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Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related
death and has an extremely poor prognosis. Thus, identifying new disease-associated
genes and targets for PDAC diagnosis and therapy is urgently needed. This requires
investigations into the underlying molecular mechanisms of PDAC at both the systems
and molecular levels. Herein, we developed a computational method of predicting cancer
genes and anticancer drug targets that combined three independent expression
microarray datasets of PDAC patients and protein-protein interaction data. First,
Support Vector Machine–Recursive Feature Elimination was applied to the gene
expression data to rank the differentially expressed genes (DEGs) between PDAC
patients and controls. Then, protein-protein interaction networks were constructed
based on the DEGs, and a new score comprising gene expression and network
topological information was proposed to identify cancer genes. Finally, these genes
were validated by “druggability” prediction, survival and common network analysis, and
functional enrichment analysis. Furthermore, two integrins were screened to investigate
their structures and dynamics as potential drug targets for PDAC. Collectively, 17 disease
genes and some stroma-related pathways including extracellular matrix-receptor
interactions were predicted to be potential drug targets and important pathways for
treating PDAC. The protein-drug interactions and hinge sites predication of ITGAV and
ITGA2 suggest potential drug binding residues in the Thigh domain. These findings
provide new possibilities for targeted therapeutic interventions in PDAC, which may have
further applications in other cancer types.

Keywords: pancreatic ductal adenocarcinoma, drug targets, support vector machine–recursive feature elimination,
protein-protein interactions, structural dynamics, integrins
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
malignant solid tumors (Bailey et al., 2016). PDAC is difficult to
treat due to the stage of diagnosis, severe cachexia and poor
metabolic status, the resistance of cancer stem cells (CSCs) to
current drugs, and the marked desmoplastic response that
facilitates growth and invasion, provides a physical barrier to
therapeutic drugs, and prevents immunosurveillance (Al Haddad
and Adrian, 2014). PDAC is also a drug-resistant disease, and the
response of pancreatic cancer to most chemotherapy drugs is
poor. Until now, most of research effort in PDAC has been
directed at identifying the important disease-driving genes and
pathways (Waddell et al., 2015). These studies have shown that
KRAS, CDKN2A, TP53, and SMAD4 are the four most common
driver genes in PDAC (Carr and Fernandez-Zapico, 2019). With
the development of multi-omics data, a series of new regulators
that are strongly correlated with survival have been proposed to
be PDAC biomarkers (Rajamani and Bhasin, 2016; Mishra et al.,
2019), including genes (e.g., IRS1, DLL1, HMGA2, ACTN1, SKI,
B3GNT3, DMBT1, and DEPDC1B) and lncRNAs (e.g., PVT1 and
GATA6-AS). The integrated transcriptomic analysis of five
PDAC datasets identified four-hub gene modules, which were
used to build a diagnostic risk model for the diagnosis and
prognosis of PDAC (Zhou et al., 2019). Integrated genomic
analysis of 456 PDAC cases identified 32 recurrently mutated
genes that aggregate into 10 pathways: KRAS, TGF-b, WNT,
NOTCH, ROBO/SLIT signaling, G1/S transition, SWI-SNF,
chromatin modification, DNA repair, and RNA processing
(Bailey et al., 2016). Previous treatments for pancreatic cancer
have focused on targeting some of these PDAC-associated
pathways, including TGFb (Craven et al., 2016), PI3K (Conway
et al., 2019), Src (Parkin et al., 2019), and RAF!MEK!ERK
(Kinsey et al., 2019) and NFAT1-MDM2-MDMX (Qin et al.,
2017) signaling, as well as cell-cell communication within the
tumor microenvironment (Shi et al., 2019). The discovery of
novel drug targets provides extremely valuable resource towards
the discovery of drugs. Although the human genome comprises
approximately 30,000 genes, proteins encoded by fewer than 400
are used as drug targets in disease treatments. A range of
therapeutic targets in PDAC have been proposed, including
suppressing the abovementioned genes and pathways (Tang
and Chen, 2014). However, the current drug targets for PDAC
will not be 100% effective due to the heterogeneous nature of the
disease. To tackle this challenge, a complete understanding of the
molecular mechanism of PDAC is urgently needed.

Improving PDAC therapy will require a greater knowledge of
the disease at both the systems and molecular levels. At the
systems level, protein-protein interaction (PPI) networks provide
a global picture of cellular function and biological processes
(BPs); thus, the network approach is used to understand the
molecular mechanisms of disease, particularly in cancer (Conte
et al., 2019; Sonawane et al., 2019). Some proteins act as hub
proteins that are highly connected to others, thus cancer drug
targets can be predicted by hubs in PPI networks (Li et al., 2018;
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Lu et al., 2018; Zhu et al., 2019). However, there are some
conflicting results that suggest disease genes or drug targets
have no significant degree of prominence (Mitsopoulos et al.,
2015), but higher betweenness, centrality, smaller average
shortest path length, and smaller clustering coefficient (Zhao
and Liu, 2019). Recent advances in systems biology have led to a
plethora of new network-based methods and parameters for
predicting essential genes (Li et al., 2019), disease genes, and drug
targets (Csermely et al., 2013; Vinayagam et al., 2016; Zhang
et al., 2017; Fotis et al., 2018; Liu et al., 2018). Additionally, the
structural annotation of PPI networks that has highlighted key
residues has enriched the fields of both systems biology and
rational drug design (Kar et al., 2009; Winter et al., 2012). The
prediction of binding sites, allosteric sites, and genetic variations
based on systems-level data is critical for suggesting therapeutic
approaches to complex diseases and personalized medicine
(Duran-Frigola et al., 2013; Yan et al., 2018). Combined with
PPI network analysis, molecular docking studies of target genes
can further help to find drug molecules and protein-drug
interactions for lung adenocarcinoma (Selvaraj et al., 2018).

