets of KXS were mapped onto AD-relevant genes to
determine their biological functions and corresponding AD
pathways. Furthermore, we performed multiple level data
analyses to reveal the MOA of KXS on AD treatment. Finally,
we validated the proposed pharmacological mechanism of KXS
in a scopolamine (SCOP)-induced AD mouse model.
MATERIALS AND METHODS

AD-Associated Gene Collection
Genes related to AD were collected from several public disease
gene-related databases, including Malacard (https://www.
malacards.org), DisGeNet database, GWAS catalog, HGMD
FIGURE 1 | Flowchart of the systems pharmacology approach for deciphering the therapeutic mechanisms of action of Kai-Xin-San (KXS) on Alzheimer's disease
(AD). (A) Drug-target interaction (DTI) identification. (B) Network analysis of multiple data to investigate the therapeutic mechanisms of KXS on AD. (C) Experimental
validation in vivo to explore the pharmacological mechanisms of KXS on AD.
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(Pinero et al., 2017), AlzBase database (http://alz.big.ac.cn/
alzBase/summary/Gene), and AlzPlatform. AlzPlatform is an
AD-specific chemogenomics knowledgebase for target
identification and drug discovery (Liu et al., 2014). Ultimately,
a total of 447 AD-associated genes were obtained
(Supplementary Datasheet S1).

KXS Ingredient Collection
All ingredients in KXS (4 herbs) were collected from six TCM-
related databases, including TCMID (Xue et al., 2013), TCM-
Taiwan (Chen, 2011), TCMD (He et al., 2001), TCMSP (Ru et al.,
2014), TM-MC (Kim et al., 2015), and TCM-MESH (Zhang
et al., 2017). For each database, we extracted the chemical
structures of each herb as an SDF file. Subsequently, six SDF
files were merged to a single SDF, which contained all of the
chemical structures from the six data sources. SMILES as well as
InChIKey were generated by Open Babel (O'boyle et al., 2011)
for each ingredient. After removing the duplicates, 1,118
ingredients in KXS were finally obtained.

Target Identification for KXS
In this work, the known targets of KXS were extracted from our
previous integrated database (Fang et al., 2017b), which contains
7,314 drug-target interactions (DTIs) connecting 751 targets and
2,388 natural products.

In a previous study, we developed predictive network models
to identify new targets of natural products via the bSDTNBI
approach (Fang et al., 2017b), which prioritized potential targets
for known drugs and new chemical entities (NCEs) by resource-
diffusion processes of the substructure drug-target network.
During the course, two parameters including a and b were
imported to balance the initial resource allocation of different
node types as well as the weighted values of different edge types.
Moreover, parameter g was also utilized to balance the influence
of hub nodes. The final parameters (a = b =0.1, g = –0.5, and k =
2) of bSDTNBI were adopted from a previous study (Wu et al.,
2016). Among the four network models developed using
different types of fingerprints, bSDTNBI_KR performed best
with the highest value of P (0.049), R (0.752), eP (27.02), eR
(27.24), and AUC (0.959). Thus, bSDTNBI_KR was utilized to
predict new targets of natural products in the global network.

Network Construction
To comprehensively understand the complex interactions
among herbs, compounds, targets, and pathways, herb-target
and compound-target networks were constructed by Cytoscape
(version 3.2.1) and Gephi (version 0.9.2). In the graphical
network, the nodes represent compounds, targets, or herbs,
while the edges denote links among them. The quantitative
property “degree” was calculated as the number of edges linked
to each node, indicating the importance of a given node in
a network.

Gene Ontology (GO) Enrichment Analysis
The biological significance of protein targets can be interpreted
via GO enrichment analysis. In this work, we conducted a
biological process (BP) interpretation by mapping AD-related
Frontiers in Pharmacology | www.frontiersin.org 3
genes (with a degree greater than 2) of KXS to the DAVID
database (https://david.ncifcrf.gov/home.jsp) (Huang Da et al.,
2009). DAVID is an integrated biological knowledgebase and
analytic tool aimed at systematically extracting the biological
meaning from large gene/protein lists.

Pathway Construction and Analysis
To invest igate the roles of protein targets in the
pathophysiological network of AD and how KXS acts on AD
by regulating certain pathways, an “AD-integrated pathway” was
proposed based on our present understanding of AD pathology
and target identification. In brief, the protein targets were first
mapped to the Kyoto Encyclopedia of Genes and Genomes
database (KEGG, http://www.genome.jp/kegg/) to obtain the
potential pathways. Subsequently, pathways related to AD
pathological processes were selected and incorporated into an
“AD-integrated pathway” to analyze the therapeutic mechanisms
of KXS for treating AD.

