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Ischemia-reperfusion injury (IRI), which is triggered by a transient reduction or cessation of
blood flow followed by reperfusion, is a significant cause of acute kidney injury (AKI). IRI can
lead to acute cell death, tissue injury, and even permanent organ dysfunction. In the clinic,
IRI contributes to a higher morbidity and mortality and is associated with an unfavorable
prognosis in AKI patients. Unfortunately, effective clinical drugs to protect patients against
the imminent risk of renal IRI or treat already existing AKI are still lacking. Fibroblast growth
factors (FGFs) are important regulators of key biological and pathological processes, such
as embryonic development, metabolic homeostasis and tumorigenesis through the
regulation of cell differentiation, migration, proliferation and survival. Accumulating
evidence suggests that altered expression of endogenous FGFs is associated with IRI
and could be instrumental in mediating the repair process. Therefore, FGFs have been
proposed as potential biomarkers in the clinic. More importantly, exogenous FGF ligands
have been reported to protect against renal IRI and display promising features for therapy. In
this review, we summarize the evidence and mechanisms of AKI following IRI with a focus
on the therapeutic capacity of several members of the FGF family to treat AKI after IRI.
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INTRODUCTION

Acute kidney injury (AKI) is a syndrome and significant cause of death among hospitalized patients.
AKI is characterized by a rapid decline in renal function and predisposes the transition of AKI
patients to chronic kidney disease (CKD) and end-stage renal disease (ESRD) (Chawla et al., 2014).
Ischemia-reperfusion injury (IRI) is the primary cause of AKI worldwide related to different clinical
Abbreviations: AKI, acute kidney injury; AKT, protein kinase B; CKD, chronic kidney disease; CSA-AKI, cardiac surgery-
associated AKI; DAMP, damage-associated molecular pattern; ERK, extracellular signal-regulated kinase; ER, endoplasmic
reticulum; ESRD, end-stage renal disease; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; FRS-2,
fibroblast growth factor receptor substrate 2; HMGB1, high mobility group protein 1; HSPG, heparin sulphate proteoglycan,
ICK, intracellular kinase domain; IL-1b, Interleukin-1 beta; IL-6, Interleukin-6; IR, ischemia reperfusion; IRI, ischemia
reperfusion injury; MAPK, mitogen-activated protein kinase; NF-kB, nuclear factor kappa-B; PI3K, phosphatidylinositol-4,5-
bisphosphate 3-kinase; PLCg: phospholipase C gamma; ROS, reactive oxygen species; TGF-b: transforming growth factor beta;
TLR2; toll-like receptor 2; TLR4, toll-like receptor 4; TM, trans-membrane domain; TNF-a, tumor necrosis factor alpha; UPR,
unfolded protein response.
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circumstances such as shock, low cardiac output, and organ
transplantation (Park et al., 2017; Ronco et al., 2019). Under
these conditions, the reestablishment of blood flow after
transient obstruction of circulation leads to renal injury. A
multinational, multicenter study on critically affected patients
confirmed the prevalence of AKI (5.7% of the patients included
in the study) and association with a high mortality rate (Uchino
et al., 2005). Another independent study shows an even higher
percentage of patients admitted to hospital with such a
complication, 10–15% of all hospitalisations (Al-Jaghbeer et al.,
2018), the number is as high as 50% in patients in the intensive
care unit (ICU) 50% (Hoste et al., 2015).

The disease mechanisms underlying the etiology and
pathogenesis of AKI are complex and include mitochondrial
dysfunction, reactive oxygen species (ROS), endoplasmic
reticulum stress (ERS), autophagy, inflammation, apoptosis,
and necrosis (Verma and Molitoris, 2015; Duann et al., 2016;
Figure 1A). Even though renal IRI is known to be the
predominant cause of morbidity and mortality, no effective
treatment is currently available. Therefore, much attention has
been dedicated to seeking novel therapeutic strategies for AKI.
Intense research efforts using animal models have shed light on
the pathophysiology of AKI. It has been reported that the
expression of Fibroblast growth factors (FGFs) and their
receptors (FGFRs) are increased in the context of AKI (Wai
et al., 2013; Tan et al., 2017). Furthermore, AKI is more severe
upon FGFR deficiency or blockade of its signalling (Villanueva
et al., 2008; Xu and Dai, 2017). Some studies demonstrated that
renal function recovered after administering various
medications, including growth factors and cell transplantation
(Ichimura et al., 1996; Patel et al., 2012). These results show that
FGFs and their receptors are important for AKI.

In the context of IRI, several growth factors have been
reported to exhibit protective effects as well as therapeutic
potential as they not only prevent the damages from occurring,
but also improve functional recovery after the damages are done
(Figure 1A, Table 1). New functions of FGFs have recently
emerged. Evidence for FGF1, FGF2, FGF7, and FGF10 to trigger
mitogenic and antiapoptosis activities correlates with their ability
to enhance the survival and outgrowth of various kidney cell
types, such as collective cells, tubule cells, and glomerular cells.
Progress has also been made in understanding the roles and
associated mechanisms of FGFs in AKI (Figure 1B).

