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There are three members of the endogenous gas transmitter family. The first two are nitric
oxide and carbon monoxide, and the third newly added member is hydrogen sulfide (H2S).
They all have similar functions: relaxing blood vessels, smoothing muscles, and getting
involved in the regulation of neuronal excitation, learning, and memory. The cystathionine
b-synthase (CBS), 3-mercaptopyruvate sulfur transferase acts together with cysteine
aminotransferase (3-MST/CAT), cystathionine g-lyase (CSE), and 3-mercaptopyruvate
sulfur transferase with D-amino acid oxidase (3-MST/DAO) pathways are involved in the
enzymatic production of H2S. More and more researches focus on the role of H2S in the
central nervous system (CNS), and H2S plays a significant function in neuroprotection
processes, regulating the function of the nervous system as a signaling molecule in the
CNS. Endoplasmic reticulum stress (ERS) and protein misfolding in its mechanism are
related to neurodegenerative diseases. H2S exhibits a wide variety of cytoprotective and
physiological functions in the CNS degenerative diseases by regulating ERS. This review
summarized on the neuroprotective effect of H2S for ERS played in several CNS diseases
including Alzheimer’s disease, Parkinson’s disease, and depression disorder, and
discussed the corresponding possible signaling pathways or mechanisms as well.

Keywords: hydrogen sulphide, central nervous system, degeneration disease, endoplasmic reticulum
stress, neuroprotection
INTRODUCTION

Hydrogen sulfide (H2S) plays an important role in terms of cell signal transduction and modulation
in the central nerve system (CNS), the cardiovascular system, and many organs like hepatic function
(Olas, 2015; Wu et al., 2019). H2S shows its function on inflammatory cells, endoplasmic reticulum,
and mitochondria so that H2S may promote resolution of inflammation, energy metabolism,
mitochondrial function and misfold protein (Sivarajah et al., 2009; Polhemus and Lefer, 2014;
in.org May 2020 | Volume 11 | Article 7021
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Wallace et al., 2018). Moreover, neuronal signaling mediated by
H2S contributes to neuromodulation properties and
neuroprotection because H2S concentration distribution in the
brain is up to threefold higher than in serum (Zhao et al., 2001;
Hogg, 2009; Paul and Snyder, 2018). Many different donors of
H2S to cells are widely used in scientific research. Endogenous
H2S is difficult to accurately survey due to low concentration in
the body. Therefore, the biological effects of H2S can be
simulated by injecting exogenous gas into cells or donors in
vitro (Powell et al., 2018). Sodium hydrosulfide (NaHS) and
sodium sulfide have been exerted to give a burst of H2S but short
duration (Cheung et al., 2007). GYY4137, AP97, and AP105 can
trigger the corresponding release of H2S in vivo. Another
advantage is that they can target organelles (Li and Moore,
2007; Li et al., 2011; Hancock and Whiteman, 2014). The
article reviews the effects of H2S on the endoplasmic reticulum
stress (ERS) pathway in the pathogenesis of neurodegenerative
and psychiatric diseases.
H2S IN CNS

As is known to all, H2S is a colorless, water-soluble, highly toxic
acidic gas with a depressing smell of rotten eggs (Xiao et al., 2018).
H2S is slightly soluble at the physiological condition of 37°C, pH
7.4 and pK1 = 6.76; four-fifths of H2S is dissociated form (HS- and
S2-), and less than one-fifths is undissociated form (H2S). At PH
6.0, H2S mainly exists as gas (Ishigami et al., 2009). However, H2S,
an endogenously produced gas, also has been qualified as the new
third gas transmitter, signaling molecule, antioxidants,
antiapoptotic agents and nerve cell protectant (Kumar and
Sandhir, 2018). H2S exerts its function in maintaining a balance
between oxidation and antioxidant to protect neurons from
oxidative stress (Shefa et al., 2018). The role of H2S in ischemic
brain depends on the concentration; low concentrations have a
protective effect, and high concentrations do the opposite (Chan
and Wong, 2017).

H2S is produced from cysteine by enzymes. There are four
enzymes responsible for endogenous H2S generation:
Cystathionine b-synthase (CBS), 3-mercaptopyruvate sulfur
transferase acts together with cysteine aminotransferase (3-MST/
CAT), cystathionine g-lyase (CSE), and 3-mercaptopyruvate sulfur
transferase with D-amino acid oxidase (3-MST/DAO) pathways
(Chen et al., 2015). The first three utilize L-cysteine or
homocysteine as substrates. While the 3-MST/DAO pathway is a
novel source of endogenous H2S; the substrate is the less toxic D-
cysteine (Shibuya et al., 2013). D-cysteine would be more
advantageous than L-cysteine as a neuroprotectant against
cerebellar ataxias. Furthermore, their distribution is highly tissue
specific. The three enzymes CBS, 3-MST/CAT, and 3-MST/DAO
are mainly localized in the brain, while the fourth enzyme CSE
produces H2S in other organs. Additionally, the 3-MST pathway
functions as the main producer to release H2S in the brain.
Additionally, the 3-MST pathway functions as the main
producer of H2S and polysulfides (H2Sn) in the brain. 3-
Mercaptopyruvate (3-MP), the substrate of 3-MST, can produce
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protein-bound polysulfides so that H2Sn generated by 3-MST exists
in the brain (Hylin and Wood, 1959; Kimura, 2019). In the
meantime, H2S in CNS parts such as the hippocampus, brain
stem, cerebellum, and brain is commonly generated by CBS as well
(Chen et al., 2015). CSE is largely associated with peripheral or
nonnervous tissues. Thus, H2S produced by CBS and 3-MST/CAT
is mainly discussed.

