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Safflower Yellow and Its Main
Component HSYA Alleviate Diet-
Induced Obesity in Mice: Possible
Involvement of the Increased
Antioxidant Enzymes in Liver and
Adipose Tissue

Kemin Yan, Xin Wang, Hui Pan, Linjie Wang, Hongbo Yang, Meijuan Liu, Huijuan Zhu*
and Fengying Gong*

Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical
College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijjing, China

Purpose: Oxidative stress plays an important role in the pathogenesis of obesity and its
associated disorders. Safflower yellow (SY) and hydroxysafflor yellow A (HSYA), the
natural compounds isolated from Carthamus tinctorius L., has been found to possess
antioxidative and anti-obesity properties. The purpose of the present study is to
investigate whether SY and its main component HSYA alleviate obesity by the
antioxidant effects.

Methods: Diet-induced obese (DIO) mice were treated with 200 mg/kg/d SY or HSYA for
10 weeks. Body weight, fat mass, serum biochemical parameters and superoxide
dismutase (SOD) activities were measured. Glucose and insulin tolerance tests were
performed. The expression of antioxidant enzymes in liver and adipose tissue were
measured. In vitro, H,O,-induced oxidative stress HepG2 cells and 3T3-L1 adipocytes
were treated with SY and HSYA to investigate the direct effects of SY and HSYA on the
expression of antioxidant enzymes.

Results: SY and HSYA significantly decreased the body weight gain of DIO mice, and
decreased fat mass to 57.8% and 61.6% of the control mice, respectively (P < 0.05). The
parameters of glucose metabolism and liver function were improved after SY and HSYA
treatment. The hepatic SOD activities and the mRNA levels of antioxidant enzymes in liver
and adipose tissue of SY and HSYA treated mice were increased (P < 0.05). Meanwhile,
the administration of SY and HSYA on the H>O»-induced oxidative stress HepG2 cells and
adipocytes also increased the expression of the antioxidant factor and antioxidant
enzymes to 1.2~3.3 folds of the control cells (P < 0.05).

Conclusion: SY and its main component HSYA could significantly decrease the fat mass,
and improve glucose metabolism and liver function in diet-induced obese mice. The

Frontiers in Pharmacology | www.frontiersin.org 1

April 2020 | Volume 11 | Article 482


https://www.frontiersin.org/articles/10.3389/fphar.2020.00482/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00482/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00482/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00482/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00482/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00482/full
https://loop.frontiersin.org/people/911805
https://loop.frontiersin.org/people/911805
https://loop.frontiersin.org/people/723351
https://loop.frontiersin.org/people/723351
https://loop.frontiersin.org/people/338278
https://loop.frontiersin.org/people/338278
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:fygong@sina.com
mailto:shengxin2004@163.com
https://doi.org/10.3389/fphar.2020.00482
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.00482
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.00482&domain=pdf&date_stamp=2020-04-21

Yan et al. SY and HSYA Alleviate Obesity
beneficial effects of SY and HSYA on obesity and metabolism may be associated with the
increased expression of antioxidant enzymes in liver and adipose tissue.

Keywords: safflower yellow (SY), hydroxysafflor yellow A (HSYA), obesity, antioxidant enzymes, liver, adipose tissue

INTRODUCTION blood lipid levels in the mice fed with high fat diet (Bao et al.,

Obesity is a medical condition which results from the imbalance in
energy metabolism, with excessive and abnormal fat accumulates in
various organs and tissues. Fat accumulation has been reported to
be closely correlated with the markers of systemic oxidative stress in
humans and mice (Furukawa et al., 2004). Oxidative stress, mainly
defined as the imbalance between the oxidative and anti-oxidative
systems of the tissues and cells, plays an important role in the
pathogenesis of various metabolic diseases (Rani et al, 2016).
Oxidative stress in the adipose tissue has been reported to cause
dysfunction of adipose tissue, which links to the development of
obesity and its associated disorders, such as type 2 diabetes,
cardiovascular diseases, and non-alcoholic fatty liver disease
(NAFLD) (Bluher, 2009; Manna and Jain, 2015). Hepatic lipid
accumulation and oxidative stress are major contributors in the
pathophysiological mechanisms of NAFLD (Ashraf and Sheikh,
2015). Therefore, in order to prevent the development of these
metabolic diseases, it is imperative to investigate novel therapeutic
strategies to restore the normal equilibrium between oxidative and
anti-oxidative processes. Antioxidant supplementation has been
found to improve antioxidant-oxidant balance and the liver
function in overweight or obese children and adolescents (Murer
et al,, 2014). In mouse models of inducible insulin resistance and
obesity, antioxidant treatment has also been reported to protect
against diabetes by improving glucose homeostasis and increasing
insulin sensitivity (Straub et al., 2019).