Together with advances in “-omics” data, including gene
expression and PPI data, machine learning (ML), and artificial
intelligence (AI) techniques are powerful tools that can assess
gene and protein “druggability” from such massive and noisy
datasets (Kandoi et al., 2015; Zhavoronkov, 2018). As the most
used ML method, support vector machine (SVM) has been used
for cancer genomic classification or subtyping, which may be
useful for obtaining a better understanding of cancer driver genes
and discovering new biomarkers and drug targets (Huang et al.,
2018). ML-based methods have been applied to study PDAC for
different purposes. By applying ML algorithms to proteomics
and other molecular data from The Cancer Genome Atlas
(TCGA), two subtypes of pancreatic cancer can be classified
(Sinkala et al., 2020). A meta-analysis of PDAC microarray data
could help predict biomarkers that can be used to build AI-based
computational predictors for classifying PDAC and normal
samples (Bhasin et al., 2016), as well as predicting sample
status (Almeida et al., 2020). To predict and validate novel
drug targets for cancer, including PDAC, a ML-based classifier
that integrates a variety of genomic and systems datasets was
built to prioritize drug targets (Jeon et al., 2014).

In this study, we developed a computational framework that
integrates various types of high-throughput data, including
transcriptomics, interactomics, and structural data, for the
genome-wide identification of therapeutic targets in PDAC. A
novel centrality metric, referred to as SVM-REF and Network
topological score (RNs), was proposed for the identification of
disease genes and drug targets. This method incorporates gene
expression and network topology information from ML and PPI
analyses. Moreover, the predicted genes were validated by
“druggability” prediction, survival, and comparative network
analyses, as well as functional enrichment analysis. Finally, the
structural and dynamic properties of two integrins (ITGAV and
ITGA2) as drug targets were investigated. The workflow of these
methods is shown in Figure 1.
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MATERIALS AND METHODS

Identification of DEGs
In this study, three independent PDAC expression microarray
datasets with 184 pancreas samples (95 cancer and 89
nonmalignant samples) were used. The datasets were obtained
from the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/). Details of each dataset are listed in Table 1. The
GSE15471 dataset included 36 PDAC samples and matching
normal pancreas samples from pancreatic cancer patients in
Romania (Badea et al., 2008). There were also matched samples
in the GSE28735 dataset, which contains gene expression profiles
of 45 matched pairs of pancreatic tumor and adjacent non-tumor
tissues from PDCA patients in Germany (Zhang et al., 2012;
Zhang et al., 2013). The GSE71989 dataset contained expression
profiles of eight normal pancreas and 14 PDAC tissues (Jiang
et al., 2016). The normalized data were downloaded from GEO
and then analyzed to identify DEGs using t-tests, with p-values
adjusted by the Benjamini-Hochberg method. Only genes with
adjusted p-values < 0.01 and |FC| > 1.5 were chosen as DEGs.
Frontiers in Pharmacology | www.frontiersin.org 3
Gene Prioritization Pipeline
Disease genes and drug targets usually have large degree in PPI
networks, but there is no single network parameter that can
accurately predict them (Li et al., 2016). Protein targets do not
exert their function in isolation; rather they are affected by
interactions within their PPI network, which are governed by
protein localization and environment. In the same way,
topological information from PPI networks alone is not
enough to identify disease genes and drug targets without
biological information. To overcome these limitations, we
developed a new three-step pipeline to identify cancer-related
genes that may be candidate drug targets in PDAC. The pipeline
integrated information from gene expression data and local and
global topological characteristics of genes in PPI networks.

Step 1: For each gene expression dataset, we employed SVM
methods based on a Recursive Feature Elimination (SVM-RFE)
algorithm (Guyon et al., 2002), which is an embedded method to
specifically deal with gene selection for cancer classification
(Bolón-Canedo et al., 2014), rank DEGs, and select the most
relevant features (Jeon et al., 2014). SVM-RFE can remove
redundant features (genes) to generalize performance,
implement backward feature elimination, search an optimal
subset of genes, and provide a ranking for each gene. We
ranked genes by SVM-RFE score (Rs), according the following
formula:

RS =
1 + nð Þ − ri

n
,

where n is the number of DEGs and ri is the rank of gene i.
Step 2: A PPI network of DEGs was constructed with the

STRING database (von Mering et al., 2003; Szklarczyk et al.,
2017) using scores > 0.9. The topological parameters degree and
shortest path length for each gene in the PPI network were
TABLE 1 | Information on the included GEO datasets.