Experimental Validation
KXS Preparation
The four herbs in KXS (RS, FL, SCP, and YZ) were obtained from
the First Affiliated Hospital of Guangzhou University of Chinese
Medicine (Guangzhou, China) and were mixed at a ratio of
3:3:2:2 referenced the previous studies (Cao et al., 2012; Xu et al.,
2019). The extraction process and quality control were
implemented according to our previous study (Xu et al., 2019).
Briefly, SCP was added to six parts of water as a solvent for 2 h,
followed by heat reflux extraction for 8 h. Volatile oil and SCP
dregs were saved. RS was extracted twice by 60% ethanol as
solvent for each time with 1 hour. The extracts were combined
and filtrated, and the RS dregs were saved. The dregs of SCP, RS,
FL, and YZ were added to 10 parts of water and extracted twice,
for 1 h each. All extracts were combined and evaporated on a
rotary evaporator. Finally, volatile oil of SCP and original liquid
after concentrated were mixed and refrigerated at −20°C
for usage.

AD Model and Drug Treatments
Kun-Ming mice (8 weeks old) weighing 30–35 g were obtained
from Sibeifu Biotechnology (Beijing, China) and housed at 22 ±
2°C, with a relative humidity of 55% ± 5%, a 12 h light/dark cycle
and ad libitum access to food and water. All animal procedures
were performed in accordance with the principles and guidelines
of the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and approved by the Guangzhou University
of Chinese Medicine Animal Ethics Committee.

AD model was induced by intraperitoneally injected SCOP (3
mg/kg) for a consecutively week. In this week, Morris water maze
and new objection recognition test were performed daily after 30
min of SCOP injection to evaluate animal model. In this study:
mice were randomly allotted to five groups: Control group
(n=10; 0.9% saline p.o.+ 0.9% saline, i.p.), SCOP group (n=10;
0.9% saline p.o.+ SCOP 3 mg/kg/d i.p.), low-dose KXS group
(n=10; KXS 1.4 g/kg/d p.o.+ SCOP 3 mg/kg/d i.p.), high-dose
KXS group (n=10; KXS 2.8 g/kg/d p.o.+ SCOP 3 mg/kg/d i.p.),
and Don group (n=10; donepezil 3 mg/kg/d p.o.+ SCOP 3 mg/
April 2020 | Volume 11 | Article 381
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kg/d i.p.). The mice were orally administered 0.9% saline, KXS,
or donepezil mice for 14 continuous days. Memory impairment
was induced by SCOP treatment (3 mg/kg body weight) for
7 days.

Western Blot Analysis
The hippocampus and cortex were homogenized in SDS lysis
buffer containing a protease inhibitor and phosphatase inhibitor
mixture (Sigma-Aldrich). After sonication, lysates were
centrifuged at 3,000×g and 4°C for 15 min. Supernatants were
collected, and protein concentrations were determined by the
Bradford assay (Bio-Rad). The same amounts of proteins were
resolved on SDS-PAGE gels, transferred to PVDF membranes
(Millipore), and probed with primary antibodies overnight at 4°
C. Rabbit anti-TNFRSF1A (1:1,000, Abcam), anti-CHRNB2
(1:1,000, Abcam), and anti-b-actin (1:10,000, Abcam) were
used as the primary antibodies. Immunoblots were visualized
by the ECL western blot detection kit (Millipore) and quantified
by densitometry and ImageJ software (National Institutes of
Health) (Lee et al., 2017).

Immunofluorescence
Mice were transcardially perfused with 0.9% saline. The mouse
brains were fixed in 4% paraformaldehyde (PFA) for 72 h,
followed by dehydration with different concentrations of
ethanol and paraffin embedding. A paraffin microtome was
used to cut 5-mm-thick coronal brain sections.