Carthamus tinctorius L., belongs to the Compositae or
Asteraceae family, has been extensively used in traditional
herbal medicine in China, Korea, Japan, and other Asian
countries in treating various diseases (Zhang et al., 2016).
Safflower yellow (SY) is the main constituent in the flower of
Carthamus tinctorius L., and hydroxysafflor yellow A (HSYA) is
the major bioactive component of SY (Asgarpanah and
Kazemivash, 2013; Fan et al.,, 2014). Recent studies have
demonstrated that SY and HSYA possess multiple
pharmacological functions, including antioxidation, anti-
inflammation, anti-thrombosis, anti-coagulation, anti-tumor,
anti-apoptosis, neuroprotection, and protection of endothelial
cells (Fan et al., 2014; Zhang et al., 2016). The antioxidant effects
of SY and HSYA have been reported in rat model of traumatic
brain injury (Wang et al, 2016), HepG2 cells with oxidative
damage (Ma et al.,, 2016), and pancreatic B-cells (Zhao et al,
2018). In our previous study, SY has been found to possess the
anti-obesity effects (Zhu et al., 2016). In detail, SY significantly
decreased the body fat mass, fasting blood glucose levels, and
increased insulin sensitivity of diet-induced obese mice (Zhu
et al., 2016). Similarly, the anti-obesity effects of SY and HSYA
have also been demonstrated by other researchers. It was
reported by Bao et al. that SY could reduce body weight and

2015). Liu et al. also found that HSYA could reduce body weight,
fat accumulation, and insulin resistance in the high fat diet-fed
mice by modulating the gut microbiota (Liu et al., 2018).

Oxidative stress is closely linked to the occurrence and
development of obesity and its associated disorders. SY and its
main component HSYA possess the antioxidant effects.
However, whether the antioxidant effects of SY and HSYA
involve in the mechanisms by which they reduce body weight
and fat mass, as well as increase insulin sensitivity still remains
unclear. The hypothesis of the present study is that SY and HSYA
play the anti-obesity role by its antioxidant effects. Therefore,
experiments were conducted on diet-induced obese (DIO) mice
and the cellular models of oxidative stress damage to investigate
the impacts of SY and its main component HSYA on alleviating
obesity and the association with the antioxidant effects in liver,
adipose tissue, and cells.

MATERIALS AND METHODS
Preparation of SY and HSYA

SY used in our experiments was isolated from the water-soluble
extracts of the flower of Carthamus tinctorius L. (produced in
Tacheng City, Tacheng Prefecture, Xinjiang Uyghur
Autonomous Region) by Prof. Ming Jin (Beijing An Zhen
Hospital, Capital Medical University). SY is composed of a
variety of chalcone mixtures. Among them, HYSA is the main
active component. The concentration of HSYA in the SY is
43.5 g/L (determined by spectrophotometry). The purity of
HSYA in the SY is 75.56% (determined by HPLC), which
refers to the purity percentage of the main peak calculated by
the peak area normalization method. The chemical compound
HSYA (purity 98.43%) was purchased from Chengdu Herbpurify
Co., Ltd. (Sichuan, China). The HPLC analysis of SY and HSYA
were presented in the supplementary materials. SY and HSYA
were dissolved in deionized water.

Animals

Male 7-week-old C57BL/6] mice were purchased from Beijing
Vital River Laboratory Animal Technology Co., Ltd. (Beijing,
China), and housed in a standard 12-h light/dark cycle with free
access to food and water. After 1 week of acclimation, mice were
randomly assigned to a standard food (SF; 10% kcal fat, n=20;
H10010, Beijing HFK Bioscience Co., Ltd., Beijing, China) group
and a high-fat diet (HFD; 45% kcal fat, n=30; H10045, Beijing
HFK Bioscience Co., Ltd., Beijing, China) group. The
compositions of the experimental diets are shown in Table S1.
Ten weeks later, mice fed with SF were divided into SF-Saline
group (n=10) and SF-SY group (n=10), and mice fed with HFD
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were weighed and divided into HFD-Saline group (n=10), HFD-
SY group (n=10), and HFD-HSYA group (n=10). Mice in the SY
and HSYA intervention group were intraperitoneally injected
with 200 mg/kg/d SY or HSYA for ten weeks, and mice in SF-
Saline and HFD-Saline groups were intraperitoneally injected
with equal volume of saline. Body weight was recorded twice a
week, and food intake was recorded weekly. The animal
experiment protocols were approved by the ethics committee
of Peking Union Medical College Hospital.

Intraperitoneal Glucose Tolerance Test
(IPGTT), Intraperitoneal Insulin Tolerance
Test (IPITT), and Sample Collection

Ten weeks after SY and HSYA intervention, IPGTT and IPITT
were performed. In IPGTT, mice were overnight fasted and 50%
glucose (2 g/kg) was administrated intraperitoneally. In IPITT,
mice were morning fasted for 5 h and insulin (0.72 IU/kg,
Novolin R, Novo Nordisk, Denmark) was administered
intraperitoneally. Blood glucose levels were measured from the
tail at 0, 30, 60, 90, and 120 min after the administration. Area
under the curve (AUC) was calculated by trapezoidal integration.
There were two mice in SF-SY group, one in HFD-SY group and
one in HFD-HSYA group died in IPITT due to hypoglycemia.
Two days after IPITT, mice were starved overnight and
anesthetized. Blood samples were collected and centrifuged at
3,000 rpm for 10 min at 4°C for serum collection. Liver tissue and
white adipose tissue (WAT), including subcutaneous WAT
(SWAT), epididymal WAT (eWAT), and perirenal WAT, were
harvested, snap frozen in liquid nitrogen, and stored at —80°C.
Part of the liver tissue was fixed in 10% formalin.

Measurements of Biochemical
Parameters, Superoxide Dismutase (SOD)
Activities, and Malondialdehyde (MDA)
Serum biochemical parameters were measured by routine
automated laboratory methods. Insulin levels were measured by
a commercial ELISA kit (MEA448Mu, Wuhan USCN Business
Co., Ltd., Wuhan, China) according to the manufacturer’s
instruction. The intra-assay coefficient of variation was 4.0%.
Homeostasis model assessment of insulin resistance (HOMA-
IR) was calculated as described previously (Yan et al, 2017).
SOD activities and MDA levels in tissues and serum were
measured by the SOD assay kit (A001-3, Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) and MDA assay kit
(A003-1, Nanjing Jiancheng Bioengineering Institute, Nanjing,
China), respectively, according to the instruction manual.