Accessions Platforms Samples
(tumor vs.
non-tumor
tissues)

References

GSE15471 Affymetrix Human Genome
U133 Plus 2.0 Array

36 vs. 36 (Badea et al., 2008)

GSE28735 Affymetrix Human Gene 1.0
ST Array

45 vs. 45 (Zhang et al., 2012;
Zhang et al., 2013)

GSE71989 Affymetrix Human Genome
U133 Plus 2.0 Array

14 vs. 8 (Jiang et al., 2016)
FIGURE 1 | The computational pipeline proposed in this work included three steps. Overall, a machine learning method was used to identify DEGs in PDAC, which
were then combined with two parameters of the PPI network to define a new score that predicted disease genes and drug targets in PDAC. All potential targets
were then further verified by other bioinformatics analyses and investigated by a “druggability” analysis of structural and dynamic properties.
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calculated. The degree (K) of a node in the PPI network is the
number of links attached to that node, which is one of the
measures of centrality of a node in the network. The average path
length (L) of node v in the network is the average length of the
shortest paths between v and all other nodes and was defined as:

Lv =
Sn
v≠id v,   ið Þ
n − 1

,

where d(v,i) is the length of the shortest path between nodes v
and I, and n is the node number in the network.

Step 3: Finally, we incorporated Network topological
properties into Rs and defined a new score (RNs) for each gene as:

RNs =
L*Rs

K
:

Accordingly, this new RNs score (SVM-RFE and Network
topological score) considers the cancer status of each gene by
including information about gene expression and two levels of
topological features in PPI networks, namely, degree K indicates
the importance of the node, while the shortest path length L
shows the effects from other nodes. The code for gene
prioritization is freely available on GitHub for download at:
https://github.com/CSB-SUDA/RNs.

PPI Network Analysis
Once the PPI network was constructed, two other analyses were
performed. The first analysis was the calculation of two commonly
used centrality parameters: betweenness and closeness centrality.
The betweenness centrality (BC) (Freeman, 1977) of node v was
defined as:

BCv = Si≠j,i≠v,j≠v

givj
gij

,

where givj is the number of the shortest paths from i to j that pass
through node v, and gij is the number of shortest paths from i to j.

The closeness (CC) of node v is the reciprocal of the average
shortest path length, which was calculated as:

CCv =
n − 1

Sv≠id (v, i)
:

Proteins are often incorporated into modules that can be
shared between several different cellular activities. The second
analysis was module detection of PPIs by integrating a Gaussian
network (GN) algorithm (Newman and Girvan, 2004) and
functional semantic similarity (Wang et al., 2007). In general,
this involved using the GN algorithm to detect the module of PPI
networks, and then applying functional semantic similarity to
filter links. Thus, the genes in the detected modules not only had
topological similarity, but also functional similarity.

Survival Analysis
To evaluate the prognostic value of candidate genes, a survival
analysis was performed using data from the human protein atlas
(Uhlen et al., 2017), which contains gene expression data and
clinical information of 176 pancreatic cancer patients. P-values <
0.01 were considered significantly correlated with overall survival.
Frontiers in Pharmacology | www.frontiersin.org 4
Functional Enrichment Analysis
Functional enrichment analysis, including cellular component
(CC), molecular function (MF), and BP, from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways of
genes was performed using the R package cluster Profiler (Yu
et al., 2012). Terms with adjusted p-value < 0.05 were
considered significant.

Structural Modeling and
“Druggability” Analysis
The protein structures of potential drug targets were retrieved
from the Protein Data Bank (PDB) if they were available. The
Swiss model (Waterhouse et al., 2018) and I-TASSER (Roy et al.,
2010) were used for the structural modeling of genes if protein
structures were unavailable. We choose the Swiss model when
the sequence similarity between searched models was >30%;
otherwise, we used I-TASSER, which predicts protein structure
using modeling by iterative threading assembly. Based on model
structures, Fpocket (Le Guilloux et al., 2009) was used to detect
druggable pockets and calculate “druggability” scores, which
were based on several physicochemical descriptors on a
genomic scale. The pocket with the highest score in the entire
PDB was defined as the reference druggable score. The score of
each pocket was classified as: 0.0–0.5: non-druggable; 0.5–0.7:
druggable; and 0.7–1.0: highly druggable.

Molecular Docking and GNM Modeling
To study the interactions and binding mode of small molecules
with the potential drug targets, molecular docking was
performed using AutoDock 4.2 (Khodade et al., 2007). The
target, drug, and related disease information were collected
from the Drug Bank database (Version 5.0) (Wishart et al.,
2018) and the Therapeutic Target Database 2020 (Wang et al.,
2020). A normal mode analysis of the GN model (GNM) was
performed to investigate collective dynamics via the DynOmics
online tool (Danne et al., 2017). The default cutoff distance of 7.3
Å between GNM model nodes was used.
RESULTS AND DISCUSSION

Identification of Disease Genes and Drug
Targets in PDAC
From the three datasets GSE28735, GSE71989, and GSE15471,
we identified 3,079, 1,225, and 2,257 DEGs between PDAC and
adjacent tissues, respectively. The top 10 genes with the smallest
p-values are marked in Figure 2. In GSE28735, 1,724 genes
showed increased expression in PDAC tissues, while 1,355 genes
showed decreased expression (Figure 2A). In GSE71989, 766
genes were upregulated and 459 genes were downregulated in
PDAC tissues compared with normal tissues (Figure 2B). In
GSE15471, 1713 genes were overexpressed, while 544 genes
showed decreased expression in tumor tissues (Figure 2C).
Together, there were 313 common DEGs between PDAC and
adjacent tissues in all three datasets (Figure 2D).
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Additionally, we evaluated gene expression as an input feature
for ML and selected the most relevant genes for PDAC using
SVM-RFE (Almeida et al., 2020), which provided a ranking for
the genes. Then, each DEG was assigned an Rs value (see
Materials and Methods), which was used to further rank all
genes. As an illustration, the top 100 Rs values of the DEGs in
each dataset are listed in Table S1. This shows that there is little
overlap of results between the different datasets. This means that
calculating Rs based on SVM-RFE can provide information for
classification, but not enough for ranking.