Production of H2S and H2Sn
There are two possibilities for the mechanism of H2S releasing.
One is a nonenzymatic pathway that is released immediately
once H2S is produced. The other possibility is the enzymatic
pathway that releases H2S storage produced by enzyme under
specific conditions (Ishigami et al., 2009; Zaorska et al., 2020). As
mentioned above, H2S production is closely related to enzymes.
CBS and CSE comprise the transsulfuration pathway and also
have the ability to catalyze the desulfhydration of cysteine.
Relatively, 3-MST that is mostly located in the mitochondria
gets involved in the cysteine catabolic pathway (Banerjee et al.,
2015). Distribution of enzymes is highly tissue specific although
all of them can be detected in many organs. Representative
enzyme in the brain is CBS followed by 3-MST, whereas CSE is
the most active in the cardiovascular system (Bao et al., 1998;
Yang et al., 2008).

The amino acids cysteine and homocysteine have been
qualified as the sulfur source. Under the catalysis of CBS,
homocysteine and serine undergo a replacement reaction, and
the products are water and cystathionine. Next is the elimination
reaction dominated by CSE, which produces cysteine, a-
ketobutyrate and NH3+. This series of reactions completes the
conversion of the harmful substance homocysteine to cysteine.
Then CSE and CBS achieve condensation of homocysteine and
cysteine in common. Furthermore, homocysteine itself can also
generate H2S under the catalysis of CSE enzyme. Cysteine plays a
crucial role in diverse H2S-producing reactions, which can
complete replacement and cracking reaction of different objects
under the catalysis of CBS and CSE. CBS catalyzes the b-
replacement of cysteine + homocysteine or cysteine + H2O to
liberate H2S. Similarly, in addition to participating in the
cracking reaction of cysteine + homocysteine and the g-
replacement reaction of two moles of homocysteine, CSE also
takes part in cysteine’s condensation reaction with itself to
produce H2S (Banerjee et al., 2015) (Figure 1).

CAT also catalyzes the transamination between cysteine and
a-ketoglutarate, but the products are mercaptopyruvate and
glutamate. Subsequently MST forms persulfide and pyruvate to
liberate H2S under reducing conditions (Yadav et al., 2013). MST
is an enzyme that can transfer sulfur from mercaptopyruvate to
make MST-SH into MST-SSH. MST-SSH is a persulfide
intermediate that releases H2S in the presence of a reductant
(Banerjee et al., 2015). H2S is produced from 3-MP by 3-MST.
When synthesizing 3-MP in the mitochondria from cytoplasmic
D-cysteine, it needs participation of the enzyme DAO (Ubuka
et al., 1978; Shibuya et al., 2013) (Figure 1).

Hideo Kimura identified H2S2 and H2S3 produced by 3MST
in the brain. The intermediate products persulfide or polysulfide
generated after 3-MST catalysis interact with thioredoxin to
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release H2Sn (mainly H2S2) (Kimura, 2019). Most H2Sn-related
enzymes are distinct from H2S. Copper/zinc superoxide
dismutase can be utilized to produce H2S2, H2S3, and H2S5
(Searcy et al., 1995; Olson et al., 2018). Peroxidases such as
lactoperoxidase and myeloperoxidase can oxidize H2S to
polysulfides (Nakamura et al., 1984; Garai et al., 2017). Two
gas signal molecules NO and H2S will also interact and produce
H2Sn (Eberhardt et al., 2014; Moustafa and Habara, 2016). H2Sn
(n ≥ 2) induces Ca2+ influx in astrocytes more effectively than
H2S (Kimura et al., 2013). Neurons can be protected by H2S and
H2Sn (such as H2S4) to reduce the damage of oxidative stress
(Kimura et al., 2019). As a result, both H2S and H2Sn play a role
in neurodegenerative diseases.

H2S Is Produced by CBS
CBS is an enzyme that depended on pyridoxal-5′-phosphate, and
CBS has been found in the hippocampus, brainstem, cerebellum,
cerebrum. CBS can produce efficient H2S through the b
displacement condensation reaction of cysteine and homocysteine
b substitution (Chen et al., 2004). CBS is of great importance to
regulate homocysteine levels in vivo because mice lacking CBS
behave hyperhomocysteinemia and hypermethioninemia (Ishii
et al., 2010). Endogenous H2S in the brain is generated mainly by
CBS so that the change of H2S level depends on altering CBS
expression. CBS mRNA expression or CBS transcription can be
increased under the regulation of epidermal growth factor,
transforming growth factor-a , and cyclic adenosine
Frontiers in Pharmacology | www.frontiersin.org 3
monophosphate (CAMP). Activation of astrocytes and microglia
inflammatory pathways in neuronal cells will reduce CBS
expression, leading to downgrade H2S levels in the brain (Schicho
et al., 2006; Kimura et al., 2010).

