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Introduction

Cancer is a well-known, yet poorly understood disease. In which, a healthy tissue is morphed into a cancerous tissue through an intricate, multistep process. This polymorphism has been the focus of cancer research for many decades. Scientists have agreed on a set of traits that are thought to be shared by all cancer tissue types, these traits include; enabling proliferation, evading growth suppressors, resisting cell death, replicative immortality, inducing angiogenesis, and initiating invasion and metastasis, along with other enabling characteristics (Hanahan and Weinberg, 2000; Hanahan and Weinberg, 2011). As researchers investigate the development and propagation of these traits, or as they are called the “hallmarks” of cancer, it became evident that cancer cell-derived extracellular vesicles (EVs), particularly exosomes, play a major role in almost all of them.

In the late 1940s, it was recognized that cells release spherical shaped particles called EVs (Chargaff and West, 1946). Then, almost 40 years later, “exosomes” were acknowledge as a distinct sub-type of EVs (Trams et al., 1981). Up tell now, it is technically challenging to obtain a pure fraction of a specific EV sub-type, due to similarities shared amongst these vesicles. However, the International Society for Extracellular Vesicles, have released a position statement on the minimal experimental requirements for definition of EVs and their functions (MISEV2014; updated in 2018; MISEV2018) (Lotvall et al., 2014; Théry et al., 2018). The MISEV distinction between the different EV sub-types realize on size, density, morphology, subcellular origin, and composition. This was done in order to make scientific reporting on EV biology more consistent and reliable. Most published literature on EVs, including the literature on the role of EVs in cancer, use the term “exosomes” to refer to the EV sub-type under study. These studies include a section that describes the method of “exosome” isolation, and at least a couple of characterization techniques, to justify their nomenclature. Characterization of exosomes in published literature is often based on size and “exosome-enriched” proteins content verification.

On the other hand, the concept of “cancer stem cell” (CSC) only emerged in the 1990s (Lapidot et al., 1994), with a lot of controversy and a number of proposed theories following it. Some say that CSC arise as a result of normal stem cell mutation, while others suggests that CSC arise as a result of a somatic cell acquiring erroneous stem cell characteristics, turning it into cancerous stem cell that can differentiate into heterogeneous population of cancer cells (Baccelli and Trumpp, 2012). Nevertheless, CSCs are now recognized as distinct population of cancer cells, and the CSC-model, is accepted as one of the two most popular models of cancer. The other model being the “clonal evolution-model”, which was described earlier in 1970s. It was postulated that cancer results from the accumulation of mutations in a given group of somatic cell population, within a tissue, thus given raise to heterogeneous population of cancer cells (Nowell, 1976). As the CSC-model becomes more popular, the role of CSCs, as a sub-type of cancer cells, within the tumor microenvironment has recently come to light, especially with advances in stem cell research during the last couple of decades. However, the role of CSC-exosomes, as a sub-type of cancer exosomes, is still under the shadow. Thus, in this article we aim to provide a standpoint on the possible role of CSC-exosomes, and why it should be examined as a separate group of cancer cell-exosomes, based on published literature.


Exosomes, Devoted Messengers for Good or Bad

Exosomes originate from the inward budding of the early endosomes, which later mature into multivesicular bodies (MVBs) (Doyle and Wang, 2019). Depending on their content, MVBs are either sent to the lysosome to be degraded or released into the extracellular space, forming what’s called exosomes (Doyle and Wang, 2019). Cells of different tissue types were found to release exosomes in order to facilitate intercellular communication, thus initiating different biological actions (Ma et al., 2019). Cancer cells, and cancer-associated cells, within the tumor micro-environment were also found to release exosomes. This allows them to commute their message to malignant and non-malignant cells, and initiate pathways that support tumor survival and propagation (Wortzel et al., 2019). The exosome mediated intercellular communication is enabled through “exosomal cargo”. This includes functional proteins, micro-ribonucleic acid (miRNAs) and messenger RNAs (mRNAs) (Hessvik and Llorente, 2018). Exosomes will deliver its cargo from the releasing cell into the recipient cell, which contains the encrypted message. There is a growing body of published literature on the role of cancer cell-exosomes in promoting cancer progression through enabling recipient cells to acquire the mentioned “hall marks” of cancer. A number of studies, have repeatedly shown that cancer cell-exosomes, of different cancer types, significantly increase cancer cell proliferation and inhibit apoptosis by activating various proposed cellular pathways (Zhang et al., 2018; Qian et al., 2019). Studies have also shown that cancer cell-exosomes stimulate angiogenesis by stimulating endothelial cells viability, migration, and tube formation via the transfer of pro‐angiogenic proteins and miRNAs (Yi et al., 2015; Bao et al., 2018; Lin et al., 2018; Yukawa et al., 2018). Likewise, it was reported that cancer cell-exosomes induce replicative immortality via the transfer of telomerase reverse transcriptase mRNA from the telomerase activate cancer cell to the telomerase silenced somatic cell (Gutkin et al., 2016). As for metastasis, it is projected that cancer cells induce metastasis by packing its exosomes with promoters of the epithelial–mesenchymal transition (EMT) cascade, to initiate EMT in the neoplastic epithelial cells, within the tumor microenvironment (Webber et al., 2015; Rahman et al., 2016; Xiao et al., 2016). It is also projected that cancer cells will establish a “pre-metastatic” niche through its exosomes. Cancer cells will release its exosomes into the circulation, where they travel to the metastasis site (Costa-Silva et al., 2015; Liu et al., 2016; Syn et al., 2016). There, cancer cell-exosomes will up-regulate the pro-inflammatory molecules, and vascular leakiness, to mobilize cells that constitute the pre-metastatic niche (Costa-Silva et al., 2015; Liu et al., 2016; Syn et al., 2016). Finally, it is projected that while traveling through the circulation, and engraftment into the new tissue, cancer cell-exosomes support cancer cells by allowing them to escape immune surveillance (Mrizak et al., 2015; Muller et al., 2016; Song et al., 2016). Moreover, in addition to the classical hall marks of cancer, it was reported by a recent study that prostate cancer cell-exosomes play a role in transforming local prostate tissue stem cells into CSCs (Ngalame et al., 2018). While another study reported that glioma cell-exosomes induced a “tumor-like” phenotype in bone-marrow mesenchymal stem cells (BMMSCs) (Ma et al., 2019). This was reported to be based on increased proliferation, migration, and invasion rates of treated BMMSCs. In addition to alteration in BMMSCs protein production, including the production of the metastasis-related proteins.