The DEGs were next mapped to the STRING database, which
yielded a PPI network with 144 genes and 440 links (Figure 3).
Then, degree and shortest path length of each gene in the
network were calculated. Finally, we ranked the genes
according to our designed score RNs, which integrated these
two topological parameters and was based on gene expression
profile. The top 20 genes predicted based on at least two datasets
were considered potential drug targets. As shown in Table 2 and
Table S2, eight genes (ADAM10, TIMP1, MATN3, PKM, APLP2,
ACTN1, CALU, and VCAN) were identified in all three datasets,
and nine genes (LGALS1, ITGA2, BST2, MFGE8, ITGAV, EGF,
Frontiers in Pharmacology | www.frontiersin.org 5
APOL1, ALB, andMSLN) were identified in two of three datasets.
We propose that genes predicted by at least two datasets could
serve as disease genes and/or drug targets. Taken together, 17
genes predicted by RNs score are listed in Table 3, and most have
been previously reported to be PDAC-associated genes. There
are only four that have not been previously associated with
PDAC. This suggests that our metric RNs is useful for identifying
novel disease genes and drug targets.

It is also useful to compare our results predicted by RNs with
other common network parameters. The genes predicted by
calculating betweenness and closeness centrality are also listed
in Table S2. Among our 20 predicted potential drug targets, six
and nine were also found by betweenness and closeness
centrality, respectively. Notably, ADAM10, ACTN1, and
TIMP1 were in all three lists, which suggested they had
important roles in PDAC. Moreover, two other genes (ITGAV
and ITGA2) were in the top 20 of two datasets, which suggested
they should be investigated. Overall, compared with the top 20
genes predicted by these two common network parameters, our
RNs parameter identified more extracellular matrix (ECM)
proteins, including integrins and collagens. The other
A B

C D

FIGURE 2 | Differentially expressed genes (DEGs) between PDACs and normal tissues. (A–C) Volcano plot of −log10 (FDR) vs. log2 (fold change) of DEGs in the
three datasets. (D) Venn diagram with the number of overlapping DEGs from the different datasets.
April 2020 | Volume 11 | Article 534
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interesting finding was that four common genes (ALB, EGF,
ITGA2, and VCAN) were identified by isolating the nodes with
large degrees (hubs) in PPI network construction based on other
PDAC GSE datasets (Lu et al., 2018).

Survival analysis was also performed to evaluate whether the
expression of our 17 identified candidates was related to the
prognosis of PDAC. Using Kaplan-Meier analysis with the log-
rank test for 176 pancreatic cancer patients from the human
protein atlas (Uhlen et al., 2017), we found that higher expression
levels of 11 genes were significantly correlated with decreased
overall survival (p < 0.01, Figure 4). For the eight genes identified
in all three datasets, five (ADAM10, PKM, APLP2, CALU, and
VCAN) were associated with poor prognosis when highly
expressed. The other six highly expressed genes (LGALS1,
ITGA2, BST2, ITGAV, APOL1, and MSLN) associated with
Frontiers in Pharmacology | www.frontiersin.org 6
poor prognosis that were identified in two of three datasets are
shown in Table 2. Accordingly, the survival analysis showed
significant prognostic values for most of the predicted genes.

Characterization of Predicted Drug
Targets for PDAC
Table 3 shows the genes predicted above shortlisted based on our
RNs criteria. After searching the drug bank, these 17 predicted
genes were classified into two types: 11 genes were drug targets,
while six were non-drug targets. We also annotated drug targets
in the drug bank by their related drugs and diseases. It should be
noted thatMSLN was the only proven drug target for PDAC, and
there are many drugs that inhibit ALB. Thus, we concluded that
these two genes had been studied widely and would not give us
more insight regarding discovering new targets. Considering the
potential of other predicted genes as drug targets for PDAC, we
performed functional and “druggability” annotations for all.
Among the 15 genes, 11 (ADAM10, TIMP1, EGF, APLP2,
ITGAV, VCAN, ITGA2, PKM, APOL1, ACTN1, and BST2)
have been reported to be contributing factors in PDAC
invasion, growth, or metastasis, which indicated that our
pipeline had good performance for finding potential drug
targets for PDAC.

The protease ADAM10 was predicted as the highest ranked
gene, and it has been reported that ADAM10 influences the
TABLE 2 | Identified potential drug targets for PDAC.

In three
datasets

ADAM10, TIMP1, MATN3, PKM, APLP2, ACTN1, CALU, VCAN

In two of
three
datasets

LGALS1, ITGA2, BST2, MFGE8, ITGAV, EGF, APOL1, ALB, MSLN

In only one
dataset

COL5A1, CTNNA1, MX1, COL1A2, COL6A3, SPARC, IFI27,
SDC1, FN1, PLAU, PLAUR, IGFBP3, FBN1, COL1A1, COL3A1,

ITGB5, ITGA5, MX2
FIGURE 3 | Potential drug targets in the PPI network. The genes that were predicted by our pipeline are marked with red labels. The node size denotes the average
RNs of the gene in two or three datasets.
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FIGURE 4 | Kaplan-Meier survival curves of overall survival from the human protein atlas datasets for potential drug targets divided by high (red) or low (green)
expression level.
TABLE 3 | List of prioritized protein targets with their drug target information and “druggability” features.