For immunofluorescence, sections were deparaffinized by
ethanol and incubated with 3% H2O2. Antigen retrieval was
performed by heating the sections in sodium citrate buffer (10
mM trisodium citrate, 0.5% Tween-20 in H2O, pH 6.0) at 70°C
for 30 min. Sections were then permeabilized and incubated with
blocking solution containing the Iba-1 antibody (1:100, Abcam)
overnight at 4°C. The sections were then stained with a
fluorophore-conjugated secondary antibody (1:1,000, CST) for
1 h, followed by 4′6-diamino- 2-phenylindole (DAPI, Sigma)
staining for another 1 h. Images were acquired by a fluorescence
microscope Model DMi8 (Leica, Germany) and quantified using
ImageJ software (National Institutes of Health) (Muhammad
et al., 2019).

ELISA Analysis
Mice cortical and hippocampal tissues were sequentially
homogenized in ice-cold PBS, and the supernatants were
centrifuged at 21,000×g for 20 min at 4°C. The levels of IL-1b,
IL-6, and TNF-a were measured using an enzyme-linked
immunosorbent assay (ELISA, Biological Technology, Jiangsu)
( K a r t h i v a s h a n e t a l . , 2 0 1 8 ) a c c o r d i n g t o t h e
manufacturer's instructions.

Statistical Analysis
All data were expressed as means ± SEM of at least three
independent experiments. Statistical analyses were performed
using SPSS (version 20.0, IBM, Armonk, NY). Statistical tests
between multiple datasets were carried using a one-way analysis
of variance (ANOVA) followed by Dunnett's post hoc test to
Frontiers in Pharmacology | www.frontiersin.org 4
determine statistical significance, as appropriate. A P value < 0.05
was considered statistically significant.
RESULTS AND DISCUSSION

Collection of Chemical Ingredients in KXS
In the present study, a total of 1,118 compounds in KXS were
collected from specific TCM-relevant databases after removing
the duplicate structures. The numbers of ingredients for each
herb in KXS were 628 (RS), 237 (YZ), 119 (FL), and 210 (SCP).
Among the 1,118 chemical ingredients, there were 70
compounds that existed in more than one herb. For example,
compound M449 (palmitic acid) could be found in all four herbs
in the KXS formula. Candidate ingredients were defined if there
were known targets or putative targets via bSTDNBI for a certain
ingredient. Ultimately, 1,113 candidate compounds were
obtained (Supplementary Datasheet S1).

Identification of Putative Targets for the
Ingredients in KXS
After merging the known DTIs and predicted DTIs by bSTDNBI,
we identified 439 target proteins for 1,113 candidate compounds.
We further identified 39 AD-associated targets for KXS by
overlapping 439 potential targets into the curated human AD-
associated 447 genes. Detailed information of the 39 AD-
associated targets can be found in Supplementary Datasheet S1.

Analysis of the Synergetic Actions of KXS
Against AD
The TCM theory “Jun-Chen-Zuo-Shi” serves as the guide for
physicians when formulating herbal prescriptions. Among the
herbs in KXS, RS and FL serve as the “Jun” and “Chen” herbs to
treat the major symptoms and signs of AD, while YZ and SCP act
as the “Zuo” and “Shi” herbs for improving the therapeutic
effects of the “Jun” and “Chen” herbs and guiding the herbs to
the disease targets (Cao et al., 2018a). Herein, we investigated the
distribution of AD-relevant targets among the four herbs (18
from RS, 9 from FL, 16 from SCP, 15 from YZ) via a Venn
analysis (Supplementary Figure S1).

The four herbs covered all 39 AD-associated targets (Figure
S1). Among the four herbs, RS covered the largest number (18)
of AD targets for the “Jun” herb in KXS for treating AD,
demonstrating the consistency of TCM theory. To exploit the
synergistic MOAs of the KXS formula at the individual herb
level, we constructed a herb-target network (Figure 2, H-T
network). We found that the four herbs in KXS shared six
common targets, suggesting that KXS could exert its
magnifying effects by targeting these key targets. These targets
include acetylcholinesterase (ACHE), beta-secretase 1 (BACE1),
hydroxysteroid 17-beta dehydrogenase 10 (HSD17B10),
mitogen-activated protein kinase 1 (MAPK1), peroxisome
proliferator-activated receptor gamma (PPARG), and tumor
necrosis factor (TNF). BACE plays a key role in neurotoxic Ab
generation (Moussa-Pacha et al., 2019). Tumor necrosis factor-a
(TNF-a) has been confirmed to advance Ab production through
April 2020 | Volume 11 | Article 381
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enhancing the expression of BACE1 and suppressing the
clearance of Ab (Yamamoto et al., 2007; Decourt et al., 2017).
Moreover, ACHE regulates acetylcholine in the cholinergic
system, which plays a role in the learning process in AD
patients (Ferreira-Vieira et al., 2016). Therefore, it is likely that
the four herbs in KXS are able to regulate several important AD-
associated pathological processes to exert advanced or synergistic
effects in AD intervention and treatment.