Liver Histologic Analysis and Triglyceride
(TG) Contents Measurement

Liver tissue fixed in 10% formalin was dehydrated and embedded
in paraffin. Sections (3 pm) were stained with hematoxylin and
eosin (H&E) by standard procedures. Images were obtained
using a digital camera (Nikon DS-U3, Japan). Liver TG
contents were measured by a triglyceride assay kit (A110-1-1,
Nanjing Jiancheng Bioengineering Institute, Nanjing, China)
according to the instruction manual.

Cell Culture
HepG2 cells were purchased from the Cell Resource Center,
Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences (Beijing, China), and maintained in Minimum Essential
Medium with Earle’s Balanced Salts (SH30024.01, HyClone, Logan,
USA) with 10% (v/v) fetal bovine serum (FBS), 0.1 mM non-
essential amino acids, 1 mM sodium pyruvate, 100 U/mL penicillin
and 100 pg/mL streptomycin at 37°C in a 5% CO, incubator.
HepG2 cells were pretreated with 10, 50, and 100 mg/L SY for 24 h,
and then treated with 20 uM hydrogen peroxide (H,O,) solution
for 24 h, following the total RNA extraction.

3T3-L1 preadipocytes were obtained from the Cell Resource
Center, Institute of Basic Medical Sciences, Chinese Academy of
Medical Sciences (Beijing, China), and cultured in Dulbecco’s
Modified Eagle Medium (DMEM, SH30022.01, HyClone, Logan,
USA) with 10% (v/v) bovine calf serum, 100 U/ml penicillin and
100 pg/ml streptomycin at 37°C in a 5% CO, incubator. Two days
after confluence, 3T3-L1 preadipocytes were induced to
differentiation in DMEM with 10% FBS, 10 ug/ml insulin,
0.5 mM 3-isobutyl-1-methylxanthine, and 10 UM dexamethasone
for 48 h, and then in DMEM containing 10% (v/v) FBS and 10 ug/
ml insulin for 48 h. After that, the medium was replaced every other
day with DMEM containing 10% (v/v) FBS. Six days later, the
differentiated 3T3-L1 adipocytes were pretreated with 10, 50, and
100 mg/L SY or HSYA for 24 h, and then administrated with
200 uM H,0, solution for 24 h, following the total RNA extraction.

RT-gPCR

Total RNA was extracted from the liver tissue, adipose tissue,
HepG2 cells, and 3T3-L1 adipocytes using Total RNA Kit II
(R6934, Omega Biotek, USA) according to the instruction
manual. Reverse transcription was performed using the
PrimeScript™ RT reagent Kit with gDNA Eraser (RR047A,
TaKaRa, Japan). qPCR analysis was performed in ABI7500
PCR system (Applied Biosystems, San Francisco, CA, USA)
using TB Green® Premix Ex Taq™ II (RR820A, TaKaRa,
Japan) to measure the expression of nuclear factor erythroid 2-
related factor 2 (Nrf2) and antioxidant enzymes, including
SOD1, glutamate-cysteine ligase catalytic subunit (GCLC),
NAD(P)H dehydrogenase (quinone 1) (Nqol), catalase (CAT),
and heme oxygenase-1 (HO-1). Peptidylprolyl isomerase A
(PPIA) or GAPDH was used for normalization. The relative
expression of each target gene was calculated by the 2744
method (Livak and Schmittgen, 2001). The primers used in
RT-qPCR were listed in the Table S2.

Statistical Analysis

All data were expressed as mean + standard deviation (SD).
Statistical analysis was performed by SPSS software (version 22.0
for Windows, SPSS Inc., Chicago, IL, USA). The univariate
analysis of variance (ANOVA) was used for data analysis, with
Bonferroni post hoc test for multiple comparison. The Kruskal-
Wallis test was used if the ANOVA was inapplicable. P < 0.05
was considered statistically significant.
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RESULTS

SY and HSYA Decreased Body Weight
Gain, WAT Mass, and WAT Percentage in
DIO Mice

As presented in Figure 1, the body weight and body weight gain
of the DIO mice were significantly increased, and the WAT mass
and WAT percentage of DIO mice were also significantly
increased to 3.8- and 2.9-folds of the SF-Saline group (P <
0.05). After SY treatment for 10 weeks, the body weight gain,
WAT mass and WAT percentage of the DIO mice significantly
decreased to 56.8%, 57.8%, and 62.7% of the HFD-Saline group
(P < 0.05). Similarly, after HSYA treatment, the body weight
gain, WAT mass, and WAT percentage of the DIO mice also
remarkably decreased to 28.7%, 61.6%, and 66.3% of the HFD-
Saline group (P < 0.05). However, SY administration had no
effect on the body weight gain and WAT mass in the lean mice
fed with SF. Both SY and HSYA administration had no effect on
food intake of the lean and DIO mice. In order to eliminate the
effect of daily intraperitoneal injection-induced chronic
inflammation, a preliminary experiment for evaluating the
effects of SY and HSYA by intragastric administration was
being performed. The preliminary results showed that SY and
HSYA could also decrease the body weight and body weight gain
of the mice by intragastric administration (Figures S1A, B, P <
0.05). There was also no effect of SY and HSYA on food intake by
intragastric administration (Figure S1C).