Gene RNs Drug
targets*

Drug(s)# Disease(s)# PDB DS

ADAM10 5.34 Yes XL784 Solid tumor/cancer, Breast
cancer

6BE6 0.694

TIMP1 4.79 No NA NA 1LQN 0.839
EGF 4.77 Yes Sucralfate, Tesevatinib, Alpha-Aminobutyric Acid,

Cholecystokinin
Oral mucositis, Vulnerary template: 5GJE 0.968

MATN3 3.31 No NA NA template: 6BXJ 0.545
CALU 3.17 No NA NA template: 2Q4U 0.677
APLP2 3.12 Yes Zinc, Zinc acetate, Zinc chloride NA 5TPT 0.912
ITGAV 3.08 Yes Abituzumab,

Levothyroxine
Colorectal cancer, Solid tumour/

cancer
3IJE 0.663

VCAN 3.05 Yes Hyaluronic acid NA template: 4CSY NA
LGALS1 3.03 Yes Thiodigalactoside, 1,4-Dithiothreitol, Mercaptoethanol,

Artenimol
NA 3W59 NA

ITGA2 3.027 No NA NA Templates: 3K71, 4NEH,
3K6S

0.672

ALB 2.85 Yes Gadobenate Dimeglumine, Glycyrrhizic acid, Patent Blue,
(365 drugs)

Hemophilia, Schizophrenia 4BKE 1.000

PKM 2.82 Yes Pyruvic acid,
L-Phospholactate, 2-Phosphoglycolic Acid, et al.

Pain, Renal cell carcinoma; 6GG5 0.996

MFGE8 2.54815 No NA NA template: 4DEQ NA
APOL1 2.52 Yes Zinc, Zinc acetate, Zinc chloride NA template: 5J2L 0.503
ACTN1 2.45 Yes Copper, Human calcitonin NA template: 4D1E 0.673
BST2 2.31 No NA NA 3MQB 0.821
MSLN 2.0 Yes Amatuximab Ovarian/Pancreatic cancer 4F3F 0.727
Frontiers in
 Pharmaco
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progression and metastasis of cancer cells, as it promotes PDAC
cell migration and invasion (Gaida et al., 2010). Inhibiting
ADAM10 could be a novel approach for natural killer (NK)
cell-based immunotherapy (Pham et al., 2017). Tissue inhibitor
of metalloproteinases-1 (TIMP-1) correlated with tumor
progression, and elevated levels of TIMP-1 in tumor tissue and
peripheral blood were associated with poor clinical outcomes in
numerous malignancies, including PDAC (Prokopchuk et al.,
2018). The third gene was epidermal growth factor (EGF), which
was a common disease gene for many cancers, and EGF
mutations were associated with PDAC (Grapa et al., 2019).
Amyloid precursor-like protein 2 (APLP2) affects the actin
cytoskeleton and also increases PDAC growth and metastasis
(Pandey et al., 2015). ITGAV (Villani et al., 2019), VCAN
(Skandalis et al., 2006), and ITGA2 (Nones et al., 2014) are
matrix proteins that have been shown to contribute to pancreatic
cancer cell migration, invasion, and metastasis. PKM2 is one of
the isoforms of pyruvate kinase muscle isozyme (PKM) and
promotes the invasion and metastasis of PDAC through the
phosphorylation and stabilization of PAK2 (Cheng et al., 2018).
The final three genes, APOL1 (Liu et al., 2017), ACTN1
(Rajamani and Bhasin, 2016), and BST2 (Grutzmann et al.,
2005) have previously been reported to be effective biomarkers
for PDAC.

Although 11 genes were already known drug targets,
“druggability” annotations based on protein structures can
improve our knowledge and understanding of the mechanisms
of proteins as drug targets. The “druggability” of proteins is a
measure of their ability to bind drug-like molecules based on
Frontiers in Pharmacology | www.frontiersin.org 8
molecular shapes. For the “druggability” of all 17 genes, we first
obtained their structural modes by retrieved data from the PDB
database or homology modeling. The PDB codes of proteins or
their templates are listed in Table 3. Then, Fpocket was used to
compute all possible pockets and their corresponding
“druggability score” (DS). The “druggability” of the protein
was defined as the DS of the highest scoring pocket. As
expected, most of the predicted proteins were druggable (DS ≥
0.5), except VCAN, IGALS1, and MFGE8. ALB had the largest
DS (1.00), which can partially explain why so many ALB
inhibitors exist. Among the six non-drug targets, TIMP1,
ITGA2, and BST2 were predicted as highly druggable (DS ≥
0.5), which meant that these three genes had the structural
abilities to be drug targets. In particular, the non-drug target
ITGA2 had a larger DS than ITGAV, suggesting that a more
detailed structural comparison between these two integrin
proteins is needed.
Identification of Functional Modules
and Pathways
Within PPI networks, cancer targets interact with different
modules to perform biological functions. A module within a
network is defined a set of nodes that are densely connected
within subsets of the network but may not all directly interact
with each other. To get further insight into the topological and
biological functions of potential targets, we performed module
detection in the PPI network using a GN algorithm and
functional semantic similarity. As shown in Figure 5, we
FIGURE 5 | Four modules were discovered within PPI networks. Genes that were predicted in at least two datasets are marked red, while genes that were
predicted in only one dataset are marked blue.
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identified four modules (the pink, yellow, green, and blue nodes)
and labeled the genes that were predicted in at least two datasets
(red) or in only one dataset (blue). Except PKM and ACTN1, 15
of the 17 predicted genes were detected by the modular analysis
and are included in these four modules. The top module (pink)
was formed of 19 genes, including the most of our predicted
genes (12/17, ADAM10, CALU, ALB, APLP2, MSLN, LGALS1,
TIMP1, MATN3, VCAN, EGF, MFGE8, and APOL1). Most of
these genes have been previously reported as disease genes in
PDAC or drug targets in other cancers. Another three predicted
genes were included in two other modules, while ITGAV and
ITGA2 were detected in the second largest module (yellow).
Although there were only two predicted genes, this module
deserves more attention, as it primarily contains two types of
gene targets: integrins (ITGA5, ITGA3, ITGB5, ITGA2, and
ITGAV) and collagens (COL6A3, COL11A1, COL1A1,
COL10A1, COL5A1, COL1A2, and COL3A1). Research into
integrins and collagens and their interactions may provide
more insights into the molecular mechanisms of PDAC.