Cancer Stem Cell, the Black Sheep of the Stem Cell Family

CSCs are cancer cells (found within tumors) that possess characteristics associated with normal stem cells, specifically self-renewal and the ability to differentiate and give rise to different cell types found in a particular cancer specimen i.e. CSCs are tumor-forming cells (Sun et al., 2018). CSCs can be identified by using a set of unified surface markers (i.e. clusters of differentiation (CD); CD44, CD24, CD133), in addition to added tissue specific markers depending on cancer type (Phi et al., 2018). Within the tumor microenvironment, the CSCs are rear and reside in highly specialized niches (Sreepadmanabh and Toley, 2018). The CSCs niche is designed to maintain and protect the CSCs, allowing them to resist many current anticancer treatments (Prieto-Vila et al., 2017). The CSCs niche will also allow the cells to stay dormant for long periods of time, before initiating local recurrent and/or distant metastatic tumors (Plaks et al., 2015). Thus, it is hypothesized that targeting the whole tumor will only slow down tumor expansion while targeting the CSCs, in particular, will jeopardize tumor growth (Garcia-Mayea et al., 2019). At the same time, in regenerative medicine research, it was reported that stem cells and progenitor cells exert their tissue regeneration effects through the release of paracrine factors, mainly exosomes. Studies are consistently showing that injecting the cell-derived exosomes alone, is enough to induce the same regenerative effect as the “whole-cell” transplant approach. For example, it was reported that exosomes derived from embryonic stem cells (Khan et al., 2015), BMMSCs (Zou et al., 2019), and cardiac progenitor cells (Kervadec et al., 2016), all mimic the benefits of injecting their parent cells in a chronic heart failure and myocardial infarction animal models. Thus, it is logical to assume that CSCs function through the same mechanism as other cancer cells and non-cancer stem cells. We can project that CSCs fulfill its “stemness duties” through the release of paracrine factors, with exosomes as a key player.



What Is Proposed?

As discussed above, cancer cell-exosomes are crucial for tumor initiation, maintenance, and propagation. However, published literature on this subject matter often don’t describe the sub-type of cancer cells that these exosomes were derived from. It is well established by now that cancer cell-exosomes mediate cell to cell communication within the tumor microenvironment, to support and promote tumorigenesis. It is also well established by now that any alteration to parent cell, alters exosome secretion and content, which in turn alters its message. For example, when cancer cells were subjected to hypoxia prior to exosome isolation, to reflect the tumor’s hypoxic environment, these exosomes significantly increased migration and invasion of cancer cells (Li et al., 2016), and tube formation by endothelia cells (Kucharzewska et al., 2013; Hsu et al., 2017), compared with exosomes derived from normoxic cancer cells. Therefore, it could be hypothesized that the sub-population of cancer cells, CSCs, produce exosomes with unique characteristics, and thus functions. Currently, there are only few reports on “CSC-derived exosomes”, and their role in cancer propagation, compared to “non-stem cancer cell-derived exosomes” (Table 1). One of the first studies to address this issue reported that the “macrovesicles” that had the in vitro and in vivo angiogenic effect, in renal cancer, were those driven from the CD105+ cancer cell sub-population (Grange et al., 2011). Then later on, one study did a miRNA content comparison, and reported that prostate CSC-derived exosomes have in fact a different miRNA content compared with non-stem prostate cancer cell-derived exosomes (Sánchez et al., 2016). Then, a following study reported that glioma stem cell-derived exosomes promoted angiogenesis by containing a particularly high levels of miRNA-21, which upregulates the vascular endothelial growth factor (VEGF) (Sun et al., 2017). While another study identified 11 miRNAs that are characteristic of gastric CSC-derived exosomes, and suggested that a measurement of these miRNAs in patient serum could be used as a predictor of cancer metastasis (Sun et al., 2017). Other recent CSC-exosomes investigations focusing on their role in metastasis, reported that CSC-derived exosomes promote metastasis by promoting EMT in renal cell carcinoma (Wang et al., 2019) and thyroid cancer (Hardin et al., 2018) via the transfer of miRNA-19b-3p and non-coding-RNAs respectively. Whereas other reported on CSC-exosome role in creating a pro-tumoral microenvironment. For example, it was reported that glioblastoma stem cell-derived exosomes direct monocytes toward the immune suppressive “M2” phenotype, through the signal transducer and activator of transcription-3 (STAT3) pathway, creating an immunosuppressive microenvironment (Gabrusiewicz et al., 2018). While colorectal cancer stem cell-derived exosomes promote a pro-tumoral phenotype in neutrophils by increasing interleukin-(IL)-1β expression (Hwang et al., 2019)


Table 1 | Summary of published work on the distinct role of CSC-derived exosomes in tumorigenicity.