Compound-Target (C-T) Network Analysis
To further decipher the therapeutic mechanism of KXS against
AD, we constructed a AD-specific compound-target (C-T)
network consisting of 1,936 C-T interactions (Figure 3). The
C-T network comprises 40 known CTIs and 1,896 predicted
CTIs connecting 1,021 compounds to 39 AD target proteins.
Among the 1,021 ingredients, nine have a target degree (N)
higher than five, including M909 (apigenin, N=9), M638 (4-
aminobutyric acid, N=6), M326 (aspidinol, N=5), M429
(dodecanal, N=5), M621 (harmine, N=5), M8 (spinacen, N=5),
and M903 (DL-catechin, N=5). For the 39 AD targets, five were
targeted by more than 100 compounds (D): ACHE (D=454),
MAPK1 (D=372), TNF (D=346), PPARG (D=261), and BACE1
(D=174). Previous studies have demonstrated that these targets
are beneficial for AD patients. For example, inhibitors of ACHE
(e.g., donepezil) can provide modest symptomatic relief for AD
patients (Arvanitakis et al., 2019). Recently, both preclinical and
Frontiers in Pharmacology | www.frontiersin.org 5
clinical studies have indicated that PPARG agonists can improve
learning and memory abilities in AD patients (Khan et al., 2019).
BACE1 inhibitors have also been reported to repress the
generation of neurotoxic amyloid protein (Dobrowolska
Zakaria and Vassar, 2018; Moussa-Pacha et al., 2019). Overall,
this AD-specific C-T network contributes to uncovering the
MOA of chemicals in KXS against AD. The detailed
information of the C-T network is provided in Supplementary
Datasheet S2

GO BP Enrichment Analysis
To illustrate the related signaling pathways involved in the
treatment of AD with KXS, GO BP enrichment analysis was
performed using ClueGO, a plug in of the Cytoscape software
package. Only the top 20 significantly enriched (adjusted P <
0.05) signaling pathways were preserved for further analysis.
Multiple signaling pathways were involved in the treatment of
AD with KXS, including reactive oxygen species metabolic
process, positive regulation of neuron death (apoptotic
process), regulation of calcium ion transport into the cytosol,
and nitric oxide biosynthetic process, etc. (Figure 4). These
signaling pathways seem to play vital roles in AD-associated
pathological processes. For instance, Ab-induced neuron death is
considered a central pathway in the pathogenesis of AD through
oxidative stress, inflammation, apoptosis, or autophagy (Cao
et al., 2018b; Kumar and Tsao, 2019).
FIGURE 2 | Herb-target network of Kai-Xin-San (KXS). The ellipses represent the targets of KXS. The round rectangle indicates the herbs in KXS.
April 2020 | Volume 11 | Article 381
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Integrated Pathway Analysis
In this analysis, pathways directly related to AD were
incorporated into an “AD-integrated pathway” based on target
identification for KXS and AD pathology, including the glucose
homeostasis signaling pathway, ACHE-associated signaling
pa t hway , Ab - a s s o c i a t ed s i gn a l i n g pa t hway , t a u
hyperphosphorylated signaling pathway, and TNF-induced
inflammation signaling pathway. As depicted in Figure 5,
several pathophysiological modules were involved in this
integrated pathway, such as glycolysis, cell death, survival, and
synaptic plasticity. Here, four representative modules will be
discussed to illustrate the underlying therapeutic mechanisms of
KXS for AD treatment.