Here, we will summarize the available data on the roles and
knownmechanisms of FGFs in the pathogenesis, prevention, and
repair of AKI with a focus on IRI. The discussion will first
provide a succinct overview of FGF/FGFR signalling specificity
and function, followed by a detailed summary of the published
work on the roles of FGFs/FGFRs in the AKI, impact of
endogeneous and recombinant FGFs as prevention and
therapeutic measures for the IRI, pathophysiological processes
and conclude with a highlight for future research to better
understand underlying mechanism and FGFs in AKI disease
and provide viable strategies to prevent IRI or avert progression
to CKD.
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A SUCCINCT OVERVIEW OF FGF
LIGANDS AND THEIR RECEPTORS

In mammalians, the FGF system consists of 18 ligands signalling
through their specific FGFRs (Goetz andMohammadi, 2013; Ornitz
and Itoh, 2015, Figure 2A). The molecular weight of vertebrate
FGFs ranges from 17 to 34 kDa and the proteins consist of a central
core of 140 amino acids and 12 antiparallel b chains. The sequence
similarity among different members is between 30% and 60%. FGFs
are structurally related and functionally relevant, they elicit a
redundant but also distinct repertoire of biological activities. FGFs
are further divided into several subfamilies based on their sequence
identity, receptor binding specificity and biological activities. These
are the FGF1 subfamily, including FGF1 and FGF2; FGF4
subfamily, which includes FGF4, FGF5, and FGF6, the FGF7
subfamily made of FGF3, FGF7, FGF10, and FGF22, the FGF8
subfamily, which consists of FGF8, FGF17, and FGF18, as well as
the FGF9 subfamily, which is made of FGF9, FGF16, and FGF20
(Ornitz and Itoh, 2015, Table 2). Finally, the FGF19 subfamily
includes FGF19, FGF21, and FGF23 (Li, 2019). Heparin sulphate
proteoglycan (HSPG) binding domains and N-terminal signalling
peptides for secretion are common features shared by FGFs.

In most cases, FGFs are secreted into the extracellular space
via the classical secretory pathway. FGFs have been described to
act both in an autocrine and paracrine fashion. They signal
through their specific trans-membrane receptors consisting of
five members, FGFR1-5. FGFRs bind their ligands with high
affinity and various degrees of specificity (Figure 2A). All FGFRs
has a single pass trans-membrane domain (TM) and two
intracellular kinase domains (ICKs) except for the atypical
FGFR5, which has no enzymatic activity (Trueb, 2011). The
extracellular segments of FGFRs are composed of three Ig-like
domains (IgGI-IgGIII), and between the first and second Ig-like
domains is the acid-box domain that determines ligand-
specificity. The ICKs harbor the catalytic activity of receptors
as well as autophosphorylation sites, which interact with
intracellular substrates (Table 2).
THE ROLE OF FGFS IN AKI

Many FGF ligands and their associated receptors are found to be
highly expressed during kidney development. Genetic ablation
and transgenic overexpression in mouse models, as well as
exposure to exogenous FGF ligands, have established the
critical regulatory roles of multiple FGF ligands in kidney
development, particularly those that signal through FGFR1 and
FGFR2 (Walker et al., 2016; Figure 1B). Some of the
developmentally important FGFs/FGFRs expressed early
during kidney development get re-expressed or activated in the
regeneration phase after IRI (Villanueva et al., 2006; Tan et al.,
2017). Currently, most of the FGFs reported to participate in AKI
pathogenesis or reveal protective/therapeutic potentials are
derived from FGF1, FGF7, and FGF19 subfamilies (Figures
1A, B), which we will be discussing in more detail.
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MULTIFACETED ROLES OF FGF1/2 IN AKI

FGF1 (or Acidic FGF) and FGF2 (or basic FGF) are the
prototypic members of the FGF family that have a similar
broad range of biological activities. Both are in vitro mitogens
Frontiers in Pharmacology | www.frontiersin.org 3
for most of the ectodermal- and mesodermal-derived cell lines.
Numerous studies have shown that intravenous administration
of exogenous FGF1 or FGF2 can improve the physiological
functions of different organs after IRI.
A