Since tumor–host cross-talk is believed to be initiated by CSCs, and communication between cancer cells and other cells is conducted through exosomes, it’s of great importance to take a closer look at the role of CSCs-exosomes, and its involvement in tumor aggressiveness. Also, to examine their miRNA content, compared to non-stem cancer cell- exosomes, in order to postulate mechanisms of actions. Then finally, develop a cancer management strategy that targets CSCs, and involves blockage of the CSC-exosome release channels.




Discussion

CSCs generate tumors through the stem cell processes of self-renewal and differentiation into multiple malignant cell types. Based on advances in cell signaling biology, it’s expected that these CSCs function through its exosomes. The term “exosome” was used in this article due to the fact that published literature describing EVs role in cancer often refer to the EV sub-type being examined as exosomes. These publications offer reasonable evidence that the EV sub-type being examined is in fact exosomes, via various methods of characterization. Other sub-types of EVs i.e. ectosomes, microvesicle particles, and apoptotic bodies, could be released by cancer cells/CSCs, and could play a role as well. However there is no adequate reporting on this in the literature. Therefore, based on findings on the role of cancer cell- exosomes, and the role of CSCs in cancer, the role of “CSC-exosomes” should be investigated as a separate entity. Such studies will encounter a significant technical and quality control issues related to harvestation of a pure CSC population, and subsequent yield of pure CSC-exosome fraction. Nevertheless, the knowledge provided by these studies will be crucial in developing a more effective approaches to control progression and metastasis of tumors and prevent recurrence.
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Alcoholic liver damage (ALD) is a toxic liver damage caused by excessive drinking. Oxidative stress is one of the most crucial pathogenic factors leading to ALD. Magnolol is one of the main active constituents of traditional Chinese medicine Magnolia officinalis, which has been reported to possess many pharmacological effects including anti-inflammatory, anti-oxidant, and anti-tumor. However, the effects of magnolol on ALD remain unclear. In this study, we firstly evaluated the protective effects of magnolol on ALD, and then tried to clarify the mechanism underlying the pharmacological activities. AST, ALT, GSH-Px, and SOD were detected by respective kits. Histopathological changes of liver tissue were analyzed by H&E staining. The activities of PI3K, Nrf2, and NLRP3 signaling pathways activation were detected by western blotting analysis. It was showed that alcohol-induced ALT and AST levels were significantly reduced by magnolol, but the antioxidant enzymes of GSH-Px and SOD levels were significantly increased. Magnolol attenuated alcohol-induced pathologic damage such as decreasing hepatic cord swelling, hepatocyte necrosis, and inflammatory cell infiltration. Furthermore, it was found that magnolol inhibited oxidative stress through up-regulating the activities of HO-1, Nrf2, and PPARγ and the phosphorylation of PI3K and AKT. And magnolol also decreased inflammatory response by inhibiting the activation of NLRP3inflammasome, caspase-1, and caspase-3 signaling pathway. Above results showed that magnolol could prevent alcoholic liver damage, and the underlying mechanism was through activating PI3K/Nrf2/PPARγ signaling pathways as well as inhibiting NLRP3 inflammasome, which also suggested magnolol might be used as a potential drug for ALD.



Keywords: alcoholic liver disease, magnolol, oxidative stress, NLRP3, PPARγ




Introduction


Alcoholic liver damage caused by excessive drinking accounts for an important proportion in liver diseases and the incidence and mortality of ALD have been increased in recent years (Koneru et al., 2017; Tang, et al., 2017). The course of ALD usually manifests as fatty liver at the beginning and turns into alcoholic hepatitis, alcoholic liver fibrosis, and alcoholic cirrhosis. Excessive drinking can also induce extensive hepatocyte necrosis or even liver failure during severe alcohol abuse (Banerjee et al., 2013; Liu et al., 2017).


Liver is the most important organ that metabolizes alcohol in the body, the ingested alcohol enters the blood circulation after being absorbed in the digestive tract, and 95% of the alcohol is metabolized by the liver (Glade and Meguid, 2017). There are three ways in the metabolism of alcohol in the body: the alcohol dehydrogenase (ADH) system, hepatic microsomal ethanol-oxidizing system (MEOS), and catalase (CAT) system (Sugimoto and Takei, 2017). By these ADH, MEOS, and CAT systems, alcohol is denatured into acetaldehyde (Jeong et al., 2000; Crabb and Liangpunsakul, 2007). Acetaldehyde causes mitochondrial function disorders (Crabb and Liangpunsakul, 2007; Kim et al., 2016). In addition, acetaldehyde can also combine with various proteins to form acetaldehyde addenda, which acts as an antigen to cause an immune reaction, thereby participating in the occurrence and development of liver damage (Morimoto et al., 1995; Niemela et al., 1998).


