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Trichomicin, a small-molecule compound isolated from fungi, has been identified with
bioactivity of antitumor. In this study, a colon cancer subcutaneous mice model was used
to evaluate the antitumor effects of Trichomicin in vivo. Treatment with Trichomicin
significantly inhibited tumor growth in a xenograft mouse colon cancer model. The
underlying molecular mechanism has also been investigated through the quantification
of relevant proteins. The expression levels of IL-6 and TNFawere reduced in tumor tissues
of mice treated with Trichomicin, which was consistent with results of in vitro experiments
in which Trichomicin suppressed the expression of IL-6 and TNFa in tumor and stromal
cells. In addition, Trichomicin inhibited TNFa-induced activation of NF-kB and basal Stat3
signaling in vitro, which resulted in reduced expression of the immune checkpoint protein
PD-L1 in tumor and stromal cells. Conclusively, Trichomicin, a promising new drug
candidate with antitumor activity, exerted antitumor effects against colon cancer through
inhibition of the IL-6 and TNFa signaling pathways.

Keywords: Trichomicin, antitumor, colorectal cancer, signal transducer and activator of transcription 3,
programmed cell death ligand 1, nuclear factor kB
INTRODUCTION

Colorectal cancer (CRC) is the 3rd most common cancer and the 2nd leading cause of cancer-related
death worldwide, according to WHO data in 2019. Furthermore, the incidence of CRC in
individuals younger than 50 years of age has increased (Ganesh et al., 2019). The combination of
chemotherapy and anti-angiogenic therapy is the first line treatment for metastatic colorectal cancer
(mCRC). Unfortunately, drug-resistance is a major cause of poor survival rates in patients with CRC
(Van der Jeught et al., 2018; Dekker et al., 2019). Immune checkpoint therapy was approved in 2017
for treatment of severely mutated CRC with high levels of microsatellite instability (MSI-H), but its
efficacy is strongly associated with cancer metabolism and the tumor microenvironment (TME)
in.org April 2020 | Volume 11 | Article 3861
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(Pedrosa et al., 2019). The TME contains immune cells, cancer
cells, and surrounding stromal cells, which are important sources
of cytokines that can promote development and progression of
CRC (Koumenis et al., 2014; Zitvogel et al., 2017). Therefore,
modulation of the TME may inhibit tumor growth or maximize
immunotherapeutic benefits in patients with CRC (Eyob et al.,
2013; Adams et al., 2015).

Some cytokines in the TME promote cancer cell proliferation
and tumor growth, particularly in CRC (Crusz and Balkwill,
2015; West et al., 2015). In the dextran sodium sulfate-
azoxymethane (DSS-AOM) model, IL-6-dependent Stat3
signaling is a critical promoter of CRC cell survival and
proliferation (Bollrath et al., 2009; Grivennikov et al., 2009).
Although TNFa was first identified as a tumor-suppressive
cytokine, it has been shown to promote tumors through
increased inflammation in CRC (Popivanova et al., 2008;
Balkwill, 2009). Increased levels of TNFa and IL-6 were
detected in tumor tissues and sera of patients with colorectal
cancer, and these cytokines were associated with increased tumor
burden and tumor staging, metastasis, and lower overall survival
(Coskun et al., 2017; Miranda et al., 2018). In addition, TNFa
and IL-6 have been shown to promote activation of the key
oncogenic transcription factors NF-kB (Nuclear factor kB) and
Abbreviations: TME, Tumor microenvironment; TAMs, Tumor associated
macrophages; CRC, Colorectal cancer; NF-kB, Nuclear factor kB; Stat3, Signal
transducer and activator of transcription 3; IKK, IkB kinase; GAPDH,
Glyceraldehyde-3-phosphate dehydrogenase; PD-1, Programmed cell death
protein 1; PD-L1, Programmed cell death Ligand 1; IL-6, Interleukin-6; TNFa,
Tumor Necrosis Factor-a; LPS, Lipopolysaccharide; siRNA, Small interfering
RNA; PMA, Phorbol 12-myristate 13-acetate; STR, Short tandem repeat; CAFs,
Colon carcinoma associated fibroblasts; FBS, Fetal bovine serum; PBS, Phosphate
buffer saline; DMSO, Dimethyl sulfoxide; CMC, Carboxymethylcellulose; ELISA,
Enzyme Linked Immunosorbent Assay; PCR, Polymerase Chain Reaction.
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Stat3 (Signal transducer and activator of transcription 3), which
contribute to development and progression of CRC
(Grivennikov and Karin, 2010; De Simone et al., 2015).