We next performed an enrichment analysis on genes in the
PPI network (Figure 6 and Table 4). The genes were enriched for
the GO terms related to extracellular structure and matrix, such
as extracellular structure and matrix organization in BP, ECM in
CC, and ECM structural constituent and binding in MF. Table 4
shows the top 10 most significantly enriched KEGG pathways.
Most of the pathways are associated with cancer, such as ECM-
Frontiers in Pharmacology | www.frontiersin.org 9
receptor interaction, focal adhesion, and proteoglycans in cancer.
Moreover, integrins were enriched in most of the carcinogenesis-
associated pathways, such as focal adhesion, which play essential
roles in important BPs, including cell motility, proliferation, and
differentiation. Interestingly, several altered molecular pathways
were identified, which suggests that genes in the secondary
module were involved in these pathways. These modules and
pathways not only contained integrins, but also another group of
collagens. In particular, two predicted integrins (ITGAV and
ITGA2) were involved in nine out of the top 10 pathways, while
the top four pathways (ECM-receptor interaction, focal
adhesion, proteoglycans in cancer, and human papillomavirus
infection) also contained collagens, especially COL1A1 and
COL1A2. Except for these pathways, the list of integrins and
collagens was used to define the traditional cancer-related PI3K/
AKT pathway. It was previously known that collagen is a major
component of the tumor microenvironment that participates in
cancer fibrosis, which can influence tumor cell behavior through
integrins (Xu et al., 2019). Our results indicated that ITGAV,
ITGA2, and their interactions with COL1A1 and COL1A2 may
play important roles in PDAC, suggesting they could serve as
potential drug targets. For example, the predicted genes and their
interactions were highlighted in the ECM-receptor interaction
pathway (Figure S1). This systems biology evidence of gene
cluster- and pathway-based distributions suggested that targeting
several key genes together could be a more promising approach.
FIGURE 6 | Top 10 enriched GO terms in biological processes, cellular components, and molecular functions.
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ITGAV and ITGA2 as Potential Drug
Targets for PDAC
By combining SVM-RFE, PPI network, and survival analysis, 11
out of 17 candidate genes have been predicted as biomarkers in
pancreatic cancer patients. Among them, two integrins of
ITGAV and ITGA2 were further screened as two potential
drug targets according to the following evidences: 1) Both
ITGAV and ITGA2 are involved in all PDAC-related pathways
include ECM-receptor interaction and focal adhesion pathways,
suggesting that ITGAV and ITGA2 may play an important role
in PDAC progression; 2) Based on the druggability criteria,
ITGAV and ITGA2 have relatively high DS. In addition,
ITGAV is already a drug target for other cancer. Due to the
structural similarity, ITGA2 can also be considered as a potential
drug target; 3) Current experimental data suggest that several
other integrins are overexpressed in various cancer types, being
Frontiers in Pharmacology | www.frontiersin.org 10
involved in tumor progression through tumor cell invasion and
metastases. For example, the therapeutic potential of ITGA5 in
the PDAC stroma has been proved efficacy (Kuninty et al., 2019).
Collectively, our data together with some know results point
towards ITGAV and ITGA2 as two potential drug targets for
PDAC. Thus, the emerging understanding of their structural
properties will guide the development of new strategies for
anticancer therapy.

Integrins are transmembrane receptors that are central to the
biology of many human pathologies. Classically, integrins are
known for mediating cell-ECM and cell-cell interaction, and they
have been shown to have an emerging role as local activators of
TGF-b , influencing cancer, fibrosis, thrombosis, and
inflammation (Raab-Westphal et al., 2017). Integrins are
composed of a and b subunits to form a complete signaling
molecule. Their ligand binding and some regulatory sites are
extracellular and sensitive to pharmacological intervention, as
proven by the clinical success of seven drugs that target integrins
(Hamidi et al., 2016). Although peptides and small molecules are
generally designed to target integrin ab dimers, the individual
integrin a subunits may also be therapeutic targets. ITGAV
always bind with five b subunits that form receptors for
vitronectin, cytotactin, fibronectin, fibrinogen, and laminin.
ITGAV has mostly been investigated for its role in malignant
tumor cells and tumor vasculature (Xiong et al., 2001; Xiong et al.,
2009). ITGAV recognizes the Arg-Gly-Asp (RGD) sequence in a
wide array of ligands at the interface between the a and b subunits
(Xiong et al., 2002). ITGA2 forms with b1 and belongs to the
collagen receptor subfamily of integrins (Emsley et al., 2000).