B

FIGURE 1 | Multiple FGFs are involved in the etiology and pathogenesis of AKI after IRI. (A) Diagram summarizing key biological processes underlying the etiology
and pathogenesis of AKI. The interactions of these complex disease mechanisms can lead to CKD and ESRD. FGFRs can be activated by endogenous FGFs and
co-ligands following IRI. Exogenous recombinant FGFs such as FGF2 and FGF10 can protect again IRI and inhibit the transition of AKI to CKD and ESRD via
regulating this complex pathogenesis and repair process. (B) The expression of several FGFs including FGF1/2/7/10 is induced upon IRI and is capable of promoting
tubular epithelial cell proliferation through a paracrine effect. Furthermore, FGF1/2 mediated activation of FGFRs can inhibit the apoptosis of tubular epithelial cells and
promote the transformation of tubular epithelium to mesenchymal cells. Exogenous stem cells can ease IRI by producing FGF1/2. Increased FGF1/2 can further
support the survival of stem cells. FGF23 is produced by osteoblasts in bone in response to local and systemic factors and targets the kidney to create multiple
endocrine networks. FGF23 also impacts macrophage infiltration through adjusting the immune system after IRI.
April 2020 | Volume 11 | Article 426
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FGF1 is an autocrine/paracrine regulator known to act on
cells from various organs and tissues, including liver, vasculature,
and skin. FGF1 exerts significant beneficial effects in different
organs after IRI (Fu et al., 1995; Cuevas et al., 2000; Chen et al.,
2005; Wang et al., 2010). The skeletal muscle damage protection
provided by FGF1 may arise from its ability to regulate extra-
cellular and intra-cellular calcium ions concentrations (Fu et al.,
1995). FGF1 can promote small intestine epithelial cell
proliferation in IRI in rats and its activity is associated with the
activation of ERK1/2. Intravenously administered FGF1 could
also alleviate IRI-induced apoptosis in rat intestinal tissues
(Weng et al., 2004). In other studies, FGF1 was reported to
activate PI3K/AKT-mediated suppression of oxidative stress and
inflammation, especially for diabetic nephropathy (Pena et al.,
2017). FGF1 can protect hepatic and renal functions after
intestinal IRI (Weng et al., 2004). Fu et al. showed that the
protective effects of FGFs might originate from the non-
mitogenic effects of FGFs at the early stage and the mitogenic
effects at the late stage of tissue repair (Fu et al., 2004). Cuevas
et al. demonstrated a role for FGF1 after acute kidney damage
following IRI by inhibiting neutrophil infiltration (Cuevas
et al., 1999).
Frontiers in Pharmacology | www.frontiersin.org 4
FGF2 is another vital protein for ureteric bud formation, and
also necessary for the induction of mesenchymal cells
aggregation. The mesenchymal aggregates cannot give rise to
epithelial cells in the absence of FGF2. In the adult mice, FGF2
exerted a protective function against IRI in several organs such as
the retina, brain, spinal cord, heart, and intestine. FGF2 also has a
beneficial role in renal IRI. The primary mechanism is via the
activation of the PI3K/AKT and ERK1/2 pathways. The
expression of FGF2 is not observed in the adult kidney during
homeostasis, but a strong induction is observed in the
regeneration phase of AKI. FGF2 reduces the expression of
renal damage markers such as ED-1 and a-smooth muscle
actin and participates in the regeneration process after
ischemic acute renal failure (Villanueva et al., 2006). Xu et al.
revealed the same results upon the ablation of the receptor
FGFR2 in fibroblasts (Xu and Dai, 2017). Such genetic
manipulation ameliorates kidney fibrosis after IRI in mice. On
the other hand, inhibition of FGFR2 sensitize kidney damage and
suppresses nephrogenic protein expression (Villanueva et al.,
2008). Another study demonstrated that FGF2 protects against
renal IRI by attenuating mitochondrial damage and
proinflammatory signals (Tan et al., 2017). Functional studies
A B

FIGURE 2 | Mechanism of FGFs signalling during AKI after IRI. (A) FGFs interact with FGFRs with HS (and klotho for FGF23) as cofactor after IRI. The interactions
induce activation of the RAS-MAPK, PI3K-AKT, and PLCg pathways. These pathways mediate antiapoptosis, differentiation, proliferation, and cell motility.
(B) HMGB1, a nuclear transcription factor protein is released upon IR injury. Circulating HMGB1 can interact with TLRs to promote inflammatory cytokine secretion.
Increased IL-1b, IL-6 and TNF-a in turn, activate NF-kB and further enhance inflammation. FGF2 may inhibit inflammation through robust protection of renal tubular
cells from IR-induced apoptosis and subsequent release of HMGB1. FGF2 and FGF10 may inhibit autophagy via activation of PI3K/AKT and MAPK signalling. On the
other hand, the endocrine FGF23 binds FGFR4 to activate the calcium channel and contribute to renal fibrosis. A large amount of calcium ion influx results in ROS
activation, which also leads to increase in TGF-b expression and its down stream signalling to promote fibrosis.
TABLE 1 | Fibroblast growth factors (FGFs) directly involved in regulating acute kidney injury (AKI).

FGF
Subfamily

FGF
ligand

Mode of
action

Pathophysiological function

FGF1 FGF1 Autocrine and
paracrine

Inhibition of neutrophil infiltration (Cuevas et al., 1999); Antiapoptosis and regeneration (Fu et al., 2004; Weng et al., 2004)

FGF2 Paracrine Attenuating mitochondrial damage and proinflammatory response (Tan et al., 2017) reduce renal damage and participate in the
regeneration (Villanueva et al., 2006)

FGF7 FGF7 Paracrine Promote bladder progenitor proliferation (Vinsonneau et al., 2010)
FGF10 Paracrine Antiapoptosis and inflammatory response; suppressing excessive autophagy and ER stress (Tan et al., 2018; Tan et al., 2020)