SY and HSYA Improved Glucose
Metabolism and Liver Function in DIO Mice
The DIO mice showed abnormal glucose metabolism. When
compared with the SF-Saline group, the blood glucose levels of
DIO mice in HFD-Saline group were remarkably increased in
IPGTT and IPITT (Figures 1E, F, P < 0.05), and the AUC of
IPGTT and IPITT of DIO mice also significantly increased by
26.8% and 40.5% (Figures 1G, H, P < 0.05). Meanwhile, serum
levels of fasting blood glucose (FBG), total cholesterol, and high-
sensitivity C-reactive protein of the DIO mice were all
significantly increased (Table 1, P < 0.05). It was observed that
SY and HSYA could improve glucose metabolism in the DIO
mice. In the HFD-SY group, the blood glucose levels in IPITT
were decreased, and the AUC of IPITT showed a 16.6% decrease
when compared with the HFD-Saline group (Figures 1F, H, P <
0.05). FBG and HOMA-IR of the SY treated mice were also
decreased by 18.3% and 32.2%, respectively (Table 1, P < 0.05).
Consistently, in the HFD-HSYA group, the blood glucose levels
in both IPGTT and IPITT were significantly decreased (Figures
1E, F, P < 0.05), the AUC of IPGTT and IPITT were also
decreased by 24.1% and 29.1% (Figures 1G, H, P < 0.05), and the
FBG and HOMA-IR were decreased by 15.7% and 34.5% (Table
1, P < 0.05) when compared with the HFD-Saline group.
However, SY had no effect on glucose metabolism of the
lean mice.

Serum ALT levels of the DIO obese mice were increased to
2.2-folds of that in SF-Saline group, and significantly decreased

by 30.4% and 27.8%, respectively, after SY and HSYA
administration (Table 1, P < 0.05). As presented in Figure 2
and supplementary Figure S2, there were many lipid droplets in
the H&E and Oil Red O staining of liver tissue in the HFD-Saline
group, companied by an increasing trend of the liver TG
contents. By contrast, there were less lipid drops in the SY and
HSYA treated DIO mice, and TG contents measurement also
revealed the tendency to decrease. SY also showed no effect on
liver function of the lean mice.

SY and HSYA Increased the SOD Activities
in Liver Tissue of DIO Mice

Since SY and HSYA have been reported to possess antioxidant
effects, SOD activities of serum, liver and white adipose tissue
were measured. The results showed that the SOD activities in the
liver tissue of SY and HSYA treated DIO mice were increased by
34.8% and 20.3%, respectively, when compared with the HFD-
Saline group (Figure 3A, P < 0.05). In both sWAT and eWAT,
the SOD activities of DIO mice were reduced to 50.9% and
72.8%, respectively, of that in the SF-Saline group (Figures 3B,
C, P < 0.05), and showed the trend to increase after SY and
HSYA treatment. However, there was no change in the serum
SOD activities after SY and HSYA treatment in DIO mice. There
was only a decreasing trend in serum levels of tumor necrosis
factor oo (TNFo) after SY intervention, but no statistical
difference (p=0.067, Figure S3). SY also had no effect on the
SOD activities of both liver and adipose tissue of the lean mice.
There was also no significant difference in MDA levels among
those groups.

SY and HSYA Increased the Expression of
Antioxidant Enzymes in Liver Tissue and
Adipose Tissue of DIO Mice
As shown in Figure 4, SY increased the mRNA levels of SOD1,
GCLC, and Nqol in liver tissue of the lean mice to 1.7-, 1.5-, and
2.3-folds of the SF-Saline group (P < 0.05). In DIO mice, SY could
also increase the mRNA levels of GCLC and Nqol to 1.8- and 1.7-
folds in liver tissue when compared with the HFD-Saline group
(P < 0.05). However, there was a decrease in the mRNA levels of
CAT in liver tissue of the lean mice after SY treatment (P < 0.05).
As to the eWAT, there was impairment in the expression of
antioxidant enzymes in DIO mice. The mRNA levels of SOD1
and GCLC in eWAT of the HFD-Saline group significantly
decreased by 25.0% and 44.0% when compared with the SF-
Saline group (Figures 5B, D, P < 0.05), while the HO-1 mRNA
levels increased to 2.0-folds of the SF-Saline group (Figure 5C,
P < 0.05). SY and HSYA treatment obviously increased the
expression of antioxidant factor and enzymes in the eWAT of
DIO mice. In the SY-treated obese mice, the mRNA levels of the
antioxidant factor Nrf2 and the antioxidant enzymes HO-1 and
GCLC were obviously increased to 1.3-, 3.9-, and 2.0-folds of that
in HFD-Saline group (Figures 5A, C, D, P < 0.05). Meanwhile,
the mRNA levels of SOD1, HO-1, and GCLC in eWAT of DIO
mice significantly increased by 20.9%, 50.8%, and 53.0% after
HSYA treatment in comparison with HFD-Saline group
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FIGURE 1 | Effects of safflower yellow (SY) and hydroxysafflor yellow A (HSYA) on body weight, food intake, fat mass, glucose tolerance test, and insulin tolerance
test in mice. Mice were intraperitoneally injected with 200 mg/kg/d SY or HSYA for 10 weeks. Body weight (A) was recorded, and the body weight gains (B) were
calculated at the end of the experiment. Food intake (C) was also recorded. Ten weeks after intervention, white adipose tissue (WAT), including subcutaneous WAT,
epididymal WAT and perirenal WAT, were obtained and weighed (D). The WAT percentage was calculated by the percentage of body weight occupied by the WAT
mass (D). The intraperitoneal glucose tolerance test (IPGTT, E) and the intraperitoneal insulin tolerance test (IPITT, F) and were performed. Areas under the curve
(AUCs) of the IPGTT and IPITT were calculated (G, H). The data are represented as the mean + SD. *P < 0.05 vs. SF-Saline, *P < 0.05 vs. HFD-Saline. (n=10 in the
SF-Saline group, n=8 in the SF-SY group, n=10 in the HFD-Saline group, n=9 in the HFD-SY group, n=9 in the HFD-HSYA group).

mRNA levels of SOD1 and CAT (Figures 5B, E, P < 0.05).
However, there was no significant change in the mRNA levels of
these antioxidant enzymes in the sSWAT after SY and HSYA
treatment (Figure S4).
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TABLE 1 | Serum biochemical parameters of the mice.