Trichomicin, a compound with antitumor activity, has been
reported to significantly induce apoptosis in HT29 cells, and
reduced IL-6 expression and phosphorylation of Stat3 in our
previous study (Zhu et al., 2020). Based on these findings, we
evaluated the antitumor effects of Trichomicin against colon
cancer in a colorectal tumor animal model, and evaluated the
role IL-6 and TNFa in these effects. Our results showed that
Trichomicin significantly suppressed tumor activity in a CRC
xenograft model by downregulating the expression of IL-6 and
TNFa, which resulted in inhibition of the expression of the
immune check point ligand protein, PD-L1, through inhibition
of the Stat3 and NF-kB signaling pathways. Our findings provide
a foundation for development of Trichomicin as an agent for
treatment of CRC.
MATERIALS AND METHODS

Cell Lines, Cell Culture, and Reagents
Human CRC cell lines HCT-116, Caco-2, and HT-29 and an
acute monocytic leukemia cell line THP1 were obtained from
China Infrastructure of Cell Line Resource (Beijing, China). All
cell lines were verified using short tandem repeat (STR) analysis.
Human colon carcinoma-associated fibroblasts (CAFs) were a
gift from the affiliated hospital of Inner Mongolia Medical
University and were identified by AmpFℓSTR Identifiler Plus
PCR Amplification Kit prior to use. Cells were maintained in
DMEM/F12 (CAFs), MEM (Caco-2), or RPMI 1640 (other cell
lines) medium supplemented with 10% fetal bovine serum (FBS),
1% sodium pyruvate solution, and 1% penicillin/streptomycin
(Gibco, Grand Island, NY, USA) in a 37°C, 5% CO2, fully
humidified incubator. Trichomicin (1mM and 10mM, lab
stock), PMA (10mM, Calbiochem, Darmstadt, GER), and BP-
1-102 (5 mM, Selleck Chemicals, TX, USA) were dissolved in
DMSO and were further diluted with medium (for cell assays)
(Zhu et al., 2020). Interleukin 6 (10 mg/ml, Peprotech, NJ, USA),
TNFa (10 mg/ml, Peprotech, NJ, USA), and lipopolysaccharide
(LPS) (1 mg/ml, Calbiochem, Darmstadt, GER) were dissolved in
PBS, passed through a 0.22–mm filter, then stored at -80°C (Zhu
et al., 2020).

In Vivo Xenograft Studies
Female nude mice (BALB/c, nu/nu, 18–22 g) were purchased
from Beijing Vital River Laboratory Animal Technology. All
animal experiments were approved by the Peking Union Medical
College (PUMC) Pharmaceutical Institutional Animal Care and
Use Committee. A xenograft mouse model was generated by
subcutaneously injecting HT-29 cells (1×107 cells per mouse)
into the flanks of 8-week-old female nude mice (eight mice per
group, 24 mice in total). When tumor volumes reached 200 mm3,
T r i chomic in wa s d i l u t ed in 0 . 5% (w/v ) sod ium
carboxymethylcellulose (CMC), and administered at 60 mg/kg
daily by oral gavage. Cisplatin (3 mg/kg) was administered
GRAPHICAL ABSTRACT | Diagram illustrating the signaling cascade that
Trichomicin regulates TNFa-NF-kB and IL-6-Stat3 pathways.
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intraperitoneally (I.P.) two times per week, and control animals
received oral 0.5% (w/v) CMC and an I.P. injection that
contained 100 ml of PBS as placebo. Tumor volume and body
weight were measured twice per week. Following treatment, the
mice were sacrificed and tumor tissues were processed for
detection of IL-6/TNFa using enzyme-linked immunosorbent
assay (ELISA).