FGF19 FGF23 Endocrine Biomarkers for injury and prognosis; amplify myofbroblast activation; potential target of therapy (Leaf et al., 2017; Smith et al.,
2017b; Leaf et al., 2018; Volovelsky et al., 2018; Christov et al., 2019, and references within)
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have shown that FGF2 promotes proliferation on a variety of
renal cell types, especially interstitial fibroblasts. FGF2 facilitates
the epithelial to mesenchymal transition of tubular epithelial
cells and contributes in the initial stage to an increase in the
stroma population. The expression of FGF2 is increased in the
process of stem cell treatment of AKI (Patel et al., 2012). We
propose that both endogenous and exogenous FGF2 react to the
transplanted stem cells after injury. The mechanism of stem cell
therapy is not only the replacement of dead cells but more
importantly, the role it plays through the secretion of growth
factor as well as antiinflammatory molecules.
EXOGENOUS FGF10 PROTECTS
AGAINST IRI

FGF7 and FGF10 were initially isolated as a keratinocyte growth
factor 1 and 2, respectively. Both are expressed in the kidney, but
unlike other FGFs, which are paracrine factors that are expressed
exclusively in the mesenchyme. They interact primarily with the
“b” isoforms of FGFR2 (FGFR2b), which is an alternatively
spliced RNA isoform containing a unique domain (called IIIb)
in the third IgG-like loop (Zhang et al., 2006). FGF7 and FGF10
have been documented to play an essential role in the
development, growth, differentiation, and homeostasis of the
muscosal lining of the urinary tract (Qiao et al., 1999; Walker
et al., 2016).

Both FGF7 and FGF10 bind FGFR2b, but exert largely distinct
physiological functions. FGF7 is implicated in both the induction of
basal urothelial cell proliferation and the expansion of transitional
epithelium. It is an efficient growth and differentiation factor during
Frontiers in Pharmacology | www.frontiersin.org 5
development and wound healing. FGF7 also has a significant effect
on the kidney. Compared to wild type littermates, Fgf7 knockout
mice display smaller kidneys with fewer ureteric buds and
nephrons. Earlier reports showed that the expression of both
FGF-7 and FGFR2b is induced and segregated between interstitial
and epithelial cells in response to chemically-induced proximal
tubular damage. The activation of this mesenchymal to epithelial
paracrine signaling is implicated in the regulation of tubular repair
process (Ichimura et al., 1996). Additionally, renal IRI is found to
promote FGFR2 phosphorylation together with the selective
upregulation of FGF7 and FGF2. Recombinant FGF7
administration can induce FGFR2 expression and promote
bladder progenitor proliferation (Vinsonneau et al., 2010; Figure
1B), but no study on FGF7 and renal IRI has been published.

FGF10 is a multifunctional growth factor playing crucial roles
in the development of multiple organs and tissues, including the
kidney (Itoh, 2016). In contrast to the Fgf7-null mice, which do
not display significant developmental abnormalities, the
inactivation of Fgf10 in mice causes broad developmental
defects including limb bud induction, lung as well as kidney
agenesis (Ohuchi et al., 2000). Similar to FGF7, FGF10 also
signals via interaction with its high-affinity receptor FGFR2b.
Deletion of Fgf10 in mice led to kidney dysgenesis characterized
by fewer collecting ducts and nephrons. Overexpression of a
soluble dominant-negative FGFR2b isoform in transgenic mice
revealed more striking defects, including renal aplasia or severe
dysplasia (Celli et al., 1998). Intra-tracheal administration of
FGF10 in rats with IR (Ischemia-Reperfusion) induced lung
injury significantly diminished lung edema, the release of
inflammatory cytokines, immune infiltration, and protein
exudation. Activation of PI3K pathway has been reported to
TABLE 2 | Overview of Mammalian FGF subfamilies, receptor specificity and physiological functions.

The FGF Subfamilies Ligands Human/mouse Cofactor Receptor Specificity Major physiological function

FGF1 subfamily FGF1/Fgf1 Heparin or heparin sulfate All FGFRs Adipose tissue homeostasis
FGF2/Fgf2 FGFR1b,1c,2b,2c,3c,4 Wound healing and angiogenesis

FGF4 subfamily FGF4/Fgf4 FGFR1c,2c,3c,4 Limb bud and heart development
FGF5/Fgf5 FGFR1c,2c,3c Hair follicle growth and development
FGF6/Fgf6 FGFR1c,2c,3c,4 Muscle development and regeneration

FGF7 subfamily FGF3/Fgf3 FGFR1b,2b Inner ear and skeleton development
FGF7/Fgf7 FGFR2b Branching morphogenesis
FGF10/Fgf10 FGFR1b,2b Lung branching morphogenesis; inner ear, hair follicle,

and limb development
FGF22/Fgf22 FGFR1b,2b Synaptogenesis

FGF8 subfamily FGF8/Fgf8 FGFR1c,2c,3c,4 Brain, eye, ear, limb bud, kidney, and heart development
FGF17/Fgf17 FGFR1c,2c,3c,4 Cerebellum and frontal cortex development
FGF18/Fgf18 FGFR3c,4 Lung alveolar, bone, CNS, skeletal, and palate

development
FGF9 subfamily FGF9/Fgf9 FGFR1c,2c,3b,3c,4 Inner ear, gonad, and kidney development