SF-Saline (n=10) SF-SY (n=8) HFD-Saline (n=10) HFD-SY (n=9) HFD-HSYA (n=9)

FBG (mmol/L) 7.58 +2.37 8.35 + 1.41 11.62 = 1.61* 9.49 + 2.25" 9.80 + 1.89"
Insulin (ng/mL) 1.60 + 0.50 1.10 + 0.48 1.20 + 0.42 1.02 + 0.35 0.93 +£0.34
HOMA-IR 14.83 + 4.04 11.92 + 5.49 18.16 + 8.78 12.31 + 4.52" 11.89 + 5.28"
TC (mmol/L) 4.02 + 0.32 3.83 + 0.36 4.71 £ 0.78* 470 + 0.44 4.54 + 0.90
TG (mmol/L) 0.30 + 0.21 0.24 + 0.07 0.28 + 0.07 0.32 +0.14 0.30 + 0.22
LDL-c (mmol/L) 0.42 + 0.06 0.46 +0.11 0.57 + 0.15 0.59 +0.15 0.55 +0.18
HDL-c (mmol/L) 191 +0.12 1.75+0.13 1.95 +0.23 1.92 +0.18 1.84 +0.15
hsCRP (mg/L) 0.08 + 0.03 0.07 + 0.03 0.14 + 0.03* 0.11 +0.03 0.09 + 0.02
Cr (umol/L) 716 + 1.61 7.08 +0.79 7.77 £1.55 5.84 +1.12% 7.23+1.15
ALT (U/L) 15.04 +1.22 14.23 + 2.88 33.09 + 9.20* 23.02 + 8.15" 23.90 + 10.06"
AST (U/L) 99.15 + 16.46 91.80 + 11.35 114.29 + 27.07 97.29 + 9.05 110.99 + 18.48

Values are mean + SD. ALT, alanine aminotransferase; AST, aspartate aminotransferase; Cr, creatinine; FBG, fasting blood glucose; HDL-, high density lipoprotein-cholesterol; HOMA-IR,

homeostasis model assessment of insulin resistance; hsCRP, high-sensitivity C reactive protein; LDL-c, low density lipoprotein-cholesterol; TC, total cholesterol; TG, triglycerides. *P <
0.05 vs. SF-Saline; *P < 0.05 vs. HFD-Saline.
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FIGURE 2 | Hematoxylin-Eosin (H&E) stained sections of liver tissues and liver triglyceride (TG) contents of the mice. Mice were intraperitoneally injected with 200 mg/kg/d
safflower yellow (SY) or hydroxysafflor yellow A (HSYA) for 10 weeks. Liver tissue was fixed in 10% formalin, and then dehydrated and embedded in paraffin. Sections (3 um)
were stained with H&E. Images of the representative sections in the SF-Saline group (A), SF-SY group (B), HFD-Saline group (C), HFD-SY group (D), and HFD-HSYA group
(E) at 200x magnification (scale bars, 100 um) were obtained using a digital camera. Liver TG contents were measured by a triglyceride assay kit (F). The data are represented
as the mean + SD. (n=10 in the SF-Saline group, N=8 in the SF-SY group, n=10 in the HFD-Saline group, N=9 in the HFD-SY group, n=9 in the HFD-HSYA group).

Frontiers in Pharmacology | www.frontiersin.org 6 April 2020 | Volume 11 | Article 482


https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Yan et al.

SY and HSYA Alleviate Obesity

8000 Liver

6000

4000+

SOD (U/ml)

2000+

1501

1004

SOD (U/ml)

(2]
o
1

Liver

m

201

MDA (nmol/ml)

B 300- Subcutaneous WAT

2507
E 2004
= 150-

S 100-

250- Serum

200

150

SOD (U/ml)
g

504

Serum

MDA (nmol/ml)

FIGURE 3 | Effects of safflower yellow (SY) and hydroxysafflor yellow A (HSYA) on superoxide dismutase (SOD) activities and malondialdehyde (MDA) levels in mice.
Mice were intraperitoneally injected with 200 mg/kg/d SY or HSYA for 10 weeks. Blood samples were collected and centrifuged for serum collection. Liver tissue,
subcutaneous white adipose tissue (WAT) and epididymal WAT were obtained. SOD activities of liver (A), adipose tissue (B, C), and serum (D) were measured by
SOD assay kit. MDA levels in liver (E) and serum (F) were measured by MDA assay kit. The data are represented as the mean + SD. *P < 0.05 vs. SF-Saline, *P <
0.05 vs. HFD-Saline. (n=10 in the SF-Saline group, n=8 in the SF-SY group, n=10 in the HFD-Saline group, n=9 in the HFD-SY group, n=9 in the HFD-HSYA group).