Quantification of IL-6/TNFa
Culture media from CRC cells were collected by centrifuging the
cells at 1,000 rpm for 10 min following 48 h of cell culture. To
generate macrophage-like cells, THP1 cells were incubated with
160 nM PMA at 37°C for 24 h at 1×105 cells/well in 24-well plates
(Zhu et al., 2020). Then cells were incubated with Trichomicin
and LPS (1 mg/ml) or culture supernatants from different CRC
cell lines (12.5%) in fresh culture medium for 12 h. The
supernatants were collected and analyzed to determine
cytokine profiles using ELISA (Boster, Wuhan, China). Total
RNA extraction and cDNA synthesis were performed using an
E.Z.N.A. HP Total RNA Kit (Omega Bio-tek, Doraville, GA,
USA) and First-Strand cDNA Synthesis SuperMix (Transgen
Biotech, Beijing, China) (Zhu et al., 2020). Quantitative real-time
PCR was performed on a CFX96 Touch Real-Time PCR
Detection System (Bio-Rad, CA, USA) using FastStart
Universal SYBR Green Master (Roche, CA, USA) (Zhu et al.,
2020). For each sample, the mRNA levels of IL-6 and TNFa were
normalized to GAPDH levels and quantitated using the 2−DDCt

method. Following with the primers used for real-time PCR:
GAPDH (forward, 5′-GCACCGTCAAGGCTGAGAAC-3′;
reverse, 5′-TGGTGAAGACGCCAGTGGA-3′), IL-6 (forward,
5 ′ -CCACACAGACAGCCACTCAC-3 ′ ; r e ve r s e , 5 ′ -
TTTCACCAGGCAAGTCTCCT-3′) (Zhu et al., 2020), TNFa
(forward, 5′-TGTAGCAAACCCTCAAGCTG-3′; reverse, 5′-
TTGATGGCAGAGAGGAGGTT-3′).

Gene Silencing Using RNAi Transfection
SignalSilence® NF-kB p65 siRNA and control siRNA were
obtained from Cell Signaling Technology (MA, USA).
Lipofectamine RNAiMAX transfection reagent was used to
transfect siRNA (Invitrogen, CA, USA). HCT-116 cells were
seeded in 6-well plates (3×105 cells/well) and allowed to adhere
overnight. Then, NF-kB p65 siRNA or control siRNA (25 pmol/
well) was mixed with RNAiMAX reagent at a 1:3 ratio, and
transfection was performed according to the manufacturer's
instructions. The medium was removed after 3 days.

Western Blot
Cell lysates were prepared in RIPA lysis buffer containing
phosphatase inhibitor (Applygen Technologies, Beijing, China)
as previously described (Zhang et al., 2016). Equal amounts of
protein were separating using SDS-PAGE, then transferred to
PVDF membranes (Millipore, MA, USA). After blocking, the
membranes were incubated with the following primary
antibodies at 4 °C overnight: Phospho-NF-kB p65 (Ser536),
Phospho-Stat3 (Tyr705), Phospho-IKKa/b (Ser176/180),
Phospho-IkBa (Ser32), IKKb, Stat3, NF-kB p65, IkBa, PD-L1,
and GAPDH (Cell Signaling Technology, MA, USA). Proteins
Frontiers in Pharmacology | www.frontiersin.org 3
were detected using HRP-conjugated secondary antibodies and
Immobilon™ Western Chemiluminescent HRP substrate
(Millipore, MA, USA). Protein band density was quantified
using a ChemiDoc ™ Imaging System (Bio-Rad, CA, USA).

Statistical Analysis
All quantitative results were obtained from at least three
independent experiments, and are presented as the mean±SD.
Differences between two groups were evaluated using Student's t-
tests. P < 0.05 was considered statistically significant.
RESULTS

Trichomicin Inhibited Tumor Growth and
Secretion of IL-6 and TNFa In Vivo
We evaluated the antitumor activity of Trichomicin in a nude
mouse xenograft model generated by inoculation with HT-29
cells. Mice were treated with Trichomicin, Cisplatin, and vehicle,
as previously described Transport assay (Figure S1), showed that
Trichomicin was able to permeate across Caco-2 monolayers,
and was administered orally in this study. As shown in Figures
1A, B, Trichomicin significantly reduced tumor volume
compared to the control group (P < 0.05), and Trichomicin
significantly inhibited tumor growth to a similar degree as
cisplatin, with inhibitory rates of 62.70% and 61.88%,
respectively. None of the treatments induced body weight loss
or changes in behavior during this study.