Under local oxidizing conditions, the ferrous form of CBS is
less active than the ferric form (Taoka et al., 1998). Due to the
very low chemical reaction potential of Fe3+/Fe2+ in CBS
(−350mV), the availability of ferrous states in CBS is unclear
(Kabil et al., 2011). The CO system will interfere with the H2S
system, a novel member of the gas-transmitter family, because
CO in the ferrous state will combine with CBS to inhibit the
activity of CBS (Shintani et al., 2009). S-adenosylmethionine is
the precursor of homocysteine, which can activate CBS by
binding to the carboxy-terminal domain of CBS, thus H2S also
increases (Sen et al., 2012). CBS expression is abnormal in several
diseases. CBS level is found to be threefold higher in the brains of
Down’s syndrome patients than in the normal people, but CBS
allele expression is lower in children with high intelligence
quotient (Kimura, 2010). Experiments have shown that L-
glutamic acid and calcium (Ca2+)/calmodulin in hippocampal
slices of rats can promote and maintain the production of H2S by
CBS, respectively. N-Methyl-D-aspartate (NMDA) is involved in
this process as well because CBS functions as an antioxidant
inhibitory via triggering NMDA receptors. One of the reasons
for the high H2S concentration in the cerebrospinal fluid of
patients with Down’s syndrome may be that the addition of
NMDA receptors has altered the long-term enhancement of the
FIGURE 1 | The figure shows the enzymes involved in H2S biogenesis. Although enzymes can be present in the cytoplasm and mitochondria, H2S produced by
MST dominates the mitochondria. CBS, CSE, MST/CAT, and MST/DAO represent cystathionine b-synthase, cystathionine g-lyase; mercaptopyruvate sulfur
transferase acts together with cysteine aminotransferase and mercaptopyruvate sulfur transferase with D-amino acid oxidase. The 3-MST/DAO pathway also can
produce persulfide, which interacts with thioredoxin to release H2Sn.
May 2020 | Volume 11 | Article 702
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hippocampus. Encoded and overexpressed CBS on chromosome
21 in these patients causes this increased H2S concentration.
What’s more, H2S level of the patients with Alzheimer disease
reduces 55%. Studies show that continuous leaks of H2S can
impair fetal neuronal development and monoamine
neurochemistry in experimental rats (Cheung et al., 2007).

Thus, H2S is very relevant to neurodegenerative diseases. In a
word, overexpression and deficiency of CBS both lead to serious
diseases such as cognitive dysfunction. If we can understand how
to balance the expression of CBS in the brain, the potential
therapeutic pathways for many central nervous system diseases
can be expanded.

H2S Is Produced by 3-MST/CAT
It has been reported that 3-MST/CAT induces H2S in the brain
and mostly get involved in the neuronal generation of H2S
(Kimura et al., 2010; Panthi et al., 2016). CBS is mainly
localized in the cytosolic of cells, while 3-MST is found in the
mitochondrial matrix of neurons in the brain and retina
(Nagahara et al., 1998; Shibuya et al., 2009a; Shibuya et al.,
2009b; Mikami et al., 2011a; Mikami et al., 2011b).

It has recently been shown that substrates containing L-
cysteine and D-cysteine in the brain can produce H2S through
the 3-MST/CAT and 3-MST/DAO pathways (Panthi et al.,
2016). Thioredoxin and dihydrolipoic acid (DHLA) integrate
with 3-MST to release H2S. The concentration of DHLA in the
brain is approximately 40 mM, which enhances the H2S
production effectively (Mikami et al., 2011a; Mikami et al.,
2011b). Actually, 3-MP is the substrate of the mitochondrial
enzyme 3-MST, which itself also acts as an endogenous H2S
donor (Mitidieri et al., 2018). The mitochondria are the
intracellular storage form of H2S. 3-MP stimulated
mitochondrial H2S production and enhanced mitochondrial
electron transport at low concentrations (Modis et al., 2013).
L-cysteine and a-ketoglutarate provide 3-MP by the CAT
pathway. When synthesizing 3-MP in the mitochondria from
cytoplasmic D-cysteine, it needs participation of enzyme DAO
(Ubuka et al., 1978; Shibuya et al., 2013). DAO is rich in
cerebellar tissues which can convert D-cysteine to 3MP,
thereby effectively producing H2S. H2S generated by D-cysteine
exerts its function in promoting dendritic development of
cerebella Purkinje cells (Seki et al., 2018). H2S produces from
3-MP by 3-MST, so unstable molecule 3-MP is also the
intermediate of CAT catalysis that affects the formation of 3-
MST (Shibuya et al., 2009b; Mikami et al., 2011a). Under the
presence of dithiothreitol (DTT), persulfide can be produced to
release H2S through the way of providing sulfur by 3-MP at the
active site of 3-MST (Shibuya et al., 2009b; Kabil and
Banerjee, 2010).