SY Increased the Expression of Nrf2 and
Antioxidant Enzymes in HepG2 Cells

HepG2 cells were treated with H,O, solution to simulate a state
of oxidative stress with impairment in the expression of Nrf2 and
antioxidant enzymes. The effect of H,O, on cell viability of
HepG2 cells was examined by MTT assay. There was no
significant decrease in cell viability after 20 uM H,0O, treated
for 24 h (Figure S5A). As presented in Figure 6, the mRNA
levels of Nrf2, GCLC and CAT in H,O, treated HepG2 cells were
decreased by 25.6%, 21.2%, and 34.0% in comparison with
control cells (P < 0.05), suggesting that the oxidative stress cell
model was successfully established. SY treatment presented a

protective effect in HepG2 cells by restoring the antioxidant
capacity. After 10 mg/L SY administration, Nrf2 mRNA levels
increased to 1.3 folds of H,O, treated group (Figure 6A,
P < 0.05). SY also increased the mRNA levels of GCLC and
Nqol in a dose-dependent manner. After 10, 50, and 100 mg/L
SY treatment, GCLC mRNA levels significantly increased to 1.4-,
2.0-, and 2.3-folds of H,O, treated group, and Nqol mRNA
levels significantly increased to 1.4-, 1.6-, and 2.3-folds of H,O,
treated group (Figures 6B, C, P < 0.05). Meanwhile, the mRNA
levels of SOD1 and CAT were also increased to 1.2~1.4-folds
after 10, 50, and 100 mg/L SY treatment (Figures 6D, E,
P < 0.05).
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SY and HSYA Increased the Expression of
Nrf2 and Antioxidant Enzymes in 3T3-L1
Adipocytes

There was no significant decrease in cell viability of 3T3-L1
adipocytes after 200 uM H,O, treated for 24h (Figure S5B).
H,O, solution treatment also simulate a state of oxidative stress
in 3T3-L1 adipocytes. The mRNA levels of Nrf2, SOD1, and HO-1
in H,O, treated 3T3-L1 adipocytes were decreased by 25.1%, 35.7%,
and 39.7% when compared with control cells (Figure 7, P < 0.05).
SY could also restore the antioxidant capacity of the H,O,-induced
oxidative stress damage 3T3-L1 adipocytes. After 10, 50, and 100
mg/L SY intervention, the mRNA levels of Nrf2 and SOD1 were
significantly increased to 1.3~1.5-folds of that in H,O, treated group
(Figures 7A, B, P < 0.05). SY promoted HO-1 expression in a dose-
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FIGURE 4 | Effects of safflower yellow (SY) and hydroxysafflor yellow A (HSYA) on the expression of Nrf2 and antioxidant enzymes in the liver tissues of the mice.
Mice were intraperitoneally injected with 200 mg/kg/d SY or HSYA for 10 weeks. Liver tissue was obtained and total RNA was extracted. The messenger RNA
(mRNA) levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant enzymes, including superoxide dismutase 1 (SOD1), glutamate-cysteine ligase
catalytic subunit (GCLC), NAD(P)H dehydrogenase (quinone 1) (Ngo1), catalase (CAT), and heme oxygenase-1 (HO-1), were determined by RT-gPCR analysis (A-F).
The data are represented as the mean = SD. *P < 0.05 vs. SF-Saline, *P < 0.05 vs. HFD-Saline. (n=8 in each group).

dependent manner. After 10, 50, and 100 mg/L SY intervention, the
mRNA levels of HO-1 obviously increased to 1.7-, 2.4-, and 3.3-
folds of that in H,O, treated group (Figure 7C, P < 0.05). Besides,
HSYA also increased HO-1 mRNA levels to 1.4-folds of H,O,
treated group (Figure 7F, P < 0.05).

DISCUSSION

Carthamus tinctorius L. is a traditional herbal medicine with
multifunctional applications, which has been used in the
treatments of cerebrovascular diseases, cardiovascular diseases,
and gynecological diseases (Zhang et al.,, 2016). Modern
pharmacological studies have also shown that SY and HSYA,
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the active components of Carthamus tinctorius L., possess many
pharmacological effects (Zhang et al., 2016). In our previous
study, SY has been demonstrated with the anti-obesity effects.
Similarly, our present study also discovered that SY and its main
component HSYA could decrease body weight gain and fat mass,
and improve glucose metabolism and liver function in DIO mice,
implying a role in alleviating obesity. Preliminary mechanistic
investigation showed that SY and HSYA treatment obviously
increased the antioxidant enzymes expression in liver and
adipose tissue of DIO mice. Further cellular experiments
performed in H,0,-induced oxidative stress HepG2 cells and
adipocytes showed that this antioxidant effects of SY and HSYA
in DIO mice was achieved by directly increase the expression of
antioxidant factor Nrf2 and antioxidant enzymes in HepG2 cells
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FIGURE 5 | Effects of safflower yellow (SY) and hydroxysafflor yellow A (HSYA) on the expression of Nrf2 and antioxidant enzymes in the epididymal adipose tissues
of the mice. Mice were intraperitoneally injected with 200 mg/kg/d SY or HSYA for 10 weeks. The epididymal adipose tissue was obtained and total RNA was
extracted. The messenger RNA (MRNA) levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant enzymes, including superoxide dismutase 1 (SOD1),
heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), catalase (CAT), and NAD(P)H dehydrogenase (quinone 1) (Ngo1) were determined by
RT-gPCR analysis (A-F). The data are represented as the mean = SD. *P < 0.05 vs. SF-Saline, *P < 0.05 vs. HFD-Saline. (n=8 in each group).

and adipocytes with oxidative stress damage. Taken together, SY
and its main component HSYA could alleviate diet-induced
obesity in mice, which might be associated with the increased
expression of antioxidant enzymes in liver, adipose tissue,
and cells.