The levels of IL-6 and TNFa in tumor tissues were quantitated
using ELISA. The levels of IL-6 and TNFa decreased by 30.8%
and 35.6% compared with those in the control group following
treatment with Trichomicin (Figures 1C, D; p < 0.05), and
cisplatin did not alter IL-6 and TNFa levels. These results
suggested that the Trichomicin has a distinct mechanism with
that in cisplatin to inhibit the growth of colorectal cancer, and the
reduced expression of TNFa and IL-6 may be involved.

A preliminary pharmacokinetic study was performed in rats
administered 200 mg/kg of Trichomicin. Trichomicin was
detected in plasma 30 min post-administration (Figure S2),
and reached a maximum plasma concentration (Cmax) of 4.8
mM 4 h after oral administration. The elimination half-life (T1/2)
was 4.85 ± 0.4 h.

Trichomicin Inhibited the Expression of
IL-6 and TNFa in Macrophages
Tumor-associated macrophages (TAMs) are a major component
of tumor immune cell infiltrates, and are a major source of IL-6
and TNFa in the TME. Cytokines such as IL-6 and TNFa are
central players in CRC, and drive activation of signal transducer
and activator of transcription 3 (Stat3), and a transcription factor
nuclear factor-kB (NF-kB). To further characterize the
antitumor mechanism of Trichomicin in CRC, we investigated
the effects of Trichomicin on the expression and secretion of IL-6
and TNFa in THP1 macrophages.

A previous study showed that Trichomicin reduced
transcription and secretion of IL-6 in macrophages stimulated
April 2020 | Volume 11 | Article 386
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with LPS. The results showed that 10mM, Trichomicin reduced
the levels of IL-6 mRNA by 92.22% and reduced secretion
of Trichomicin by 82.96% in LPS-stimulated macrophages
(Zhu et al., 2020). Our results showed that the expression
of IL-6 mRNA in THP1 macrophages was enhanced by
supplementation with culture supernatants from HT-29 and
HCT-116 cells. Furthermore, Trichomicin inhibited the
expression of IL-6 mRNA in macrophages treated with CRC
supernatant in a dose-dependent manner. In macrophages
stimulated with HT-29 supernatants, the expression of IL-6
mRNA was decreased to 44.51% (P < 0.05), 94.6% (P < 0.001),
and 96.96% (P < 0.001), and with HCT-116 supernatants was
decreased to 27.99%, 51.34% (P < 0.05), and 97.85% (P < 0.001)
in response to 1, 5, and 10 mM Trichomicin, respectively (Figure
2A). Furthermore, the mRNA level of IL-6 in macrophages
stimulated with CRC supernatants was 24-fold higher than
that in cells treated with LPS. In addition, IL-6 secretion from
Frontiers in Pharmacology | www.frontiersin.org 4
macrophages showed a similar pattern as mRNA expression
(Figure 2B).

The transcription and secretion levels of TNFa in macrophages
were increased in response to LPS or culture supernatants from
HT-29 and HCT-116. Furthermore, Transcription and secretion
of TNFa in macrophages stimulated with CRC supernatants were
also higher than those in macrophages treated with LPS.
Trichomicin inhibited transcription and secretion of TNFa in
macrophages in a dose-dependent manner (Figures 2C–F).
Trichomicin Downregulate TNFa–Induced
NF-kB Pathway Activation and Blocked
Basal Stat3 Phosphorylation in Cancer
Cells in an NF-kB-Independent Manner
Since Trichomicin downregulated TNFa expression in tumor
tissues and TAMs, we examined whether Trichomicin could
A B

C D

FIGURE 1 | Trichomicin inhibited tumor growth and secretion of IL-6 and TNFa in an HT-29 tumor xenograft model. (A) Tumor growth curves for groups treated
with vehicle, Trichomicin, or Cisplatin (n=6–7). ◆: Control. ▲: Cisplatin. ■: Trichomicin.: Trichomicin. (B) Comparison of the tumor volume measured on day 29
following the treatment of vehicle, Cisplatin and Trichomicin, respectively (n=6–7). ***P < 0.0005. ●: Control. ■: Cisplatin. ▲: Trichomicin. (C, D) Detection of IL-6
(C) and TNFa (D) levels in tumor tissues. Data are presented as the mean±SD, *P < 0.05, compared with the control group.
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A B