FGF16/Fgf16 FGFR1c,2c,3b,3c,4 Heart development
FGF20/Fgf20 FGFR1c,2b,2c,3b,3c,4 Kidney, hair, teeth, cochlea, and central nervous

development

FGF15/19 subfamily FGF19/Fgf15 FGFR1c,2c,3c,4 Bile acid metabolism, gall bladder filling, lipid, and
energy metabolism

FGF21/Fgf21 b-Klotho FGFR1c,3c, Lipid, glucose, and energy metabolism, macronutrient
preference, starvation response, insulin sensitivity

FGF23/Fgf23 a-Klotho FGFR1c,3c,4 Phosphate, calcium, sodium, and vitamin D homeostasis
April 2020 | Volume 11 | Article 426
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underlie FGF10-mediated protection against I/R-induced
endothelial cell apoptosis and barrier dysfunction (Fang et al.,
2014). More recent studies provided further evidence that
exogenous recombinant FGF10 mediates protection against
renal IRI through suppression of excessive autophagy and ER
stress (Tan et al., 2018; Tan et al., 2020), which will be further
discussed later.
FGF23 AS BIOMARKERS OF AKI AND
CKD

FGF23 belongs to the FGF19 subfamily of endocrine FGFs which
play important roles in interorgan crosstalk that governs a broad
spectrum of metabolic homeostasis (Degirolamo et al., 2016; Li,
2019). Although there are a number of reports on the protective
effect of FGF21 on the myocardial IRI, there has yet to be any
published research directly addressing the role of either FGF19 or
FGF21 in renal IRI. FGF23 is mainly produced by osteocytes and
possibly osteoblasts. Significantly, it is dramatically increased in
CKD and ESRD, and has been proposed as a biomarker for adverse
outcomes in patients with CKD and ESRD (Isakova, 2012; Christov
et al., 2019 Figure 1B). Similar to FGF19 and FGF21, FGF23
binding to FGFRs and the subsequent activation of FGF signal
transduction requires a co-receptor, Klotho (Kurosu et al., 2006).
The structure of FGF23 ternary complex together with a-klotho
extracellular domain and the FGFR1c ligand-binding domain has
recently been solved (Smith et al., 2014; Chen et al., 2018). FGF23
controls renal phosphate reabsorption, modulates the production of
parathyroid hormone (PTH) and 1,25-(OH)2-vitamin D. It also
participates in mineral homeostasis. FGF23 acts on the kidney to
increase renal phosphate excretion and to decrease 1,25-dihydroxy
vitamin D (1,25D) production (Li et al., 2019; Musgrove and
Wolf, 2020).

FGF23 levels rose acutely in patients who underwent cardiac
surgery and developed AKI, even before a significant increase in
serum creatinine (Christov et al., 2013). In the current era of
heightened awareness of the dire need for early diagnosis of AKI,
FGF23 has been touted as a potential marker of the complex AKI
syndrome (Leaf et al., 2017; Leaf et al., 2018). Shaker et al.
reported that the change of plasma FGF23 concentrations at 24
hours after cardiac bypass surgery was associated with the
severity of renal injury, whose sensitivity was 100%, and
specificity was 97.1% suggesting that FGF23 could have a role
as an early biomarker of AKI and predicts adverse outcomes
among patients with established AKI (Shaker et al., 2018;
Volovelsky et al., 2018). A recent prospective investigation in a
large cohort of patients with CKD stages have identified elevated
serum levels of interleukin-6, C-reactive protein, and FGF23 as
independent risk factors for mortality in CKD (Munoz Mendoza
et al., 2017). Circulating levels of FGF23 are increased in human
AKI and CKD of various settings, and correlate to poor survival
in patients across infants, children, and adults (David et al., 2017;
Czaya and Faul, 2019). Therefore, serum FGF23 level is proposed
to be an even more significant parameter than creatinine to
assess the severity of the AKI (Christov et al., 2019).
Frontiers in Pharmacology | www.frontiersin.org 6
Other studies demonstrate that tubule-derived FGF23 might
amplify myofibroblast activation in AKI (Smith et al., 2017b).
FGF23 is found to augment profibrotic signalling cascades in
injury-primed renal fibroblasts via activation of FGFR4 and
upregulation of the calcium transporter, a transient receptor
potential cation channel. This function was independent of a-
Klotho. Restoration of a-Klotho, as upstream regulators, can
regulate the off-target effects of FGF23 (Smith et al., 2017a). Both
FGF23 and a-Klotho have been proposed as prognostic
biomarkers of AKI and also targets of therapeutic intervention
for CKD or CVD after AKI. The effects of different FGF family
members in the context of AKI is summarized (Table 1).
FGFRS INVOLVED IN AKI

The FGF ligands signal through four receptors (FGFR1-4) and an
atypical, kinase inactive FGFR5 or FGFRlL (Ornitz and Itoh, 2015).
Some of FGFs/FGFRs are important during normal kidney
development and also during postnatal repair. FGFs stimulate
kidney cell fate determination, migration, and differentiation
during organogenesis (Bates, 2011; Trueb et al., 2013) and
regulate the proliferation, mobilization, and regeneration during
repair after injury (Strutz, 2009; Gallegos et al., 2019).