Consistent with our results, other researchers have also
demonstrated the anti-obesity effects of SY and HSYA. It was
reported by Bao et al. that SY could reduce body weight and
blood lipid levels in the mice fed with HFD (Bao et al., 2015). Liu
et al. also found that HSYA could reduce body weight, fat
accumulation, and insulin resistance in the HFD-fed mice (Liu
et al., 2018). Besides, the promoting effects of SY and HSYA on
the expression of Nrf2 and antioxidant enzymes have also been
reported in pheochromocytoma cells, HepG2 cells, and
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FIGURE 6 | Effects of safflower yellow (SY) on the expression of Nrf2 and antioxidant enzymes in HepG2 cells. HepG2 cells were plated in 24-well plates and
pretreated with 10, 50, and 100 mg/L SY for 24 h, and then treated with 20 uM hydrogen peroxide (H.O,) solution for 24 h. Then, cells were lysed for total RNA
extraction. RT-gPCR analysis was performed to measure the mRNA levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant enzymes, including
glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H dehydrogenase (quinone 1) (Ngo1), superoxide dismutase 1 (SOD1), and catalase (CAT) (A-E). The
data are represented as the mean + SD of three separate wells. *P < 0.05 vs. control cells (without H,O, and SY), #P < 0.05 vs. H,0, group (with 20 pM H,05).

cardiomyocytes (Wang et al., 2009; Liu et al., 2012; Ma et al,,
2016). Safflower yellow B was found to significantly increase
SOD and glutathione peroxidase activities in the H,0,-injured
pheochromocytoma PCI12 cells (Wang et al., 2009), and
obviously increase the expression of Nrf2, HO-1, and Nqol in
HepG2 cells with H,0,-induced oxidative damage (Ma et al,
2016). HSYA was also found to upregulate the expression and
activities of HO-1 through the PI3K/Akt/Nrf2 pathway in H9c2
cardiomyocytes (Liu et al., 2012).

In the present study, the anti-obesity effects of SY and HSYA
might be associated with the increase expression of antioxidant
enzymes. Patients with overweight or obesity have lower
antioxidant capacity (Chrysohoou et al., 2007). The activities of
antioxidant enzymes such as glutathione peroxidase and SOD in
individuals with obesity are significantly lower than healthy
people (Ozata et al,, 2002). Similarly, obese mice or rats also

showed lower antioxidant capacity (Beltowski et al., 2000; Su
et al,, 2016), as well as decreased expression of antioxidant
enzymes in the adipose tissue (Illesca et al., 2019). However,
the regulation of antioxidative enzymes in obesity is complicated.
Some literatures also demonstrate that antioxidative enzymes are
induced in obesity. It has been reported that SOD activity was
higher in obese children compared with normal-weight controls
as a consequence of cell adaptation to the increased radical
production in obesity (Sfar et al, 2013). There was also
significant increase in the SOD levels in the liver, adipose
tissues, kidney, testis, muscle, and plasma of obese ob/ob mice
(Nakao et al., 2000). Obese Zucker rats have also been found to
have increased SOD activity in the myocardial tissue (Vincent
et al, 2001). In our current study, the expression of the
antioxidant enzymes SODI and GCLC in the adipose tissue
was significantly decreased in DIO mice. The expression of

Frontiers in Pharmacology | www.frontiersin.org

April 2020 | Volume 11 | Article 482


https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Yan et al.

SY and HSYA Alleviate Obesity

antioxidant enzymes in adipose tissue could alleviate oxidative
stress which is associated with the dysfunction of adipose tissue
(Bluher, 2009; Manna and Jain, 2015). Nrf2 is a critical
transcription factor that regulates the expression of many
antioxidant enzymes, including SOD1, HO-1, GCLC, Nqol,
and CAT (Zhang et al.,, 2015). Pharmacological activation of
Nrf2 has been reported to alleviate obesity and insulin resistance
in mice. CDDO-Imidazolide, the synthetic activator of Nrf2
signaling, has been found to prevent high fat diet-induced
increases in body weight, fat mass, and hepatic lipid
accumulation in C57BL/6] mice (Shin et al., 2009). In the
present study, the treatment of SY and HSYA could increase
the expression of Nrf2 and antioxidant enzymes in adipose tissue
and 3T3-L1 adipocytes, which might contribute to the decrease
of fat mass and the improvement of glucose metabolism in DIO
mice. To our knowledge, this is the first time that SY and HSYA
have been found to directly increase the expression of
antioxidant enzymes in adipose tissue, which might help to
discover the novel mechanism of its anti-obesity effect.