C D

E F

FIGURE 2 | Trichomicin inhibits IL-6 and TNFa expression in macrophage. (A) Real-time PCR quantitation of IL-6 mRNA in macrophages stimulated with different
CRC supernatants following treatment with 1, 5, and 10 mM Trichomicin. (B) Quantitation of IL-6 secretion in macrophages stimulated with different CRC
supernatants following treatment with 1, 5, and 10 mM Trichomicin using ELISA. (C, E) Real-time PCR quantitation of TNFa mRNA in macrophages stimulated with
LPS (C), and different CRC supernatants (E) following treatment with 1, 5, and 10 mM Trichomicin. (D, F) Quantitation of TNFa secretion in macrophages stimulated
with LPS (D) and different CRC supernatants (F) following treatment with 1, 5, and 10 mM Trichomicin. NA: Expression of IL-6 mRNA in untreated macrophages.
NA1: Expression of TNFa mRNA in untreated macrophages. NT: Secretion of IL-6 in untreated macrophages cells. NT1: Levels of IL-6 in the culture media of HT-29
cells. NT2: Levels of IL-6 in the culture supernatant of HCT-116 cells. NT3: Secretion of TNFa in untreated macrophages cells. NT4: Levels of TNFa in the culture
media of HT-29 cells. NT5: Levels of TNFa in the culture supernatant of HCT-116 cells. (n≥3) *P < 0.05, **P < 0.01, ***P < 0.001.
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A B

C

FIGURE 3 | Trichomicin inhibited phosphorylation of components of the NF-kB signaling pathway. (A) Effect of Trichomicin on TNFa–induced phosphorylation of
NF-kB p65, IKKa/b, IkBa and basal Stat3 phosphorylation in HCT-116 cells. (B) The effect of Trichomicin on the NF-kB and Stat3 signaling pathway in HCT-116
transfected with NF-kB p65 siRNA. (C) Immunoblotting analysis of TNFa–induced phosphorylation of NF-kB p65 and basal Stat3 phosphorylation in HCT-116 cells
treated with BP-1-102. HCT-116 cells were preincubated with Trichomicin or BP-1-102 for 1 h prior to treatment with TNFa for 1 h. Whole cell lysates were
prepared for western blotting. (n≥3) *P < 0.05, **P < 0.01, ***P < 0.001.
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inhibit TNFa–induced NF-kB activation in HCT-116 cells. The
phosphorylation levels of NF-kB p65, IKKa/b, IkBa, and Stat3
were evaluated using western blot. Phosphorylation of NF-kB
p65, IKKa/b, and IkBa were enhanced following TNFa
stimulation, and were significantly inhibited by treatment with
5 and 10 mM Trichomicin (Figure 3A). Furthermore, 5 and 10
mM Trichomicin blocked basal Stat3 phosphorylation. To
determine whether inhibition of basal Stat3 phosphorylation
by trichomicin was caused by downregulation of the NF-kB
pathway, HCT-116 cells were transfected with p65 siRNA and
control siRNA for 72 h prior to exposure to TNFa and
Trichomicin. Following transfection, treatment with TNFa did
not induce NF-kB and IkBa activation, and Trichomicin did not
inhibit phosphorylation of p65 and IkBa following NF-kB
Frontiers in Pharmacology | www.frontiersin.org 7
knockdown. However, Trichomicin was still able to block basal
Stat3 phosphorylation (Figure 3B). This result showed that the
inhibitory effect of Trichomicin on Stat3 phosphorylation was
NF-kB-independent in CRC cell lines.