FGFRs elicit different functions in mammalian development and
diseases. Conditional knockout of Fgfr1 in ureteric bud and
metanephric mesenchyme did not lead to any kidney
development defects (Revest et al., 2001; Poladia et al., 2006).
Ablation of Fgfr2 led to the formation of a smaller kidney with
fewer nephrons (Sims-Lucas et al., 2011). The combined
inactivation of Fgfr2 and Fgfr1 knockout in mice led to severe
kidney aplasia (Sims-Lucas et al., 2011). General knockout of Fgfr3
and Fgfr4 did not affect early kidney development (Colvin et al.,
1996; Weinstein et al., 1998). It has been previously reported that a
given FGF ligand can bind multiple receptors and that conversely,
the same receptor can bind different ligands, therefore allowing a
very complex set of biological activities downstream of FGF/FGFR
activation (Li, 2019). FGFR1, for example, can bind to most of FGFs
except FGF7 and FGF18. FGFR2b, on the other hand, binds only
FGF1 and the members of the FGF7 subfamily. Due to potential
redundancy in FGFRs, their role in acute kidney injury is still
unclear. However, exogenous FGF ligands, through the activation of
the FGFR signalling pathway, are protective against renal damage.
During IR-induced acute renal injury, increased expression of FGF
activates FGFR phosphorylation and recruitment of FRS-2 and
PLC-g. The classical downstream PI3K/AKT and MAPK signalling
pathways are subsequently activated to control cell proliferation,
differentiation and apoptosis as well as cell migration and other
processes. This leads to decreased renal injury caused by IRI
(Figure 2A).

Although IRI mainly affects renal tubular cells, IR-induced
pathogenic process and its repair involve interactions between
interstitial cells, infiltrated inflammatory cells and epithelial cells.
Interestingly, a recent study using a mouse model with fibroblast-
specific ablation of Fgfr2 gene indicated that FGFR2 expression in
fibroblast may contribute to kidney fibrosis after IRI through
April 2020 | Volume 11 | Article 426
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promoting renal fibroblast activation and proliferation (Xu and
Dai, 2017).
IMPACT OF FGFS ON
PATHOPHYSIOLOGY OF IRI

IRI represents a frequent underlying cause for both ischemic heart
disease and AKI. Compared to the numerous publications on a
broad spectrum and relatively extensive research on FGFs in
ischemic heart injury, only a limited number of reports are
available on FGFs (mainly FGF2, FGF10, and FGF23) in renal
IRI and AKI. Additionally, most of FGF23-related studies focus on
its role as a key metabolic regulator and an injury or prognosis
biomarker. Consequently, FGF23 is a proinjury factor rather than
a protective or therapeutic agent for AKI. Therefore, our following
discussions will only focus on FGF2 and FGF10, both of which
exhibit potent protection against IRI and therapeutic potential via
impacting several key pathophysiological mechanisms.
FGF2 PROTECTS AGAINST IR-INDUCED
TUBULAR CELLS DEATH

Acute cell death of proximal renal tubules and inflammatory
response of both innate and adoptive nature are hallmark features
of IRI. Apoptosis plays an important role in the IR-induced
pathogenesis and is a validated parameter to evaluate the cellular
damage induced by ischemia. The protective role of FGF2 against
IRI is well documented for ischemic myocardial infarction. Studies
in genetically engineered mouse models established the
antiapoptotic effect of endogenous FGF2 toward ischemic cardiac
injury. FGF2 also exerts a positive impact on the repair process that
may involve its activation of both MAPK and PKC pathways
(House et al., 2003; House et al., 2005; House et al., 2007).
Furthermore, under cardiac IRI conditions mimicking clinical
acute myocardial infarction, endogenous FGF2 is considered an
essential acute cardioprotective factor and a longer term
proangiogenic factor (House et al., 2015). The protective effect of
FGF2 against IRI and in promoting repair was also appreciated in
renal IRI (Villanueva et al., 2008; Tan et al., 2017). Interestingly,
FGF2 is found to be expressed early during kidney development,
and gets re-expressed upon IRI and participates in the recovery
process by promoting the expression of morphogen proteins to
accelerate the repair process in the kidneys (Villanueva et al., 2006).
Additionally, treatment with antisense oligoes targeting FGFR2 led
to a significant increase in tubular TUNEL positive cells and
expression of damage markers in an AKI model, whereas the
expression of morphogenic proteins and cellular mitosis was
inhibited (Villanueva et al., 2008). Our study demonstrated that
exogenous recombinant FGF2 also exhibited robust protection
against IRI and significantly improved animal survival in a rat IRI
model (Tan et al., 2017).