On the other hand, Ca2+ concentration is closely related to the
production of H2S. The production of H2S is the highest when
the Ca2+ concentration is zero and minimum under the
condition of 2.9 mM Ca2+ so that the activity of CAT is
inhibited by the Ca2+ concentration as well (Mikami et al.,
2011b). Mikami et al. also found that 3-MST produced H2S
from thiosulfate. In the presence of high concentrations of
DHLA, H2S can be produced from both 3MP and thiosulfate.
Frontiers in Pharmacology | www.frontiersin.org 4
They also concluded that DHLA was detected to release H2S
effectively from the brain post-nuclear supernatant containing
bound sulfane sulfur (Mikami et al., 2011a).

There are three primary biological forms of H2S including
free, acid-labile, and bound sulfur. The acid-labile sulfur is
another form of the sulfur pool to release H2S, which is
primarily located at the iron–sulfur cluster of enzymes in the
mitochondria. Experiments have shown that acid-labile sulfur
can be discovered in the brains of rats and humans by detecting
the shape of different sulfides. H2S can be released from acid-
labile sulfur at acidic conditions while from bound sulfur in
alkaline microenvironment. The highest PH for H2S to release
from acid-labile sulfur is 5.4. In fact, the acid-labile sulfur
releasing H2S pathway may be difficult because the
mitochondria are usually not in the acidic environment
(Ishigami et al., 2009). Bound sulfur is localized to the
cytoplasm and acts as an intracellular storage of H2S. Because
3-MST cell expression mutation lacks H2S-producing activity,
the concentration of bound sulfur is low (Shibuya et al., 2009b).
1,500 nmol/g protein concentrations of bound sulfur can release
enough H2S to stimulate the target molecules in the brain. When
neurons are excited, the increase of extracellular potassium ion
concentration causes the intracellular pH of astrocytes to
increase to release H2S from the bound sulfur (Ishigami et al.,
2009). Moreover, another substrate for CAT, aspartate can
combine competitively with CAT to suppress the production
of H2S. 3-MST generates bound sulfur more efficiently than CBS.
3-MST is more active than CBS to transfer bound sulfur from
H2S (Kimura, 2010).

However, specific proteins that can be used to identify
whether H2S releases physiological or pathological signals from
the storage form are still unknown.

H2S as a Signaling Molecule in the CNS
H2S plays a significant role in regulating the function of the CNS
as a signaling molecule. It has been found that H2S is involved in
neuroprotection processes and neurotransmission in various
models (Nagai et al., 2004; Hu et al., 2008; Qu et al., 2008).
The potential mechanism of neuroprotection of H2S contains
anti-inflammation and upregulation of antioxidative enzymes.
H2S may protect neurons from apoptosis and degeneration as
well (Popov, 2013). H2S also plays a neuroprotective function by
regulating the intracellular pH of microglia and restricting the
injury of activated microglia in the damaged site (Lu et al., 2010).
H2S results in immoderate NMDA receptor stimulation through
the transmitter cAMP. One of the endogenous ligands of the
NMDA receptors is glutamic acid. The function of protein kinase
A (PKA) is to make various intracel lular proteins
phosphorylation and to get involved in maintaining brain
activity. After the addition of the glutamate receptor subunit,
phosphorylation happens in the NMDA receptor 1 ion channel
by activation of cAMP-dependent PKA (Zhao et al., 2016). Thus,
H2S may influence the behaviors of NMDA receptors and second
messenger systems through changing intracellular cAMP levels
and increases intracellular Ca2+ by activating voltage-gated
sodium channels in neuronal cells (Zhang and Bian, 2014).
Generation of cAMP stimulates PKA, thereby phosphorylating
May 2020 | Volume 11 | Article 702
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various intracellular proteins, and an influx of Ca2+ ions is
observed in this process (Tan et al., 2010). Studies have shown
that CAMP of the primary cultures of the cerebral cortex,
cerebellar neurons, and glial cells increases because of the
enhanced concentration of NaHS sustained release H2S
(Kimura, 2000). Therefore, H2S may modulate intracellular
cAMP levels and thereby activate PKA to regulate the activity
of NMDA receptors. At the same time, H2S may increase
intracellular Ca2+ concentration by activating sodium channels
on neuronal cell membranes (Kimura, 2011).

Research shows that H2S protects neurons from oxidative
stress. Hypochlorous acid (HOCl) or peroxynitrite (ONOO−)
interacts with tyrosine to form 3-chlorotyrosine, which is toxic to
neurons. H2S has the function of restraining the activity of
reactive oxygen species (ROS), reactive nitrogen species (RNS)
or chlorine (such as HOCl), so it can significantly inhibit HOCl
toxicity by eliminating HOCl before neurodegenerative changes
occur (Olas, 2017). H2S protects neuroblastoma cells from
oxidative/nitrative stress induced by ONOO− or HOCl
(Whiteman et al., 2004). In addition, H2S may protect retinal
neurons from light-stimulated degeneration (Mikami et al.,
2011b; Kimura, 2014).