Parallel experiments were performed using the Stat3 inhibitor
BP-1-102. As shown in Figure 3C, 5 and 10 mM BP-1-102
significantly suppressed basal Stat3 phosphorylation, but had no
effect on TNFa–induced p65 phosphorylation. In contrast, a
previous study showed that BP-1-102 decreased nuclear p65
phosphorylation in MDA-MB-231 cells (Zhang et al., 2012). This
discrepancy may have been due to lower concentrations of BP-1-
102 in our study. In addition, we noticed signs of cytotoxicity for
HCT-116 cells when the concentration of BP-1-102 exceeded
10 mM.
A

B

FIGURE 4 | Effect of Trichomicin on the NF-kB pathway and Stat3 signal pathway in TAM. (A) The effect of Trichomicin on signal pathway in THP1 macrophage
cells stimulated by supernatant of HT-29 and HCT-116. (B) The effect of BP-1-102 on signal pathway in THP1 macrophage cells treated with supernatant of HT-29
and HCT-116. (n≥3) *P < 0.05, **P < 0.01.
April 2020 | Volume 11 | Article 386
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Trichomicin Inhibited Phosphorylation of
the NF-kB Pathway and Stat3 in TAMs
Stimulated With CRC Cell Lines
To further elucidate the role of Trichomicin in the CRC
microenvironment, we evaluated signaling transduction
pathways associated with TNFa and IL-6 expression in TAMs
using immunoblotting. Phosphorylation of NF-kB p65, IKKa/b,
IkBa and as Stat3 were analyzed following preincubation with
Trichomicin for 1 h followed by stimulation with different CRC
supernatants for 1 h. The results showed that phosphorylation of
Stat3 was significantly enhanced, and phosphorylation of NF-kB
p65, IKKa/b, and IkBa were increased in macrophages
following stimulation with different CRC supernatants (Figure
4A). Treatment with 2.5 and 5 mM BP-1-102 inhibited Stat3
Frontiers in Pharmacology | www.frontiersin.org 8
phosphorylation, but did not affect phosphorylation of NF-kB
p65 in TAMs (Figure 4B).

Trichomicin Suppressed the
Phosphorylation of the NF-kB Pathway
and Stat3 in CAFs Stimulated With CRC
Cell Lines
Macrophages have historically been considered the main source
of IL-6 and TNFa in CRC. New data, however, links IL-6
production to cancer associated fibroblasts (CAFs) in human
colorectal cancer. Therefore, we further examined the effect of
Trichomicin on CAFs isolated from specimens resected from
human poorly-differentiated colorectal adenocarcinomas.
Western blot results showed that the phosphorylation levels of
A

B

FIGURE 5 | Effect of Trichomicin on NF-kB pathway and Stat3 signaling pathway expression in CAFs. (A) The effect of Trichomicin on signaling pathways in CAFs
stimulated by supernatant of HT-29 and HCT-116. (B) The effect of BP-1-102 on signaling pathways in CAFs treated with supernatant of HT-29 and HCT-116. (n≥3)
*P < 0.05, **P < 0.01.
April 2020 | Volume 11 | Article 386
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p65, IKKa/b, IkBa, and Stat3 in CAFs treated with CRC
supernatants were suppressed by Trichomicin (Figure 5A).
Although 2.5 and 5mM of BP-1-102 could inhibit Stat3
phosphorylation, they had no effect on phosphorylation of NF-
kB p65 in CAFs (Figure 5B).

Trichomicin Inhibited PD-L1 Expression in
CRC and Stromal Cells
Previous studies have shown that PD-L1 is expressed in
lymphoma, and is transcriptionally regulated by Stat3 (Ansell
et al., 2015; Atsaves et al., 2017). In our previous study, we
showed that Trichomicin inhibited IL-6 expression and reduced
IL-6-induced phosphorylation of Stat3 (Zhu et al., 2020). In this
study, we found that Trichomicin inhibited phosphorylation of
Stat3 in TAMs and CAFs. We then evaluated whether PD-L1
expression was regulated by Stat3 in CRC cell lines. The results
showed that PD-L1 expression was enhanced by IL-6 stimulation
in HCT-116 cells (Figure 6A), which was similar to IL-6-induced
Stat3 phosphorylation in a previous study (Zhu et al., 2020).
Furthermore, Trichomicin significantly inhibited PD-L1
expression in HCT-116 and CAF (Figure 6B) in a dose-
dependent manner. In particular, 10 mM Trichomicin reduced
PD-L1 expression further than basal levels. Although PD-L1
expression was not detected in HT-29 and macrophages,
Trichomicin may have inhibited CRC in vivo by targeting the
IL6-Stat3-PD-L1 pathway.
DISCUSSION