It has been reported that oxidative stress is recognized as one of the most important pathogenesis of ALD (Liu et al., 2017; Liu et al., 2018;). When a large amount of alcohol is consumed, the acetaldehyde, an intermediate of alcohol metabolism, greatly increases the amount of reactive oxygen species (ROS) in the body, causing oxidative stress in the liver (Kim et al., 2016; Grander et al., 2018). The antioxidants in the body will be consumed in large quantities, and the antioxidant system will not perform its normal function, especially the protection of the liver under these circumstances (Kim et al., 2016; Sugimoto and Takei, 2017).


Magnolol is the main chemical component of the traditional Chinese medicine Magnolia officinalis (Chen et al., 2009). It is reported that magnolol can alleviate dextran sulfate sodium-induced colitis through regulating inflammation and mucosal damage in mice (Zhao et al., 2017). Other researchers have reported toxicity tests of magnolol in vivo and in vitro. Magnolol was concentrated at 240 mg/kg without adverse effects on the body (Sarrica et al., 2018). Magnolol also inhibits the proliferation and invasion of cholangiocarcinoma cells by inhibiting NF-κB signaling pathway (F. H. Zhang et al., 2017) and promotes heat production and attenuates oxidative stress in 3T3-L1 adipocytes (Parray et al., 2018). Although many studies have demonstrated the pharmacological effects of magnolol on above diseases, the effect of magnolol in preventing ALD through antioxidant and anti-inflammatory pathways has not been reported. Thus, in this study, we aimed to investigate the effects of magnolol on ALD and explore its underlying mechanisms.




Materials and Methods



Chemicals and Reagents


Magnolol was purchased from National Institutes for Food and Drug Control (Beijing, China). Ethanol was bought from Beijing Chemical Works (Beijing, China). AST, ALT, SOD, iNOS, and GSH-Px kit were provided by Nanjing Jiancheng Bio-engineering Institute (Nanjing, China). Cox-2 and CYP2E1 Elisa kits were bought from Shanghai Lanpai Biotechnology co. LTD. Antibodies against GAPDH, p-AKT, AKT, Nrf2, HO-1, NLRP3, p-PI3K, and PI3K were purchased from Boster bioengineering co. LTD (Wuhan, China). Antibodies against PPARγ and Caspase-3 were obtained from Cell Signal Technology (Boston, MA, USA). Anti-Caspase-1 antibody was bought from Abcam (Cambridge, MA, USA). Additionally, all other chemicals were provided by Beijing Chemical Works (Beijing, China), if not otherwise indicated.




Animals


Male BALB/c mice (6–8 weeks, 18–22 g) were purchased from Liaoning Changsheng Biotechnology Co., Ltd (Certificate SCXK2010–0001; Liaoning, China). Mice were housed under 12-h light and 12-h dark-protected cycling conditions with the temperature at 24 ± 1°Cand the relative humidity is 50% ± 10%. Adaptive feeding for 5 days before the start of the experiment, during which the mice were free to eat and drink. All animal experiments were approved by the Care and Use of Laboratory Animals of the Jilin University and in accordance with the current Animal Protection Laws of China.




Experimental Design


The mice were randomly divided into five groups (n = 5 per group) as follows:




		(I) Control group: mice were intraperitoneally injected with 300 µl of 0.9% saline per day.




		(II)  Ethanol group: mice were intraperitoneally injected with the same volume of 0.9% saline per day and gavaged with ethanol [15 ml/kg BW, absolute ethanol, the acute oral toxicity limits is 22.5 (18.8-27.0) ml/kg (Kimura et al., 1971)] on the last day.




		(III) Ethanol + 5 mg/kg magnolol group: mice were intraperitoneally injected with magnolol (5 mg/kg BW mixed in 300 µl of 0.9% saline) per day and gavaged with ethanol 1 h later on the last day.




		(VI) Ethanol + 10 mg/kg magnolol group mice were intraperitoneally injected with magnolol (10 mg/kg BW mixed in 300 µl of 0.9% saline) per day and gavaged with ethanol 1 h later on the last day.




		(V) Ethanol + 20 mg/kg magnolol group: mice were intraperitoneally injected with magnolol (20 mg/kg BW mixed in 300 µl of 0.9% saline) per day and gavaged with ethanol 1 h later on the last day.









The duration of the whole experiment was 3 days and the mice were sacrificed after 9 h of gavage on the last day. Then the serum was separated and the liver tissue was fixed in formaldehyde or prepared for cryopreservation at -80°C for further use.




Analysis of AST and ALT


The blood sample was placed in a refrigerator overnight at 4°C and centrifuged at 3,000 rpm (10 min, 4°C) the next day, and then we detected alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum via the kits purchased from Nanjing Jiancheng Bioengineering Institute. All operating steps were carried out in strict accordance with the instructions, and then the absorbance was measured via using a microplate reader. The results were calculated and analyzed.




Histopathological Examination


The liver tissue was fixed in formaldehyde solution for 48 h and then embedded in paraffin. Paraffin sections were dehydrated using ethanol and stained with hematoxylin-eosin and observed under a light microscope for assessment of histopathological damage.