ONOO− can nitrate phenolic groups of tryptophan and tyrosine
in proteins, and 3-nitrotyrosine is formed consequently. Due to the
toxicity of ONOO− itself and its products to neuronal cells, it plays a
role in neurodegenerative diseases such as Alzheimer’s disease,
Huntington’s disease, and Parkinson’s disease or amyotrophic
lateral sclerosis. Reduced H2S levels in these diseases lead to
increasing ONOO− activity and neuronal degeneration. H2S
exerts a protective function by inhibiting the interaction between
ONOO− and tyrosine (Cheung et al., 2007). Rho-associated protein
kinase 2, a key factor that promotes neurodegeneration in
Parkinson’s disease, can be reduced by H2S through microRNA-
mediated protection of nerve cells (Liu et al., 2016). Persulfidation of
H2S signals actually modifies cysteine residues on target protein and
converts SH group to SSH group. Dysregulation of the
transsulfuration pathway which generates H2S occurs in several
neurodegenerative diseases (Paul and Snyder, 2018). Sulfhydration
might be impaired in protein misfolding diseases such as
Parkinson’s disease. H2S inhalation has been studied for its
neuroprotective action in a tested mouse model of Parkinson’s
disease (Kida et al., 2011). Administration of H2S donor in the APP/
PS1 mouse model can attenuate cognitive dysfunction caused by
homocysteine. H2S can inhibit the oxidative stress pathways that
affect AD. The generation of oxidative stress markers homocysteine-
induced malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE)
can be reduced by H2S. Nrf2 plays a key role in maintaining redox
balance so that NaHS (one of H2S donors) can increase the
expression of Nrf2. As a result, H2S mediates neuroprotection via
multiple pathways (Paul and Snyder, 2018).

Everything has two sides. Steady intracellular concentrations
of H2S depend on enzymatic generation and clearance rates
(Kabil and Banerjee, 2014). H2S is also a two-edged sword that
excessive H2S can have an adverse result. The inflammatory
factor interleukin-1b (IL-1b) causes memory loss through
stimulating the CBS enzyme. H2S-mediated IL-1b results in
Frontiers in Pharmacology | www.frontiersin.org 5
degradation of postsynaptic density 95 which is an important
scaffold protein to promote synapse maturation. The loss of
postsynaptic density 95 implicates in brain diseases such as
consequent neuronal spine retraction (Mir et al., 2014). CBS
level is found to be threefold higher in the brains of Down’s
syndrome patients than in the normal people but CBS allele
expression is lower in children with high intelligence quotient.
Overexpression of CBS is present on the trisomy of chromosome
21 (Kimura, 2010). CBS is localized to astrocytes adjacent to the
senile plaques in the brains of Down’s syndrome patients (Paul
and Snyder, 2015).

H2S production and metabolism should be balanced and
regulated in the nervous system. It should be focused on
uncovering the exact role and function of H2S in the CNS with
the aims of dissecting the involved signaling pathways.
ERS OF NEURONS IN CNS

In eukaryotic cells, the endoplasmic reticulum (ER) is an
organelle that synthesizes, modifies, and folds proteins into the
correct structure. Only correctly folded proteins can be
transported to the Golgi apparatus for further processing.
When the protein load capacity of ER is insufficient to deal
with unfolded or misfolded proteins accumulated in the ER, the
ER balance will be broken and the Ca2+ balance will be disturbed,
resulting in endoplasmic reticulum stress (ERS). To alleviate this
stress state, the cell firstly initiates an unfolded protein response
(UPR), a self-protection mechanism, to eliminate unfolded
protein stacks and facilitate cell survival. UPR is mediated by
glucose-regulated protein 78 (GPR78)/immunoglobulin heavy
chain binding protein (Bip), and three ERS-sensing proteins
located on the ER membrane. The three ERS-sensing proteins
are double-stranded RNA-dependent protein kinase (PKR)-like
ER kinase (PERK) and type-1 ER transmembrane protein kinase
(IRE-1) and activating transcription factor 6, ATF6 (Saito, 2014).
Although ERS can activate UPR, a self-protection mechanism,
severe ERS can still induce apoptosis and death (Cabral Miranda
et al., 2014). Short-term activation of UPR is protective, but
sustained UPR stimulation caused by prolonged ERS duration
can promote neurotoxicity. Protein misfolding and trafficking in
the ER lumen initiate UPR and cause the toxic accumulation in
energy-starved neurons. Chorionic activation of ERS plays an
important role in various neurological diseases, mainly
neurodegenerative diseases, followed by spinal cord injury,
sclerosis and diabetic nerves (Zhang et al., 2015).