Under hypoxic conditions, FGF2 may alleviate oxidative
stress and IR-induced mitochondrial DNA damage and
proapoptotic alteration of Bcl2/Bax expression and caspase-3
Frontiers in Pharmacology | www.frontiersin.org 7
activation. The remarkable protective effect of FGF2 owns, at
least in part, to its ability to preserve the integrity of the
mitochondrial ATP-sensitive potassium channel (Tan et al.,
2017). It is worth noting that, besides the major FGF2 protein
isoform (18 kD, low molecular weight), there exist at least 4 other
isoforms of higher molecular weight, which are reported to exert
different or even opposite effects on apoptosis (Kardami et al.,
2007; Liao et al., 2010; Manning et al., 2013) via different
mechanisms. Besides apoptosis, other types of cell death such
as necrosis, necroptosis, pyroptosis, ferroptosis, have been also
been implicated to underlie the tubular cell damage, the potential
role of FGFs on these additional pathways and the their interplay
remain to be characterized (Xu and Han, 2016; Han and Lee,
2019; Hu et al., 2019). On the other hand, renal recovery from
AKI requires the replacement of injured cells by new ones that
can restore tubular epithelial integrity. In this regard, FGF2 may
also facilitate the repair process of IRI, as post-IRI administration
of FGF2 also exhibited effective protection of IRI and improved
animal survival (Tan et al., 2017). The results collectively indicate
that FGF2 has promising clinical potential for the prevention and
treatment of IR-related AKI.
FGF10 INHIBITS EXCESSIVE AUTOPHAGY
AND ER STRESS

Autophagy is an evolutionarily conserved pathway that leads to
lysosomal degradation of cytoplasmic substrates, such as damaged
organelles and cytoplasmic proteins. The autophagic response is
triggered under various stress conditions including nutrient
starvation, hypoxia, and growth-factor deprivation, as well as ER
stress and oxidant injury, most of which are involved in the
pathogenesis of AKI. Knockout of Atg5 or Atg7 in proximal
tubule led to accumulation of deformed mitochondria, ubiquitin-
positive inclusion bodies increased apoptosis and worsened renal
dysfunction upon IRI suggesting a role of autophagy to the normal
homeostasis of the kidney and renoprotective effect in IR injury
(Jiang et al., 2010). However, some studies also report that
autophagic response exacerbates renal IRI (Kaushal and Shah
2016; Tan et al., 2018). Therefore, it is likely that autophagy may
exhibit both protective and detrimental properties in renal IRI,
depending on the duration, the phase, and even the extent of
the IRI.

FGF can inhibit autophagy through the mTOR pathway and
block differentiation during organogenesis (Zhang et al., 2012;
Cinque et al., 2015). Different FGFs may have distinct activities
to regulate autophagy. FGF21 protects cardiomyocytes by
promoting autophagic flux with hypoxia/reoxygenation injury
(Ren et al., 2019). On the other hand, FGF2 and FGF10 can
alleviate IRI by suppressing excessive autophagy via PI3K/AKT
and MAPK signaling in the kidney and other organs (Wang
et al., 2015; Sun et al., 2018; Tan et al., 2018, Figure 2B). Based on
the analysis of renal tissues for their LC3, Beclin-1 and SQSTM1
expression and localization, FGF10 treatment was found to
significantly suppress autophagic phenotype, which was highly
activated during IRI, whereas co-treatment of FGF10 with
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Rapamycin partially reversed such renoprotective effect,
suggesting the involvement of mTOR pathway in the process.
This study established that exogenously administered
recombinant FGF10 is protective against IR-induced functional
and tissue damage to the kidney, at least partially through
mitigating excessive autophagy.

Recent studies further showed that IRI is accompanied with
excessive activation of ER stress, which is involved in hypoxia
injury-induced apoptosis of renal tubular epithelial cells. ER, a
specialized organelle for protein synthesis, folding and trafficking,
is highly sensitive to the intracellular microenvironment changes.
Hypoxia and oxidative stress are intrinsic to IRI, which disturb ER
functions and lead to impaired protein folding (Walter and Ron,
2011; Cao and Kaufman, 2014). Excessive accumulation of unfolded
proteins activates Unfolded Protein Response (UPR), a cellular
stress response mechanism to improve the protein folding
efficiency while reducing mRNA translation along with protein
expression (Schuck et al., 2009). Although ER stress plays an
important role in cell growth and differentiation, excessive
activation of ER stress and UPR can activate apoptotic signaling
(Tabas and Ron, 2011; Hetz, 2012), which is mainly mediated by C/
EBP homologous proteins (CHOP), a master regulator of
maladaptive ER stress-induced apoptosis. FGF10 effectively
alleviated IRI evoked expression of ER stress-related proteins in
the kidney including CHOP, GRP78, XBP-1, and ATF-4 and ATF-
6, which may contribute to inhibit IR-induced activation of
proapoptotic caspase-3 and Bax expression. Results from IRI
model in vivo and in vitro cell culture experiments together
indicate that FGF10 attenuates renal tubular epithelial cell death
via inhibiting excessive ER stress, which is, at least in part, mediated
by MEK-ERK1/2 signaling pathway (Tan et al., 2020). Therefore,
FGF10 contributes to restore the balance between the adaptive
pathway and the apoptotic pathway of UPR by inhibiting excessive
ER stress.
ROLE OF FGFS ON INFLAMMATION

The inflammatory response is an integral component in the
initiation and exacerbation of AKI. Although a crucial element of
the repair process, excessive activation of inflammatory signals
and cytokine secretion may impose further damage to renal
parenchyma cells. FGFs may exhibit different impacts on the
inflammatory process of IRI. Contrary to the protective effects of
FGF2 and FGF10 against IRI/AKI, FGF23 appears to be a
deleterious factor.