SOD and GSH-PX Analysis


Frozen liver tissue (0.5 g) was used for SOD and GSH-PX analysis. The blood was removed by rinsing with ice-cold saline and the liver tissue was wiped clean with filter paper. Cut the liver tissue block as soon as possible and pour it into the pre-cooled homogenate medium (4.5 ml, pH 7.2–7.4) for grind in homogenization. Then the resulting suspension homogenate was centrifuged at 3,000 rpm (10 min, 4°C). The precipitate was discarded and the supernatant was retained for detection. All operations were performed according to the instructions. All the liquids required were mixed and allowed to stand at room temperature for 15 min, and then the absorbance at 412 or 550 nm was measured to determine the level of glutathione peroxidase (GSH-Px) or superoxide dismutase (SOD) of each group.




qReal-time PCR Analysis


Frozen liver tissue (0.1 g) in a mortar was grinded into powder with liquid nitrogen, and then transferred it to a 1.5 ml centrifuge tube. Total RNA was extracted from liver tissues using TRizol and the RNA samples were dissolved in 0.1% DEPC (diethyl pyrocarbonate) water. RNA samples were reverse transcribed to cDNA using the Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Scientific ™) according to the instructions provided by the supplier. The FS Universal SYBR Green Master (F. Hoffmann-La Roche Ltd.) was used to establish a 25 μl system to detect changes in IL-1β, TNF-α, iNOS (nitric oxide synthase), CYP2E1 (cytochrome P450 2E1), and Cox-2 (cyclooxygenase-2) mRNA expression in liver tissues. The primers used were purchased from Sangon Biotech (Shanghai) Co., Ltd. And qReal-time PCR (qRT-PCR) was performed on a 7500 real-time PCR system (Applied Biosystems, Carlsbad, CA, USA).




Enzyme Activity Test


Cox-2 and CYP2E1 activities were detected by respective ELISA kits, and iNOS activity was detected by nitric oxide synthase (NOS) typing kit. Frozen liver tissue (0.1 g) was added to 900 μl of physiological saline and centrifuged at 15,000 rpm for 10 min (4°C) to obtain a supernatant. All operations were strictly implemented according to the instructions. The optical density (O.D) of Cox-2 and CYP2E1 was detected at 450 nm using a microtiter plate reader within 15 min, and the absorbance of samples to detect the activity of iNOS was measured at 530 nm using an ultraviolet spectrophotometer.




Western Blotting Analysis


RIPA (Radio Immunoprecipitation Assay) Lysis and Extraction Buffer (Thermo Scientific ™) was added to frozen liver tissue samples, and they were grinded in a homogenizer. The obtained tissue homogenate was centrifuged at 15,000 rpm (10 min, 4°C) and the supernatant was left. Then the Pierce ™ BCA (bicinchoninic acid) Protein Assay Kit (Thermo Scientific ™) was used to determine protein concentration. Equal amounts of proteins were separated by 10–12% SDS polyacrylamide gels and transferred to polyvinylidene fluoride (PVDF) membranes. The PVDF membranes were blocked with 5% skim milk for 3 h on a shaker at room temperature and then incubated with the primary antibodies (diluted with 5% skim milk) overnight at 4°C, and the concentrations of the primary antibodies are as follows: the concentration of primary antibody used for GAPDH, p-AKT, AKT, Nrf2, HO-1, NLRP3, p-PI3K, PI3K, and Caspase-1 was 0.5 μg/ml, and the concentration of primary antibody used for PPARγ, and Caspase-3 was 1 μg/ml. The membranes were washed via Tris-Buffered Saline Tween-20 (TBST) three times for 10 min each time and then incubated with the secondary antibodies (diluted with TBST) on the second day. Finally, the membranes were visualized with the chemiluminescent HRP substrate after washed again by TBST and analyzed via Image J gel analysis software.




Statistical Analysis


All the above data were expressed by means ± SD, and each group of data was analyzed by one-way ANOVA combined with Tukey’s multiple comparison tests for comparison using the GraphPad Prism 6.0 software. Statistical significance was considered as P < 0.05.





Results



Magnolol Decreased the ALT and AST Levels in the Serum of Alcohol-Induced Liver Damage


AST and ALT are biomarkers for liver damage. AST and ALT levels in serum were examined by respective kits. As showed in Figure 1, the AST and ALT levels in the alcohol group were significantly higher than control group. In contrast, the levels of AST and ALT in the magnolol treated groups were significantly reduced, especially in the highest concentration group (20 mg/kg), which was close to the control group.






Figure 1 | Effects of magnolol on mice alcohol-induced liver damage in ALT and AST levels. Magnolol was given for 3 days and alcohol was gavaged 10 h after the last dose. We used the blood to detect the serum AST and ALT. The data were demonstrated as means ± SD. (*P < 0.05, **P < 0.01).









Figure 2 | Effects of magnolol on histopathological changes of liver tissues in alcohol-induced liver damage. (A) Control. (B) Alcohol. (C) Alcohol + magnolol (5 mg/kg). (D) Alcohol + magnolol (10 mg/kg). (E) Alcohol + magnolol (20 mg/kg). The black arrow in (B) represents inflammatory cell infiltration.







Magnolol Attenuated Alcohol-Induced Liver Damage in Mice


To further confirm the protective effects of magnolol on alcohol-induced liver damage, histopathological examination was carried out. It was found in Figure 2 that alcohol caused hepatic cord swelling, hepatocyte necrosis, and inflammatory cell infiltration, but magnolol significantly improved the above pathological conditions.




Magnolol Increased the Antioxidant Enzymes of SOD and GSH-Px in ALD


SOD and GSH-Px are antioxidant enzymes that represent the capacity of liver. To further investigate the mechanism by which magnolol prevented alcoholic liver damage, we examined the levels of SOD and GSH-Px in liver. The results showed that the levels of SOD and GSH-Px were significantly decreased in the alcohol-treated mouse liver. However, magnolol pretreatment reversed this result, and the values of SOD and GSH-Px gradually increased in a dose-dependent manner (Figure 3).