Under normal circumstances, the three inactive proteins are
bound to GPR78/Bip, respectively. When the ER homeostasis is
broken and a large amount of unfolded proteins accumulate in
the ER, GPR78/Bip dissociates from the three sensory proteins in
order to bind the accumulated unfolded proteins, releasing and
activating the three sensory proteins, thereby activating UPR
(Almanza et al., 2019). The role of GRP78 is mainly to regulate
the initiation of UPR through direct interaction with each
sensory protein (Bertolotti et al., 2000; Shen et al., 2002). After
dissociation of PERK and GPR78/Bip, the downstream
May 2020 | Volume 11 | Article 702
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eukaryotic initiation factor 2a (eIF2a) is subsequently
phosphorylated. Phosphorylated eIF2a restricts unfolded
proteins from entering the ER, which is beneficial to cell
survival; in addition, phosphorylated eIF2a can regulate the
expression of activated transcription factor 4 (ATF4) and
participate in the recovery of protein synthesis. After IRE-1 is
activated, X-box binding protein-1 (XPB-1) is further activated.
Activated XBP-1 accelerates the degradation of ER-related
proteins, repairs the steady state of endoplasmic reticulum, and
plays a role in cell protection. Dissociation of ATF6 fromGPR78/
Bip can activate the molecular chaperone Bip, the ER protein
target gene and upregulate XBP-1, helping the protein to fold,
modify, and transport correctly, thereby maintaining cell
homeostasis. However, under the stimulation of continuous or
excessively strong ERS, UPR cannot continue to maintain
homeostasis in the ER, leading to CCAAT-enhancer-binding
protein homologous protein (CHOP) activation. Activated
CHOP disrupts the balance between downstream apoptotic
genes and finally indirectly induces apoptosis (Hetz and
Papa, 2018).

Features of pathophysiological stress induced by ERS like
protein aggregates, inflammatory signals, metabolic alterations
trigger UPR. The changes in the UPR pathway due to ERS may
work in the pathogenesis of diabetic neuropathy (Sims-Robinson
et al., 2012). Data indicated that icariin reduced neuronal
apoptosis and suppressed ERS signaling including decreased
the level of GRP78, phosphorylated ER-regulated kinase and
phosphorylated eIF2a, as well ATF4, CHOP, DNA damage
inducible protein 34 and tribbles homologous protein 3 to
protect against Alzheimer’s disease animal model (Li et al.,
2019). Carboxyl-terminus of the Hsp70 interacting protein
(CHIP) prevents severe ERS-induced hippocampal neuron
death. Experiments have shown that overexpression of CHIP
prevents upregulation of both ERS-induced CHOP and p53 pro-
apoptotic pathways and does not prevent growth of UPR-
induced GRP78/Bip. Therefore, it is shown that overexpression
of CHIP can weaken the ERS-induced apoptotic response while
maintaining ERS adaptive changes in CNS (Cabral Miranda
et al., 2014).

ROS and RNS disrupt correct protein folding structure in the
ER lumen. Often, cells respond to oxidative stress by initiating
ERS response. To human immunodeficiency virus (HIV)-
associated neurocognitive impairment, Bip expression in HIV-
positive cortex significantly increases and the cell specificity of
the Bip level significantly increases in neurons and astrocytes.
For the same group of patients, the expression of ATF-6b also
upregulates (Lindl et al., 2007). Additionally, ERS is closely
relevant to cell death and inflammatory signals. ERS induces
astrocytes and neurons to secrete molecules with lipid
characteristics. This molecule is a cascade reaction, which in
turn regulates other astrocytes and neurons’ inflammation and
ERS responses. Methylmercury enhances ERS levels to exert its
toxicity through the inactivated Akt pathway mediated by ROS,
thereby inducing neuronal apoptosis and eventually leading to
death (Chung et al., 2019). Trace metals such as zinc (Zn),
copper (Cu), and nickel (Ni) are essential in various
Frontiers in Pharmacology | www.frontiersin.org 6
physiological functions and have powerful biological functions.
They are involved in the metabolic processes of enzymes,
hormones, vitamins, and nucleic acids, but their excessive
amounts cause disorders in various tissues of the CNS. Cu2+

markedly enhances Zn2+-induced neuronal cell death by
activating ERS response. Excess Ni2+ can trigger the ERS
response, which significantly enhances Zn2+-induced neuronal
cell death, especially the expression of CHOP (Tanaka et al.,
2019). H2S donor may be beneficial not only for the brain but
also for spinal cord injury recovery via the ERS pathway. Cell
autophagy induced by spinal cord injury can be remarkably
blocked by the ERS inhibitor. From this, whether H2S can help
ERS pathway against autophagy in CNS or not would be an
interesting research (Wang et al., 2018). By targeting ERS
molecular signaling responses, there will be more new
perspectives on the protection and function maintenance of
CNS neurons.
THE EFFECT OF H2S ON ERS OF
NEURONS IN CNS