The structure of ITGAV was taken from chain A of the x-ray
structure of complete integrin aVb3 (PDB code: 3IJE). It
contains a b-propeller domain of seven 60-amino-acid repeats,
and three other domains including the Thigh, Calf-1, and Calf-2
domains (Figure 7A). The PDB repository contains no crystal
structure for full-length ITGA2. The highest sequence similarity
between ITGA2 and searched models (PDB code: 5ES4) was
28%, so we employed I-TASSER to generate a composite model
of ITGA2 based on several templates. A subsequent analysis of
the structure of ITGA2 revealed similar domain structures with
ITGAV but with the addition of an I domain (Emsley et al., 1997)
and a WKp GfFkR helix tail, which may suggest more drug-
targeting possibilities for ITGA2. Based on the structures of
ITGAV and ITGA2, Fpocket was used to detect their druggable
pockets. For ITGAV, there were two highly druggable pockets,
both located within the b-propeller domain. The largest
druggable pocket was located on the outer side of the b-barrel,
consisted of Val192, Lys104, Ala189, Asp132, Val188, Ala189,
Asp167, Leu130, Gln187, Glu190, Lys135, Val137, and Gln131,
and had a DS of 0.663 (Figure 7A). The second largest druggable
pocket was located at the hole of the b-barrel, consisted of Trp93,
Leu111, Gln156, Phe159, Pro110, Ala96, Phe21, Tyr406, Tyr224,
and Phe278, and had a DS of 0.599 (Figure S2A). For ITGA2,
only one highly druggable pocket was found at the b-propeller
domain and had a DS of 0.92. This pocket consisted of His416,
Phe162, His414, Ser159, Phe156, Leu417, Ser161, Val409,
TABLE 4 | Top 10 enriched KEGG pathways (integrins and collagens are
marked in bold).

KEGG term Gene(s) Count Adjust
p-value

ECM-receptor
interaction

COL1A1, COL1A2, COL6A3, COMP,
FN1, ITGA2, ITGA3, ITGA5, ITGAV,
ITGB4, ITGB5, LAMB3, LAMC2,
SDC1, SDC4

15 2.62E-11

Focal adhesion ACTB, ACTN4, ACTN1, BIRC3,
COL1A1, COL1A2, COL6A3, COMP,
EGF, FLNA, FN1, ITGA2, ITGA3,
ITGA5, ITGAV, ITGB4, ITGB5,
LAMB3, LAMC2, PDGFRB

20 2.67E-11

Proteoglycans
in cancer

ACTB, COL1A1, COL1A2, FLNA,
FN1, ITGA2, ITGA5, ITGAV, ITGB5,
LUM, MMP9, MSN, PLAU, PLAUR,
SDC1, SDC4, EZR, WNT2, WNT5A

19 2.97E-10

Human
papillomavirus
infection

CCNA2, COL1A1, COL1A2,
COL6A3, COMP, EGF, FN1, HLA-F,
ITGA2, ITGA3, ITGA5, ITGAV,
ITGB4, ITGB5, LAMB3, LAMC2, MX1,
PDGFRB, PKM, PRKCI, STAT1,
WNT2, WNT5A

23 4.12E-10

Regulation of
actin
cytoskeleton

ACTB, ACTN4, ACTN1, CFL1,
CHRM3, EGF, FN1, ITGA2, ITGA3,
ITGA5, ITGAV, ITGB4, ITGB5, MSN,
PDGFRB, EZR, ARPC1B

17 8.45E-10

Arrhythmogenic
right ventricular
cardiomyopathy
(ARVC)

ACTB, CTNNA1, ITGA2, ITGA3,
ITGA5, ITGAV, ITGB4, ITGB5, JUP

9 1.25E-05

PI3K-Akt
signaling
pathway

COL1A1, COL1A2, COL6A3, COMP,
EGF, EPHA2, FN1, IL2RG, ITGA2,
ITGA3, ITGA5, ITGAV, ITGB4,
ITGB5, LAMB3, LAMC2, PDGFRB

17 3.87E-05

Amoebiasis ACTN4, ACTN4, ACTN1, COL1A1,
COL1A2, COL3A1, FN1, CXCL8,
LAMB3, LAMC2

9 1.03E-04

Hypertrophic
cardiomyopathy
(HCM)

ACTB, ITGA2, ITGA3, ITGA5, ITGAV,
ITGB4, ITGB5, TPM4

8 3.01E-04

Small cell lung
cancer

BIRC3, CKS2, FN1, ITGA2, ITGA3,
ITGAV, LAMB3, LAMC2

8 3.01E-04
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Leu396, Lys411, Leu158, Gln157, Leu394, Ala160, Leu417,
Asp155, Asp392, Val381, Gly415, and Ser413 (Figure 7B).