Under normal physiology, FGF23 is mainly produced in bone
by osteoblasts/osteocytes in response to local and systemic
factors and targets the kidney to create multiple endocrine
networks (Bergwitz and Juppner, 2010). Although some studies
suggest that FGF23 interacts with the immune system, it is not
clear whether FGF23 directly regulates immune cell functions or
indirectly impacts immune responses through FGF23 regulation
of 1,25-dihydroxyvitamin-D. FGF23 is increased in CKD.
Macrophages do not regularly express FGF23 or a-Klotho, but
in acute inflammation, FGF23 stimulates proinflammatory
Frontiers in Pharmacology | www.frontiersin.org 8
responses in M1 macrophages and blocks the transition to M2
macrophages (Figure 1B). In addition, FGF23 is proposed to
activate FGFR2 in polymorphonuclear leukocyte to directly
decrease their recruitment. Given the link of increased serum
FGF23 to various tissue injuries, as well as evidence that the
sources of FGF23 and control of its production in AKI and CKD
differ from those in the physiologic conditions, mediators of
inflammation contributing to elevated FGF23 have recently been
proposed as potential drug targets, in addition to repurposing
existing strategies to target FGF23 (Musgrove and Wolf, 2020).

High mobility group box 1 protein (HMGB1) is a highly
conserved nuclear protein that functions as an architectural
chromatin-binding factor and regulator of gene transcription.
HMGB1 assumes diverse roles as an immuno-modulator in the
form of a cytokine molecule or as nuclear chromatin and
transcription regulator. HMGB1 can be activated and gets
released from damaged parenchymal cells as a sterile
inflammatory molecule and a major damage-associated
molecular pattern (DAMP). Translocation of HMGB1 from
the nucleus to the cytoplasm and subsequent release to the
extracellular milieu is reported to promote inflammatory
response via the activation of TLRs (Yang et al., 2010).
HMGB1-TLRs pathway has long been recognized as an
essential and early mediator in renal IRI and an attractive
target of AKI and other disease therapies (Li et al., 2011;
Zhang et al., 2016; Vijayakumar et al., 2019).

Recent efforts to explore the potential protective effect of
exogenous FGFs on renal IRI illustrated that, besides promoting
proliferation and inhibiting apoptosis, both FGF2 and FGF10
effectively inhibited IRI-induced release of HMGB1 from the
nucleus to the extracellular domain, which is associated with a
marked decrease in the expression of inflammatory cytokines
such as TNF-a, IL-1b, and IL-6 following IRI (Tan et al., 2017;
Tan et al., 2018, Figure 2B). This novel function of FGFs on the
inflammatory cascade may be related to the inhibition of
HMGB1-mediated TLR2 and/or TLR4 signaling (Leemans
et al., 2009; Wu et al., 2010; Chen et al., 2017). It has been
reported that FGF10 ameliorates cerebral ischemia injury via
inhibiting NF-kB-dependent neuroinflammation and activating
PI3K/AKT survival signalling pathway (Li et al., 2016). Whether
the inhibition of HMGB1 and associated inflammatory cytokine
release by FGFs is due to their protective effect against renal
damage and therefore less DAMP release, or through some other
mechanism(s) remains to be further elucidated.
CONCLUSION AND PROSPECT

Extensive research in the past years have established FGFs as vital
regulators in tissue repair and regeneration, as well as in
metabolic homeostasis. Along with advances in our
understanding of FGF biology and their regulation of various
pathophysiologic processes comes the inspiration of harnessing
their power for potential disease therapies.

In this review, we summarized the available data on the FGFs
that have shown promising features related to IRI either as a
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preventative/therapeutic agent or a biomarker. We highlighted
some functional and biological aspects that constitute the
promising features of FGFs, particularly FGF2 and FGF10, in
averting IR-induced tubular cell death and inhibition of overt
inflammatory response, which may all contribute to their net
beneficial effect on reducing the IRI and promoting recovery.

Admittedly, the exploration of FGFs as preventative or
therapeutic agents in the management of clinical IRI is still in its
rudimentary stages. Most of the published work has been conducted
in pre-clinical settings. These widely used animal models, including
the bilateral IR that is considered to best resemble clinical AKI, still
have certain limitations in fully mimicking human AKI, which can
be caused by numerous and complicated clinical conditions.
Additionally, the underlying pathophysiology of IRI and how
FGFs impact key biological and pathophysiological processes,
Frontiers in Pharmacology | www.frontiersin.org 9
such as apoptosis, autophagy, ERS, and oxidative stress, remains
poorly understood. Future research should encourage more clinical-
based and patient-oriented studies. Moreover, the utilization of
advanced genetic animal models will also be instrumental in
elucidating the disease mechanisms. This will allow for the
labeling and tracing of specific cell populations to gain deeper
insights about the effects of FGF. Collectively, these approaches,
combined with proteomic and genomic technologies, will better
delineate FGF signalling targets and support the therapeutic
potential of FGFs toward AKI.
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