Neuroprotective Effects of H2S in
Alzheimer’s Disease
Alzheimer’s disease (AD) is one of the most common destructive
and progressive neurodegenerative diseases in the elderly. It
mainly affects CNS, cognition, memory, and optic nerve
abnormalities. The pathological manifestation is the presence
of b amyloid deposits in the brain. Endogenous H2S may be
closely related to the pathogenesis of AD because of the
disordered H2S levels in the serum of AD patients. Proper H2S
concentration protects neurons by inhibiting ROS generation
and preserving the mitochondrial membrane potential (MMP)
pathway (Tang et al., 2008). Hyperhomocysteinemia is a closely
independent risk factor for AD because homocysteine can
increase neuronal cell apoptosis and inhibit the production of
endogenous H2S. Moreover, homocysteine causes the
upregulation of ERS-related GRP78, CHOP, and cleaved
caspase-12 (Wei et al., 2014). Studies have shown that NaHS
interference in animal models of hyperhomocysteinemia can
attenuate DNA damage and death of apoptotic cells to prevent
neurodegeneration (Kumar et al., 2018). H2S also enhances the
expression of anti-apoptotic Bcl-2 or reduce cellular ROS toxicity
to protect homocysteine-induced cytotoxicity and apoptosis.
Some evidence shows that H2S plays a key role in ERS
pathology of AD. Experiments have demonstrated that H2S
can attenuate the learning and memory decline in AD and
inhibit the hippocampal ERS in homocysteine-exposed rats by
reducing the expression of GRP78, CHOP, and cleaved caspase-
12 (Zou et al., 2017). H2S can also restrain homocysteine-
induced ERS and hippocampal neuronal apoptosis by
upregulating the brain-derived neurotrophic factor/
tropomyosin-related kinase B (BDNF/TrkB) pathway in AD
rat models (Tang et al., 2010). NaHS releases endogenous H2S
in vivo and increases the expression of BDNF in a dose-
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dependent manner , thereby s ignificant ly reduc ing
homocysteine-induced apoptosis in ERS and hippocampal
neurons. The protective effects of NaHS against homocysteine-
induced ERS disappear when using k252a, a specific antagonist
of TrkB (Wei et al., 2014). In brief, it is valued that H2S has a
neuroprotective effect in AD, and ERS with its related pathways
as shown in Figure 2 should be referenced.

Neuroprotective Effects of H2S in
Parkinson’s Disease
Parkinson’s disease (PD) is the second most devastating
progressive neurodegenerative disease after AD, with
characteristic motor symptoms such as resting tremor and
muscle stiffness. Broad and complex changes in neurons lead
to Parkinsonian symptoms (Obeso et al., 2008).

Oxidative stress, mitochondrial dysfunction, neurotoxicity,
neuroinflammation, and apoptosis have been considered as
possible mechanisms that cause PD (Hirsch and Hunot, 2009).
H2S is also closely relevant to PD. Neurotoxins such as 6-hydroxy-
dopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+)
are used to simulate PD models in vitro and in vivo. MPP+ is the
active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), which functions to stimulate the generation of superoxide
radicals in vitro and induce cell apoptosis (Xiao et al., 2016). In a 6-
OHDA-induced PD rat model, the endogenous H2S level of the
primary lesion site of PD, substantia nigra (SN), is significantly
Frontiers in Pharmacology | www.frontiersin.org 7
reduced (Xue and Bian, 2015). Symptoms of PD may reflect
compromised ubiquitylation. Neuroprotective ubiquitin E3 ligase
of parkin in the brain of PD patients inactivates. and sulfhydration
of parkin diminishes, while the persulfidation of parkin protein
promotes the activity of ubiquitin E3 ligase, thereby mediating cell
protection. H2S may upregulate the expression of deubiquitinating
enzymes USP8 to antagonize the degradation of Parkin protein
(Sun et al., 2020). This implies that H2S donors may be potentially
therapeutic (Vandiver et al., 2013).

It turns out that the accumulation of misfolded or damaged
proteins is related to the development mechanism of PD. The
growth of mitochondrial dysfunction and the imbalance of
oxidation and antioxidant will lead to the ER overload
response that is the generation of ERS (Sarkar et al., 2016).
Mitochondrial dysfunction and the imbalance of oxidation and
antioxidant activate the pro-apoptotic pathway and inhibit the
anti-apoptotic pathway. It is also proposed that mitochondrial
dysfunction changes the energy-dependent cell membrane
potential to generate free radicals and has toxic damage to cells
(Sarkar et al., 2016). Excessive ROS can cause oxidative stress.