Ab-Associated Pathological Signaling Pathway
Regulation Module
It is well known that abnormal Ab aggregation and accumulation
plays a critical role in the pathogenesis of AD. Amyloid precursor
protein (APP) is cleaved by a-secretase, b-secretase, and g-
secretase via non-amyloidogenic and amyloidogenic pathways.
In the non-amyloidogenic pathway, proteolysis of APP by a- and
g-secretases yields nonpathogenic fragments, including sAPPa
and C-terminal fragments. However, the amyloidogenic pathway
involves cleavage by b- and g-secretases, leading to the
Frontiers in Pharmacology | www.frontiersin.org 6
production of sAPPb, C-terminal fragments, and Abs (Barage
and Sonawane, 2015; Selkoe and Hardy, 2016). Accumulated Ab
can further directly or indirectly trigger other pathological
processes , such as mitochondria l dysfunct ion and
inflammation, inducing neuronal death in AD (Mao et al.,
2012). Thus, targeting b- and g-secretases is regarded as a
primary therapeutic approach for reducing Ab production in
AD patients. As shown in Figure 5, KXS targets key proteins
implicated in the Ab-associated signaling pathway, including
BACE1 (b-secretase 1), GAPDH (glycolytic glyceraldehyde-3-
phosphate dehydrogenase), and SD17B10 (hydroxysteroid 17-
beta dehydrogenase 10). GAPDH (glycolytic glyceraldehyde-3-
phosphate dehydrogenase), an abundantly expressed
oxidoreductase for glucose metabolism, has been reported to
possess diverse non-glycolytic functions, including interaction
with Ab (El Kadmiri et al., 2014; Sen et al., 2018). Target
prediction suggested that M693 (citric acid) could bind with
GAPDH, which might alleviate Ab accumulation by disturbing
the cross-talk between Ab and GAPDH (Gerszon and Rodacka,
2018). In addition, HSD17B10 (hydroxysteroid 17-beta
dehydrogenase 10), a hydroxysteroid dehydrogenase localized
in the mitochondria (He et al., 2018), was the potential target of
the compounds in KXS, including M150, M388, and M500. This
target has been recognized as a putative intracellular mediator of
FIGURE 3 | Global compound-target network of the candidate ingredients of Kai-Xin-San (KXS).
April 2020 | Volume 11 | Article 381
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Ab neurotoxicity via its dozen proteins that bind to Ab (Reddy
et al., 2012). Thus, KXS could disturb the combination of Ab and
HSD17B10 to alleviate mitochondria dysfunction as it activates
b-secretase and g-secretase and facilitates Ab generation (Yang
et al., 2014). Taken together, KXS might prevent and treat AD by
regulating Ab generation and aggregation.

Neurofibrillary Tangles Regulation Module
NFTs (neurofibrillary tangles), aggregating by abnormal
hyperphosphorylation of microtubule-associated protein tau
(MAPT) in the brain, correlate well with the severity of
cognitive deficits in AD patients (Simic et al., 2016; Jouanne
et al., 2017). Tau protein can be hyperphosphorylated by various
kinases including CDK5 (cyclin-dependent kinase 5) (Zhao et al.,
2019) and GSK3B (glycogen synthase kinase 3beta) (Chu et al.,
2017). Therefore, a reduction in tau protein levels (Wang and
Mandelkow, 2015) as well as inhibition of tau protein
hyperphosphorylation and aggregation are potential
therapeutic avenues for AD treatment. As shown in Figure 5,
KXS was predicted to target three crucial proteins (i.e., CDK5,
GSK3B, and MAPT) involved in the regulation of NFTs. For
example, the compounds M621, M622, and M909 were predicted
to interact with CDK5 and GSK3B. Emerging evidence has
revealed that inhibiting these kinases can prevent tau protein
Frontiers in Pharmacology | www.frontiersin.org
 7
hyperphosphorylation and NFT formation (Congdon and
Sigurdsson, 2018). Additionally, compounds such as M84,
M257, and M686 were identified to bind to MAPT, suggesting
that KXS might decrease tau protein levels to alleviate NFT
formation and ameliorate Ab-dependent neurotoxicity (Peters
et al., 2019).