Our previous study showed that Trichomicin, a natural
compound derived from Trichoderma hazianum, exerted
potent anti-inflammatory and anticancer activity in vitro (Qi
et al., 2011), and induced apoptosis in cancer cells through
inhibition of IL-6/Stat3 signaling (Zhu et al., 2020). In this
study, we evaluated the anticancer activity of Trichomicin in
vivo, and found that it decreased the expression of IL-6 and
TNFa in tumor tissues. The antitumor activity of Trichomicin
was significantly stronger than that of siltuximab (Angevin et al.,
2014) (an anti-IL-6 monoclonal antibody) and infliximab (Flores
et al., 2012) (an anti-TNFa monoclonal antibody). Trichomicin
also showed good oral absorption and rapid uptake.
Furthermore, Trichomicin exerted antitumor effects by
targeting Stat3, NF-kB, and PD-L1 in tumor and stromal cells
(Graphical Abstract). Trichomicin may be a strategy for
treatment of colorectal cancer through modulation of the
tumor microenvironment.

Interleukin-6 and TNFa are important mediators that link
inflammation and cancer (Yao et al., 2014; Marelli et al., 2017).
In CRC, IL-6 and TNFa participate in most steps of cancer
progression, including tumor initiation, proliferation, migration,
and angiogenesis (Flores et al., 2012; Wang et al., 2013; Wang
and Sun, 2014; West et al., 2015). A previous study showed that
production of IL-6 was increased in tumor tissue and serum of
patients with CRC. High levels of IL-6 were associated with
shorter survival time than that in patients with low IL-6
Frontiers in Pharmacology | www.frontiersin.org 9
expressions (Wu et al., 1996). In addition, elevated serum
levels of TNFa were associated with cancer stage and
progression, and was linked to poor prognosis (Stanilov et al.,
2014). In our study, Trichomicin reduced the levels of IL-6 and
TNFa in colon cancer tumor tissues, which indicated that it had
potential as an adjuvant treatment for colon cancer. Tumor-
associated macrophages (TAMs) are a major source of IL-6 and
TNFa in CRC (Schupp et al., 2019). Furthermore, IL-6 and
TNFa are highly expressed in the malignant tumor
microenvironment, which can promote tumor invasion, distant
tumor metastasis, angiogenesis, and tumor resistance. To further
evaluate crosstalk between Trichomicin and the tumor
microenvironment in vitro, we investigated the ability of
Trichomicin to reduce the expression and secretion of IL-6
and TNFa in macrophage-like differentiated THP1 cells.
Furthermore, we found that the expression and secretion of IL-
6 and TNFa were higher in macrophages stimulated with CRC
supernatants than in cells treated with LPS, and this effect
occurred in a dose-dependent manner. Treatment with 10mM
Trichomicin, a non-cytotoxic concentration (Figure S3),
inhibited transcription and secretion of IL-6 and TNFa by
more than 90% (Figure 2).

The IL-6 and TNFa signaling pathways have been well
characterized. Interleukin-6 induces homodimerization of the
signal transducing glycoprotein gp130 following binding to the
IL-6 receptor (IL-6R), which results in activation of JAK/STAT
signal transduction pathway (Rose-John, 2012; Liu et al., 2018).
In addition, TNFa activates the IkB kinase (IKK) complex,
which phosphorylates IkB. Phosphorylated IkB is recognized
by the ubiquitin ligase machinery, resulting in ubiquitination and
subsequent degradation, which allows translocation of free NF-
kB dimer to the nucleus (Hayden and Ghosh, 2004). Cytokine-
mediated JAK/Stat3 pathway activation has been shown to
promote excessive proliferation and invasion of colon cancer
cells (Gordziel et al., 2013). The NF-kB signaling pathway plays
an important role in regulation of inflammation and apoptosis. It
is constitutively activated in various human tumors and is
associated with tumor development (Dolcet et al., 2005).
Conditionally inactivated NF-kB in myeloid cells significantly
reduced the expression of many inflammation-related genes,
such as IL-1b, TNFa, human macrophage inflammatory
protein, and cyclooxgenase 2, and tumor size significantly
decreased in mice (Pikarsky et al., 2004). Therefore, we
examined the effect of Trichomicin on IL-6-induced
phosphorylation of Stat3 (Zhu et al., 2020) and TNFa-induced
activation of the NF-kB pathway in CRC cells. Trichomicin
inhibited TNFa-induced NF-kB phosphorylation and induced
activation of Stat3-related signaling pathways in a dose-
dependent manner in colon cancer cells. Expression of
cytokines in response to NF-kB results in activation of Stat3,
which plays a key role in controlling communication between
cancer cells and the surrounding microenvironment
(Grivennikov and Karin, 2010). Our results showed that
Trichomicin blocked basal Stat3 phosphorylation in an NF-kB-
independent manner.