Figure 3 | Effects of magnolol on mice alcohol-induced liver damage in SOD and GSH-Px level. Before alcohol was gavaged, magnolol was given for 3 days. We took the liver tissue to measure SOD and GSH-Px. The date is presented as mean ± SD. (*P < 0.05, **P < 0.01, ***P < 0.001and "ns" means not significant).







Magnolol Down-Regulated the Expression of iNOS, Cox-2, and CYP2E1 in Alcoholic Liver Damage


iNOS and Cox-2 are usually activated in the process of oxidative stress and inflammation, which result in tissue damage (Song et al., 2018). CYP2E1 is also a key enzyme in regulating alcoholic liver damage. The effect of magnolol on the expressions and the enzymatic activities of ALD, iNOS, Cox-2, and CYP2E1 was investigated in qRT-PCR and ELISA methods. The results showed that alcohol significantly increased iNOS, Cox-2, and CYP2E1 in the liver, but magnolol pretreatment markedly down-regulated the expression of these enzymes at the level of gene and enzyme expression (Figures 4 and 5).






Figure 4 | Effects of magnolol on mice alcohol-induced liver damage in iNOS, Cox-2, and CYP2E1 at the genetic level. q-RT PCR analysis was used to detect the expression of iNOS, Cox2, and CYP2E1 at the genetic level. The data is presented as mean ± SD. (*P < 0.05, **P < 0.01, ***P < 0.001).









Figure 5 | Effects of magnolol on mice alcohol-induced liver damage in iNOS, Cox-2, and CYP2E1 at the enzyme level. iNOS, Cox-2, and CYP2E1 were examined by enzyme activity test. The data is presented as mean ± SD. (**P < 0.01, ***P < 0.001).







Magnolol Upregulated the AKT/PI3K Signaling Pathway in ALD


The association of magnolol in alcoholic liver damage through the AKT and PI3K signaling pathways was analyzed through measuring the expression levels of AKT and PI3K within Western blotting. As shown in Figure 6, alcohol decreased the phosphorylation of AKT and PI3K, but these trends were significantly changed by magnolol in a dose-dependent manner. This result indicated that magnolol could weaken the damage caused by inhibiting oxidative stress and play a critical protective effect in the process of alcoholic liver damage.






Figure 6 | Effects of magnolol on mice alcohol-induced liver damage in the AKT/PI3K signaling pathway. Liver tissues were extracted for protein analysis by western blotting. AKT and PI3K, proteins expression were detected. The levels of AKT and PI3K were compared with GAPDH. The data were demonstrated as means ± SD. (*P < 0.05, **P < 0.01, ***P < 0.001).







Magnolol Pretreatment Activated Alcohol-Inhibited Nrf2/HO-1 Signaling Pathway


It is reported that Nrf2 is a downstream target of AKT/PI3K signaling pathway (Ali et al., 2018). And Nrf2/HO-1 signaling pathway takes part in oxidation resistance process, whether magnolol also exerts a protective effect on alcoholic liver damage by regulatingNrf2/HO-1signaling pathway has been unknown. So the effect of magnolol on Nrf2/HO-1 signaling pathway in alcoholic liver damage was detected. As shown in Figure 7, alcohol reduced the expression of Nrf2, but increased HO-1 expression. It may be due to that HO-1 is an inducible enzyme, acute alcohol stimulation shows an increased reactivity in the early stages. But, once a cascade of uncontrolled outbreaks (such as in alcoholic hepatitis) occurs during stress, it may result in excessive consumption of HO-1 in this process leading to a decrease in its level (Liu et al., 2018). However, magnolol effectively enhanced the activation of Nrf2 and HO-1 in a dose-dependent way. Suggesting that oxidative stress inhibited by magnolol partly owed to activating the Nrf2/HO-1 signaling pathway. Western blotting analysis showed that the protein expression of Nrf2 and HO-1 could be increased to normal level when the concentration of magnolol was 5 mg/kg, which indicated that Nrf2 and HO-1 signaling pathways may be the key targets of magnolol.






Figure 7 | Effects of magnolol on mice alcohol-induced liver damage in the Nrf2/HO-1 signaling pathway. After the completion of modeling and samples were collected, the liver of mice was lysed to detect the proteins by western blotting analysis. The levels of Nrf2 and HO-1 were compared with GAPDH. The data were demonstrated as means ± SD. (*P < 0.05, ***P < 0.001 and "ns" means not significant).







Magnolol Protected the Liver From Alcohol Damage by Activating PPARγ


It is reported that PPARγ and Nrf2 have a mutually regulated relationship (Lee, 2017). To further explore the relevant mechanisms, the expression of PPARγ was detected by western blotting analysis. As shown in Figure 8, alcohol stimulation led to a significant decrease in the expression of PPARγ protein, but the treatment of magnolol reversed this result, and as the concentration of magnolol increased, the expression of PPARγ increased. It was proved that PPARγ was also involved in the antioxidant process of magnolol.






Figure 8 | Effects of magnolol on mice alcohol-induced liver damage in PPARγ expression. The collected samples were analyzed for the expression of PPARγ using western blotting analysis. The expression of PPARγ was compared with GAPDH. The data were demonstrated as means ± SD. (*P < 0.05, **P < 0.01, ***P < 0.001 and "ns" means not significant).