In addition, NAFLD is a metabolic complication of obesity. Fat
accumulation in the hepatocytes exposes liver to oxidative stress,
which appears as the most important pathological event during
NAFLD development (Spahis et al., 2017). Antioxidants, such as
polyphenols and carotenoids, have been proposed as a novel
therapeutic approach for NAFLD (Ferramosca et al., 2017). In
the present study, the treatment of SY and HSYA is able to
decrease serum ALT levels, and reduce lipid droplets
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FIGURE 7 | Effects of safflower yellow (SY) and hydroxysafflor yellow A (HSYA) on the expression of Nrf2 and antioxidant enzymes in 3T3-L1 adipocytes. 3T3-L1
preadipocytes were plated in 24-well plates and induced to differentiation. The differentiated 3T3-L1 adipocytes were pretreated with 10, 50, and 100 mg/L SY or
HSYA for 24 h, and then administrated with 200 uM H,O. solution for 24 h. Then, cells were lysed for total RNA extraction. RT-gPCR analysis was performed to
measure the changes in the messenger RNA (mMRNA) levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant enzymes, including superoxide
dismutase 1 (SOD1) and heme oxygenase-1 (HO-1), after SY (A-C) or HSYA (D-F) administration. The data are represented as the mean + SD of three separate
wells. *P < 0.05 vs. control cells (without H,O, and SY/HSYA), *P < 0.05 vs. H,0, group (with 200 uM H,0y).

accumulation in the liver of DIO mice, indicating the protective
effect of SY and HSYA against HFD-induced NAFLD. Moreover,
SY and HSYA enhanced SOD activities and increased the mRNA
levels of antioxidant enzymes in the liver of DIO mice, suggesting
that the antioxidant effect of SY and HSYA may play a role in the
mechanism of the hepatoprotective effects.

It is well known that food intake and energy expenditure are
the counterbalance factors that determine the body weight
change (Piaggi et al, 2018). In the present study, the mice
treated with SY or HSYA have a decreased body weight gain,
but have no change in food intake. Therefore, it is possible that
there might be an increase in the energy expenditure of mice. The
effects of SY or HSYA on the basal metabolic rate and physical
activity of mice need to be investigated in the future. Besides,
skeletal muscle can strongly influence whole-body glucose
homeostasis and insulin sensitivity (Wu and Ballantyne, 2017).
The potential role of skeletal muscle on mediating the
improvement of glucose metabolism and the reduction of
insulin resistance after SY and HSYA treatment also remains
to be explored in the future study. In addition, it is generally
known that reducing body weight and fat mass could effectively
improve insulin sensitivity and decrease blood glucose levels
(Grams and Garvey, 2015; Pourhassan et al., 2017; Vink et al.,
2017). Therefore, it is possible that the beneficial effects of SY and
HSYA on improving metabolism in the present study result from
the subsequent effects of the decrease of body weight gain and fat
mass. The experiment about the short-term effects of SY and
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HSYA treatments on the metabolic parameters of DIO mice
before presenting significant reduction in the body weight gain
needs to be done in the future to further clarify the issues.

In conclusion, SY and its main component HSYA play a role
in alleviating diet-induced obesity in mice, which might be
associated with the increased expression of antioxidant
enzymes in liver and adipose tissue. These findings might
contribute to develop SY and HSYA as new drugs to tackle
obesity. However, further studies for the detailed mechanism,
and experiments on the effects of SY and HSYA on patients with
obesity, are still needed.
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food intake of mice by intragastric administration. Mice were intragastric
administrated with 250 mg/kg/d SY or HSYA. Body weight (A) was recorded, and
the body weight gains (B) were calculated four weeks after administration. Food
intake (C) was also recorded. The data are represented as the mean + SD. * P<0.05
vs. SF, # P<0.05 vs. HFD. (n=10 in each group)

FIGURE S2 | QOil Red O staining of liver tissue. The liver tissue (stored at -80 °C)
was unfrozen slowly and fixed in 4% paraformaldehyde fix solution (AR1068, Boster
Biological Technology Co., Ltd., Wuhan, China). Frozen tissue sections (20 um)
were stained with Oil Red O by standard protocols. Images of the representative
sections in the SF-Saline group (A), SF-SY group (B), HFD-Saline group (C), HFD-
SY group (D) and HFD-HSYA group (E) at 100x magnification (scale bars, 50 um)
were obtained using a biological microscope (CX31, Olympus, Japan).

FIGURE S3 | Effects of SY and HSYA on serum TNFo. levels. Serum levels of
tumor necrosis factor o. (TNFo) were measured by a commercial ELISA kit
(MEA133Mu, Wuhan USCN Business Co., Ltd., Wuhan, China) according to the
manufacturer’s instruction. The intra-assay coefficient of variation was 4.3%. The
data are represented as the mean + SD. (n=9 in the SF-Saline group, n=8 in the SF-
SY group, n=10 in the HFD-Saline group, n=9 in the HFD-SY group, n=9 in the
HFD-HSYA group).

FIGURE S4 | Effects of SY and HSYA on the expression of Nrf2 and antioxidant
enzymes in the subcutaneous adipose tissues of the mice. Mice were
intraperitoneally injected with 200 mg/kg/d SY or HSYA for ten weeks. The
subcutaneous adipose tissue was obtained and total RNA was extracted. The
mMRNA levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant
enzymes, including superoxide dismutase 1 (SOD1), heme oxygenase-1 (HO-1),
glutamate-cysteine ligase catalytic subunit (GCLC) and NAD(P)H dehydrogenase
(quinone 1) (Ngo1) were determined by RT-gPCR analysis (A-E). The data are
represented as the mean + SD. * P<0.05 vs. SF-Saline. (n=8 in each group).

FIGURE S5 | Cell viability evaluated by MTT assay. HepG2 cells (A) and the
differentiated 3T3-L1 adipocytes (B) were seeded in 96-well plates. After 24 hours,
cells were treated with 0~4000 uM hydrogen peroxide (H202) solution for 24h. Cell
viability was then evaluated by MTT assay using the MTT Cell Proliferation and
Cytotoxicity Assay Kit (Beyotime, Shanghai, China). The data are represented as the
mean + SD of six separate wells. * p<0.05 vs. control (treated with 0 uM H202).
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