Cancer-stromal interactions support and maintain tumor
growth (Cammarota et al. , 2010). Tumor-associated
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macrophages are a major source of IL-6 and TNFa in CRC
(West et al., 2015; van den Bosch et al., 2017; Zhu and Cao, 2017;
Schupp et al., 2019). Recent studies have shown that cancer
stromal fibroblasts (CAFs) in CRC are an important source of IL-
Frontiers in Pharmacology | www.frontiersin.org 10
6, which is critical for tumor angiogenesis (Nagasaki et al., 2014;
Huynh et al., 2016). To further characterize targets of
Trichomicin in the tumor microenvironment, we investigated
the effects of Trichomicin on the Stat3 and NF-kB pathways in
A

B

FIGURE 6 | Trichomicin inhibited PD-L1 expression in CRC and stromal cells. (A) The effect of Trichomicin on PD-L1 in HCT-116 cells stimulated with IL-6. (B) The
effect of Trichomicin on PD-L1 expression in CAFs treated with supernatant of HT-29 and HCT-116 cells. **P < 0.01.
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CAFs stimulated with CRC supernatants. Our results showed
that Trichomicin inhibited CRC conditioned media-induced
phosphorylation of Stat3 and NF-kB in CAFs. Although BP-1-
102 suppressed Stat3 phosphorylation, it had no effect on
phosphorylation of NF-kB p65 in stromal cells. These findings
indicated that Trichomicin exerted pleiotropic activity in the
tumor inflammatory microenvironment, and may have promise
as a treatment strategy for colorectal cancer through targeting of
tumor-associated stromal cells.

The combination of chemotherapy and anti-angiogenic therapy
is an important strategy for treatment of metastatic colorectal cancer
(mCRC). However, CRC eventually becomes resistant to all
available therapies (Amin and Lockhart, 2015). Recently, anti-
PD1 drugs have been used to treat metastatic colorectal cancer in
patients with high levels of microsatellite instability (MSI-H) or
mismatch-repair-deficiency (dMMR), which generated enthusiasm
for immunotherapy. Similarly, anti-PDL1 blockers are being studied
as therapeutic agents for refractory metastatic solid tumors,
including CRC (Boland and Ma, 2017). However, CRC is a poor
candidate for immunotherapy because MSI only accounts for 15%
of CRC cases, and the frequency of MSI-H is only 5.9% (Van der
Jeught et al., 2018). In addition to regulation of the TME,
Trichomicin reduced the expression of PD-L1 in HCT-116 and
CAFs to below basal levels, which indicated that Trichomicin has
potential as a PD-L1 targeted drug. Trichomicin, derived from a
microorganism (Patent No: ZL 200510082974.X), exhibits low
toxicity and good oral properties, and is a promising candidate
for CRC treatment either alone or in combination with
monoclonal antibodies.
CONCLUSION

Trichomicin, a promising compound with antitumor-activity,
was validated for its antitumor effects in colon tumor-bearing
mice. Trichomicin exerted antitumor effects through the TNFa-
NF-kB and IL6-Stat3 pathways, and the inhibitory effect of
Trichomicin on Stat3 was NF-kB-independent. Furthermore,
Trichomicin regulated the TME, and inhibited the expression
of the immune check point protein PD-L1 in cancer and stromal
cells. Demonstration of oral bioavailability and anticancer
activity of Trichomicin showed that this molecule may be an
effective treatment for colorectal cancer.
Frontiers in Pharmacology | www.frontiersin.org 11
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