Magnolol Decreased the Expression of Inflammatory Cytokines IL-1β and TNF-α in Alcoholic Liver Damage


ALD usually accompanied with the activation of inflammatory cytokines such as IL-1β and TNF-α (Tang et al., 2015). qRT-PCR analysis was used to detect the effects of magnolol on the expression of inflammatory cytokines in the process of ALD. As presented in Figure 9, alcohol enhanced the expression of IL-1β and TNF-α compared with the control group, but magnolol significantly decreased the expression of IL-1β and TNF-α.






Figure 9 | Effects of magnolol on the expression of inflammatory cytokines IL-1β and TNF-α in alcoholic liver damage. Acute alcohol attack stimulated the up-regulation of TNF-α and IL-1β at mRNA measured by q-RT PCR analysis. Magnolol pretreatment significantly inhibited the up-regulation of TNF-α and IL-1β in ALD mice. The data is presented as mean ± SD. (*P < 0.05, **P < 0.01, ***P < 0.001)







Magnolol Inhibited NLRP3 Inflammasome, Caspase-1, and Caspase-3 Signaling Pathway in ALD Mice


Reports showed that NLRP3 plays an important role in the inflammatory response and the maturation of IL-1β. Western blotting analysis showed that alcohol elevated the activities of NLRP3, Cleaved-Caspase-1, and Cleaved-Caspase-3 (Figure 10). However, magnolol pretreatment significantly inhibited alcohol-activated these proteins expressions (Figure 10), suggesting that magnolol also prevents inflammatory responses of ALD via inhibiting NLRP3 inflammasome, caspase-1, and caspase-3 signaling pathway.






Figure 10 | Effects of magnolol on NLRP3 inflammasome, caspase-1 and caspase-3 signaling pathway in ALD mice. Magnolol was given to mice for three times, and then alcohol was gavaged. The level of NLRP3 inflammasome, caspase-1 and caspase-3 was detected by western blotting analysis with the compared with the internal control (GAPDH). The data is presented as mean ± SD. (*P < 0.05, **P < 0.01, ***P < 0.001).








Discussion


Many studies have reported the pathogenesis of ALD, and more drugs with less toxic and side effect for clinic treatment are urgently needed. Silymarin is currently recognized as an effective treatment for ALD due to its excellent role in ALD treatment and its excellent safety record (Saller et al., 2001). It is reported that silymarin significantly attenuated alcoholic liver injury was through inhibiting NF-κB signaling pathway and reducing excess oxygen free radicals (Song et al., 2006; Zhang et al., 2013). Magnolol is now widely used in clinical treatment like antidepressants and anti-inflammatory. Magnolol abrogates depressive-like behaviors by inhibiting neuroinflammation and oxidative stress (Cheng et al., 2018). Magnolol is used as an antioxidant to treat coliform enteritis in clinical practice (Deng et al., 2017). But the protective effect of magnolol on ALD is still unclear. So we established the model of ALD to investigate the role of magnolol in alcohol-induced liver damage and then explored the underlying mechanisms. The results showed that magnolol effectively protected the liver by reducing oxidative stress and inflammation in alcohol-induced liver damage.


AST and ALT are common markers for determining liver damage. Our result showed the levels of AST and ALT increased by alcohol were increased, but magnolol pretreatment could markedly reduce the content of AST and ALT. In addition, pathological changes such as the liver necrosis, inflammatory cell infiltration, and lipid droplets were improved in the liver of the mice pretreated with magnolol compared with the alcohol group. The above results showed that we successfully built the model of ALD, but the underlying mechanism of how magnolol protected the liver from alcohol damage was unclear.


Oxidative stress is an important pathogenic mechanism of ALD. CYP2E1 is one of the main enzymes in MEOS and plays a vital role in ethanol metabolism (Doody et al., 2017; Yuan et al., 2018). After excessive drinking or drinking a high concentration of alcohol, the activity of CYP2E1 is promoted and resulting in excessive reactive oxygen species (ROS) (Chen., 2014; Zeng et al., 2018). Then large amounts of reducing substances in the tissue including SOD and GSH-Px are consumed; alcohol-induced GSH-Px and SOD consumption are thought to aggravate oxidative damage in ALD mice model (Cederbaum, 2013; Zeng et al., 2018). The remaining lots of ROS cannot be inactivated, which also promotes the production of toxic lipid intermediates by fatty acids through abnormal decomposition reactions, causing oxidative stress and damage to the liver (Chen et al., 2014; Zeng et al., 2018). Besides, several reports indicated that iNOS and Cox-2, which are key mediators, play roles in the development of liver damage (Li et al., 2017). Our results showed that magnolol significantly increased the activities of SOD and GSH-Px in the liver, and it effectively reduced the expression of CYP2E1, iNOS, and Cox-2, which revealed that magnolol pretreatment could improve antioxidant capacity of the host to prevent ALD.


The PI3K/AKT signaling pathway can be activated by a variety of different cell stimuli and toxins and can be involved in the regulation of many cellular processes (Zhao et al., 2016). Oxidative stress produced by ROS can lead to down-regulation of PI3K and AKT (Pan et al., 2017). Western blotting analysis showed a decrease in the expression of PI3K and AKT in the model group compared to the blank group. However, magnolol activated the PI3K/AKT signaling pathway in a dose-dependent manner. Research reports that Nrf2 is a downstream target of PI3K/AKT (J. Zhang et al., 2017), and PI3K/AKT signaling pathway can regulate Nrf2/HO-1 transcription (Pan et al., 2017; J. Zhang et al., 2017). So we next tested the prevention of magnolol to ALD through Nrf2/HO-1 signaling pathway.