Cholinergic System Dysfunction Regulation Module
The loss of cholinergic neurons in AD patients leads to learning
and memory deficits (Ferreira-Vieira et al., 2016). Cholinesterase
inhibitors can prevent the breakdown of acetylcholine and
preserve its activity at cholinergic synapses (Hampel et al.,
2018). Figure 5 shows that the KXS formula regulates the
cholinergic system signaling pathway by targeting ACHE
(acetylcholinesterase) and CHRN2B (cholinergic receptor
nicotinic beta 2 subunit). Four compounds, M21, M389, M597,
and M944, interact with ACHE and CHRN2B, which might
improve the level of acetylcholine and sustain its activity. Our
previous study demonstrated that KXS could ameliorate
cognitive function in SCOP-induced mice by regulating the
cholinergic system through sustaining ACh levels, increasing
ChAT activity, and decreasing AChE activity (Xu et al., 2019),
which is in accordance with our systems pharmacology-
based analysis.
FIGURE 4 | Gene Ontology (GO) biological process enrichment analysis of targets of Kai-Xin-San (KXS) for the treatment of Alzheimer's disease (AD).
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Neuroinflammation Regulation Module
Neuroinflammation refers to the inflammatory response in the
central nervous system secondary to neuronal insult (Calsolaro
and Edison, 2016). Activating microglia and astrocytes in AD
leads to the production and release of inflammatory cytokines,
including interleukin-6 (IL-6), interleukin-1b (IL-1b), and TNF-a
(Heneka et al., 2015; Kinney et al., 2018; Ozben and Ozben, 2019).
Figure 5 suggests that KXS, a more specifically the compounds
M230, M885, and M606, could modulate neuroinflammation in
AD by regulating TNF-a and its receptor TNF-receptor
superfamily 1A (TNFRSF1A). TNF-a can exacerbate Ab burden
by increasing g-secretase activity and b-secretase production
(Cheng et al., 2014; Chang et al., 2017) or bind to TNFRSF1A.
This effect is partly mediated through MAPK1 signaling, which
leads to the expression of molecules that participate in
inflammation and amyloid genesis (Montgomery and Bowers,
2012; Decourt et al., 2017). Furthermore, IL-1b and IL-6 are able
to enhance the amyloidogenic process of APP (Tachida et al.,
2008) and the hyperphosphorylation of tau epitopes (Kitazawa
et al., 2011). Suppression of either IL-1b or IL-6 can ameliorate
neuroinflammation and neurodegeneration (Basu et al., 2004;
Rothaug et al., 2016). In summary, KXS might prevent and treat
AD by regulating neuroinflammation.
Frontiers in Pharmacology | www.frontiersin.org 8
Experimental Validation of KXS in SCOP-
Induced Mice
KXS Ameliorates Inflammatory Injury in SCOP-
Induced Mice
The systems pharmacology analysis indicated that the
therapeutic mechanism of KXS for AD involves several
potential mechanisms, including the regulation of cholinergic
system dysfunction and neuroinflammation.

Chronic neuroinflammation (sustained microglial activation
and overproduction of pro-inflammatory cytokines) has been
implicated in the pathophysiology of AD. To validate the
mechanism of KXS on neuroinflammation in vivo, we
measured proinflammatory cytokine levels in SCOP-induced
mice treated with KXS. As shown in Figure 6, SCOP
administration significantly increased the levels of TNF-a, IL-
1b, and IL-6 compared to the non-treated control group (P <
0.05 or P < 0.01). However, KXS and Don significantly (P < 0.05)
attenuated the upregulation of IL-1b, TNF-a, and IL-6 compared
with the SCOP alone group both in the hippocampus and cortex.

TNFRSF1A is the main cell surface receptor for TNF. Next,
we explored the expression of TNFRSF1A by western blotting.
As shown in Figure 7, the protein expression of TNFRSF1A
increased in the SCOP group in both the hippocampus and
FIGURE 5 | Integrated Alzheimer's disease (AD)-pathway and Kai-Xin-San (KXS) action in the therapeutic modules.
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FIGURE 7 | Kai-Xin-San (KXS) decreases the protein expression of tumor necrosis factor receptor superfamily member 1A (TNFRSF1A) in scopolamine (SCOP)-
induced mice. Western blot analysis showing the protein expression levels of TNFRSF1A in the hippocampus (A) and cortex (C). Quantification of TNFRSF1A levels
in panel (A, B) or (C, D) was normalized to that of actin. Data represent the means ± SEM (n=3, ##P < 0.01 versus the control group; *P < 0.05, **P < 0.01 versus
the SCOP group).
A B

C D

E F

FIGURE 6 | Kai-Xin-San (KXS) attenuates inflammatory injury in scopolamine (SCOP)-induced mice. The levels of interleukin (IL)-6, IL-1b, and tumor necrosis factor
(TNF)-a in the hippocampus (A, C, E) and cortex (B, D, F) were determined by ELISA. Data are expressed as means ± SEM. Difference was calculated using one-
way ANOVA followed by Dunnett's post hoc test (n=5, #P < 0.05, ##P < 0.01 the control group versus the SCOP group; *P < 0.05 versus the SCOP group).
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cortex (P < 0.01, vs. the control group). Both the low-dose and
high-dose KXS groups and the DON wed group decreased
TNFRSF1A expression (P < 0.05 or P < 0.01, vs. the
SCOP group).