Despite progress in the development of drugs that target
different integrins, there are only two clinical approved drugs in
the drug bank for ITGAV (Levothyroxine and Antithymocyte
immunoglobulin) (Table 3). Thymoglobulin is a polyclonal
antibody, while Levothyroxine is currently the only approved
small molecule that targets ITGAV. The small ligand
Levothyroxine was docked to the two druggable pockets in
ITGAV to study the stability of the complex and protein-drug
interactions. When docked to the largest druggable pocket,
Levothyroxine formed hydrogen bonds with Asp167, Thr134,
Lys135, and Val192, and a hydrophobic interaction with Ala189,
and the binding free energy was −8.3 kcal/mol (Figure 7C). For
the other pocket, hydrogen bonds were formed between
Levothyroxine and Phe21, Trp93, Ala96, and Pro110 with the
binding free energy of −10.08 kcal/mol (Figure S2B). We further
docked Levothyroxine to ITGA2 at its druggable pocket. The
binding free energy of −9.09 kcal/mol suggested a good
interaction between ITGA2 and Levothyroxine, with the
potential binding sites at Phe162, Lys411, Asp392, and Leu158
(Figure 7D).
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To determine residues that play a key role in the global
dynamics of ITGAV and ITGA2, we performed a GNM analysis.
GNM analysis provides information on the mechanisms of
collective movements intrinsically accessible to the structure,
which usually enable structural changes relevant to function
(Bahar et al., 2010). The most discriminative feature in
dynamic analysis is hinge prediction, which are expected to be
sites for drug development (Sumbul et al., 2015). We predicted
hinges sites by the minima of corresponding GNM slow modes.
By applying GNM to ITGAV (Figure 7E), GNM mode 1
highlights the hinge region located in the Thigh domain,
especially at Asn455, Ser471, Arg553, and Gly594, which are
located at the interface between the Thigh and Calf-1 domains.
We also note that the b-propeller domain became the major
hinge region in GNM mode 2, while Ile286, Asn287, Asp352,
Phe377, Ser389, Thr413, Asp414, Pro421, and Tyr436 have
minimal fluctuations. Hinge sites located at the b-propeller
domain in GNM mode 2 may correspond to pocket sites, as
the first and second largest druggable pockets were within the b-
propeller domain. For ITGA2 (Figure 7F), both GNM modes 1
and 2 highlighted the same hinge regions within the b-propeller
domain and the Thigh domain, with critical positioning of
A

B

C

D

E

F

FIGURE 7 | Structures and dynamics of ITGAV and ITGA2. (A) The structure of ITGAV including the b-propeller, Thigh, Calf-1, and Calf-2 domains, and the most
druggable pocket (purple), which is located along the outer side of the b-barrel. (B) The binding poses by docking Levothyroxine into the most druggable pocket of
ITGAV. Levothyroxine and interacting residues are represented as colored sticks. (C) The structure of ITGA2 including the I-, b-propeller, Thigh, Calf-1, and Calf-2
domains, and the most druggable pocket (purple), which is located at the hole of the b-barrel; the binding pose with Levothyroxine and this pocket is shown in (D).
(E) The shapes of first and second GNM modes of ITGAV. The minimum of the shapes indicate the hinge region, which corresponds to the structure in dark blue.
Mode 1 predicts Asn455, Ser471, Arg553, and Gly594 within the Thigh domain are hinge sites (red arrows). (F) The shape of the first GNM mode of ITGA2, where
the region of Phe681 to Ser737 within the Thigh domain was predicted to contain hinge sites (red circle).
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Phe681 to Ser737. Accordingly, our GNM modeling suggested
that both the b-propeller domain and the Thigh domain play
important roles in modulating the collective movements of
ITGAV and ITGA2. The b-propeller domain has been
indicated to be a druggable domain by pocket detection. Here,
some hinge sites located within the Thigh domain offer other
reasonable starting points for inhibitor design.
CONCLUSIONS

In this study, we developed a computational framework that
integrated ML (SVM-RFE), biomolecular networks (PPI network
analysis), and structural modeling analysis (homology modeling,
molecular docking, and GNM modeling) to help future drug
targets for PDAC. The core of the new method was that we
defined a new score, termed RNs, based on cancer-related
information from gene expression data and topological
information obtained from PPI network analysis. Research
using three GEO datasets (GSE28735, GSE71989, and
GSE15471) yielded 17 genes (ADAM10, TIMP1, MATN3,
PKM, APLP2, ACTN1, CALU, VCAN, LGALS1, ITGA2, BST2,
MFGE8, ITGAV, EGF, APOL1, ALB, and MSLN) that were
predicted to be potential drug targets. The survival and
“druggability” analysis of these genes showed that most of the
identified genes had poor survival associations and good DS
values, further providing evidence that they can be used as
therapeutic targets in PDAC. The important roles of integrins
as well as their interactions with collagens were highlighted by
combining network modules and KEGG pathway analysis, in
term of four pathways, ECM-receptor interaction, focal adhesion,
proteoglycans in cancer, and human papillomavirus infection
pathways. By focusing on ITGAV and ITGA2, we identified
druggable pockets, drug binding sites, and hinge sites that are
potential sites for designing small molecules. In summary, this
new methodology will provide new avenues for discovering drug
targets in PDAC and other cancers.

Of course, our method in this work has some limitations.
Firstly, our method only used SVM-REF to the gene expression
data to rank the DEGs. With the growth of other omics data, we
need to apply our method by including more kinds of data, such as
RNA-Seq data for PDAC (Raphael et al., 2017), which will make
Frontiers in Pharmacology | www.frontiersin.org 12
our method more practical. Secondly, our method just combined
the systems level analysis of PPI construction and analysis and the
molecular level analysis of “druggability” prediction, and thus, the
drug target prediction needs some structural research experience
to some extent. To address this, the real integration of structure
knowledge into PPI networks is still needed.
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