It is reported that Nrf2/ARE (antioxidant response element) is a newly discovered defensive transduction pathway against external oxidation and chemical stimulation (Li et al., 2018). Under physiological conditions, the binding of Nrf2 and Keap1 (Kelch-like ECH-associated protein-1) in the cytoplasm is in a state of easy degradation (Zhu et al., 2016; Li et al., 2018). When stimulated by internal and external free radicals and chemicals, the conformation of Keap1 changes or Nrf2 is phosphorylated directly (Jiang et al., 2017). The activated Nrf2 enters the nucleus and binds to the antioxidant element ARE to activate the expression of downstream antioxidant protease and HO-1 to resist the internal and external stimulation (Loboda et al., 2016; Ge et al., 2017). Then the potential mechanism that Nrf2/HO-1signaling pathway plays in the protection of magnolol to the liver from ALD was asked. It was revealed that alcohol decreased the expression of Nrf2, but the pretreatment of magnolol could reverse the decline of Nrf2. However, the expression level of HO-1 in the alcohol group was increased compared to the control group. The same situation in other’s studies was also found that ethanol can induce increased expression of HO-1. Up-regulation of HO-1 may be one of the most critical cytoprotective mechanisms in cellular stress (Gong et al., 2003). Since HO-1 is an inducible enzyme, HO-1 exhibits an increased reactivity during the early stages of acute ethanol stimulation. However, the consumption of HO-1 in this process leads to a decline in its level until ALD develops into alcoholic hepatitis (Liu et al., 2018). This may explain why the expression level of HO-1 in alcohol group is higher than that in the control group in this study. And with the increase of the concentration of magnolol, the expression of HO-1 gradually increased in a dose-dependent way, indicating that magnolol could enhance the protective ability against ALD by Nrf2/HO-1 signaling pathway. In addition, western blotting analysis showed that the protein expression of Nrf2 and HO-1 could be increased to normal level at low concentration of magnolol, while the protein expression of other signaling pathways could be the normal level only at medium or high concentration, suggesting that Nrf2 and HO-1 signaling pathway may be the key target of magnolol action.


PPARγ is a subtype of PPARs (peroxisome proliferator-activated receptors), which controls many intracellular metabolic processes and belongs to ligand-induced nuclear receptors (Rosen and Spiegelman, 2001). It is reported that Nrf2 regulates PPARγ, and the expression of PPARγ in Nrf2-knockout mice is significantly reduced under oxidative stress (Lee, 2017). It was also found that Nrf2 and PPARγ are mutually regulated, and the two pathways are positive feedback (Reddy and Standiford, 2010). PPARα, another member of the PPAR family, plays a key role in regulating liver fatty acid oxidation, and long-term drinking can cause a decrease in PPARα expression in the liver. Administration of PPARα agonists improves liver disease in mice caused by chronic alcohol exposure (Chen et al., 2017; Ding et al., 2017). Sterol regulatory element binding protein-1c (SREBP-1c) is an intracellular cholesterol sensor located in the endoplasmic reticulum. Overexpression of SREBP-1c increases ROS levels in hepatocytes and aggravates inflammatory damage in liver tissue, whereas activation of PPAR-α inhibits SREBP-1c signaling pathway (Ren et al., 2017). Our results showed that the expression of PPARγ in the alcohol group had decreased, but the expression in the magnolol pretreatment groups was increased. It revealed that magnolol could improve the antioxidant ability through activating PPARγ to prevent the liver from ALD.


In addition to oxidative stress, excessive inflammatory response in the liver is also another general disease mechanism recognized by ALD. Studies have shown that pro-inflammatory factors like IL-1β and TNF-α can aggravate the degree of liver damage (Sun et al., 2018). Our results revealed magnolol pretreatment effectively reduced the secretion of IL-1β and TNF-α in ALD. Besides, NLRP3 inflammasome plays a key role in many disease processes and it has the potential to bridge the link between inflammatory and oxidative stress responses (Haneklaus and O’Neill, 2015; Hughes and O’Neill, 2018). NLRP3 recruits and activates the pro-inflammatory protein Caspase-1, and activated Caspase-1 stimulates macrophage secretion of IL-1β to induce liver damage (Shao et al., 2015). Recent research reports that Nrf2, PI3K, and PPARγ can regulate the expression of NLRP3. Nrf2 prevents NLRP3 inflammasome activation by regulating Trx1/TXNIP complex in cerebral ischemia-reperfusion injury (Hou et al., 2018). PPARγ has an anti-inflammatory effect by inhibiting NLRP3 in spinal cord-derived neurons (Meng et al., 2019). Our results revealed that magnolol could down-regulate the activation of the NLRP3 inflammasome, caspase-1, and caspase-3 caused by alcohol, and then the downstream secretion of the pro-inflammatory cytokine IL-1β was inhibited, suggesting that magnolol has the ability to prevent liver from ALD by alleviating inflammatory response and oxidative stress.


In conclusion, our results confirmed that magnolol could prevent alcohol-induced liver damage by inhibiting oxidative stress and inflammation. And this study also provided a potential basis for future clinical ALD treatment and research.
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