Microglia secrete a number of inflammatory cytokines
including TNF-a, IL-1b, and IL-6 in response to inflammatory
stimuli (Ozben and Ozben, 2019). To further probe the effect of
KXS on neuroinflammation, we detected the expression of Iba-1,
a microglia activation marker, in the hippocampus and cortex
using immunofluorescence. As displayed in Figure 8, elevated
microglia activation was observed in the SCOP group in the
hippocampus (CA1) and cortex, whereas KXS and donepezil
markedly attenuated microglia activation. These results
demonstrate that KXS inhibits neuroinflammation in SCOP-
induced mice

KXS Attenuates Cholinergic System Dysfunction in
SCOP-Induced Mice
In our previous study, we demonstrated that KXS could alleviate
cholinergic system dysfunction in SCOP-induced mice by
increasing ChAT activity and the Ach content, and decreasing
AChE activity (Xu et al., 2019). However, the detailed
mechanism remains unclear. In this study, a systems
pharmacology-based analysis suggested that KXS could
regulate the expression of the target protein CHRNB2 (a
nicotinic acetylcholine receptor). CHRNB2 is lost in the brains
Frontiers in Pharmacology | www.frontiersin.org 10
of AD patients and knockout of the CHRNB2 gene impairs
neuronal survival in aging (Cook et al., 2004). Therefore, we
further investigated the effect of KXS on cholinergic dysfunction
via CHRNB2 expression in SCOP-induced mice. As shown in
Figure 9, SCOP significantly downregulated the expression of
CHRNB2 compared to the control group in both the
hippocampus and cortex (P < 0.05, P < 0.01, respectively).
High-dose KXS and Donepezil remarkably increased the
expression of CHRNB2 both in the hippocampus and cortex
(P < 0.05, vs. the SCOP group). These data suggest that CHRNB2
may play an important role in the effects of KXS ameliorating
cholinergic system dysfunction of SCOP-induced mice.
CONCLUSION

To date, acetylcholinesterase inhibitors and NMDA receptor
antagonists have been the primary choice for treating AD
patients, showing marginal benefits for alleviating symptoms.
The side effects are not ignorable and add to the ongoing AD
burden. Therefore, it is urgent that novel and efficient curative
remedies are discovered for AD patients. TCM efficacy in
medical practice has been demonstrated for thousands of
years. In contrast to western medicine, TCM formulas
emphasize the regulation of interactions among all illness-
associated elements within the abnormal body toward a
FIGURE 8 | Kai-Xin-San (KXS) attenuates microglia activation in scopolamine (SCOP)-induced mice. Immunofluorescence analysis in the hippocampus (CA1) and
cortex. Microglia were stained with anti-Iba-1 (red) and the nuclei were stained with DAPI (blue). Scale bar: 50 mm. Con, control group; SCOP, scopolamine; KXS-L,
low-dose Kai-Xin San (1.4 g/kg); KSX-H, high-dose Kai-Xin San (2.8 g/kg); Don, donepezil.
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balanced/normal condition. However, as TCM formulas
contain hundreds of chemical components, the specific
pharmacologica l mechanisms through which TCM
prescriptions exert their effects against diseases are still
difficult to illustrate.

KXS, a TCM formula that has been used for thousands of
years in China to treat cognitive dysfunction, has been shown
to improve learning and memory in animals studies. In this
study, we developed an integrative systems pharmacology
approach to illustrate the therapeutic mechanisms of KXS
against AD. For the first time, we identified 39 AD-associated
targets of KXS ingredients using known target mapping and in
silico target prediction. Furthermore, we deciphered potential
MOAs of KXS in AD treatment via a multiple data integration
analysis, including an herb-target network analysis,
compound-target network analysis, synergic action analysis,
and integrated pathway analysis. Our systems pharmacology
analysis was validated in in vivo experiments. The results
showed that KXS could ameliorate cognitive dysfunction
mainly through inhibiting the inflammation of microglia in
SCOP-induced mice. More importantly, we found that the
therapeutic effect of al leviat ing cholinergic system
dysfunction involves the upregulation of the cholinergic
receptor CHRNB2. Overall, these findings indicate that
systems pharmacology could provide an alternative
approach for exploring the complex MOAs of TCM and
advance the comprehensive understanding of TCM.
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