Lu et al. have demonstrated that H2S can attenuate the loss of
SN-dense dopamine neurons and the MPTP-induced
accumulation of ROS, thereby reducing oxidative stress and
ERS. Mitochondrial uncoupling protein 2 (UCP2) can serve as
a mechanism for H2S to reduce ROS generation. Mitochondrial
uncoupling protein 2 (UCP2), which is associated with
FIGURE 2 | Neuroprotective effects of H2S in Alzheimer’s disease. Homocysteine can increase neuronal cell apoptosis and inhibit the production of endogenous
H2S and cause the upregulation of ERS-related GRP78, CHOP, and cleaved caspase-12. Proper H2S concentration protects neurons by inhibiting ROS generation
and preserving MMP pathway to reduce Alzheimer’s disease symptoms. H2S can increase expression of anti-apoptotic Bcl-2 or reduce cellular ROS toxicity and
also restrain homocysteine-induced ERS and hippocampal neuronal apoptosis by upregulating BDNF/TrkB pathway in Alzheimer’s disease rat models.
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dopamine neurons, can function for H2S to reduce ROS
production, acting upstream of KATP channels. In addition,
H2S can directly and indirectly reduce ROS accumulation
through the KATP/PI3K/AKT/Bcl-2 pathway (Lu et al., 2012).
Chen’s work shows that appropriate concentrations of H2S can
protect neurons by maintaining MMP and weakening ROS
generation (Chen et al., 2015). MPP+ inhibits the production
of endogenous H2S, so H2S not only needs to maintain MMP but
also to resist MPP+-induced cytotoxicity and apoptosis by
reducing ROS accumulation (Tang et al., 2011; Xiao et al.,
2016). The pathway that described the above content is shown
in Figure 3. Therefore, the neuroprotective therapy for PD can
exert H2S to prevent ERS.

Neuroprotective Effects of H2S in Major
Depression Disorder
As people’s psychological pressure gradually increases, the incidence
of depression increases year by year. Depression is a commonmental
disorder. Its clinical features are emotional disorders, discomfort,
and despair. Severe cases even have suicide attempts. The etiology of
major depressive disorder (MDD) is a combination of multiple
factors (Chirita et al., 2015). Neurochemical mechanisms of
depression mainly involve the synergistic action of three major
neurotransmitter systems: 5-hydroxytryptamine (5-HT),
Noradrenaline (NE), and dopamine (DA). According to the
World Health Organization estimates, depression places a huge
social burden on nonfatal health consequences (Chirita et al.,
Frontiers in Pharmacology | www.frontiersin.org 8
2015). Therefore, the treatment of MDD is very important.
Unfortunately, existing treatment methods cannot prevent the
high recurrence of symptoms (Liu et al., 2011). New targets for
depression still need to be studied.

The pathogenesis of depression is not yet complete, but some
major hypotheses have been proposed: hippocampal neurogenesis
and the BDNF/TrkB pathway may be involved in the
pathophysiology of depression (Castren and Rantamaki, 2010;
Hanson et al., 2011). The neuro-plasticity of MDD is abnormal.
BDNF maintains the development of neurons. Under the
circumstances of stress, the expression of BDNF may be
suppressed, which interrupts the supply of BDNF in the
hippocampus. Atrophy or apoptosis of susceptible neurons
causes depression and recurrent episodes. Therefore,
abnormalities in synaptic plasticity can make MDD worse
(Duman, 2002). H2S has been reported to enhance neuronal
synaptic transmission and promote its long-term enhanced
induction (Du et al., 2004). H2S can play a positive role in MDD
based on its protection of hippocampus and nerve cells. Tan et al.
have shown that H2S interferes with the process of hippocampal
neuron volume reduction and impaired function under stress-
induced MDD (Tan et al., 2015). ERS refers to overload caused by
ER dysfunction which is a key step in the pathogenesis of
neurodegenerative diseases (Stefani et al., 2012). ERS links to the
pathogenesis of depression caused by chronic unpredictable mild
stress (CUMS). Amphetamine and inhibition of rat brain striatum
stress can activate transcription of ERS transcription factors ATF3
FIGURE 3 | Neuroprotective effects of H2S in Parkinson’s disease. Oxidative stress, mitochondrial dysfunction, apoptosis has been considered as possible
mechanisms to cause Parkinson’s disease, thereby leading to ERS. MPP+ is the active metabolite of MPTP, which functions to stimulate the generation of
superoxide radicals in vitro and induce cell apoptosis. H2S can attenuate the MPTP-induced accumulation of ROS, thereby reducing oxidative stress and ERS. UCP2
can function for H2S to reduce ROS production, acting upstream of KATP channels. In addition, H2S can directly and indirectly reduce ROS accumulation through
the KATP/PI3K/AKT/Bcl-2 pathway.
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and ATF4 (Pavlovsky et al., 2013). H2S not only attenuates
homocysteine-induced apoptosis in hippocampal neurons and
ERS by upregulating the expression of BDNF-TrkB in the MDD
model but also improves CUMS-induced depression and inhibits
hippocampus by promoting the expression of hippocampal Sirt-1
ERS (Wei et al., 2014; Liu et al., 2017).

Taken together, as shown in Figure 4, H2S signaling
molecules in the brain can understand new antidepressant
pathways and mechanisms through ERS.
CONCLUSION AND PERSPECTIVES

Different studies have recognized that H2S plays an important
role in physiological and pathological conditions in the body.
Appropriate concentration of H2S has a protective and
regulatory role in the CNS, existing in cells in free, acid-labile,
and bound sulfane sulfur form. Free exogenous H2S is able to
exert a physiologic function in neurotransmission and cell
survival. Although the neuroprotective effects of H2S are
mainly emphasized in this article, either excessive or
insufficient H2S still has pathogenic effects on various systems.
Excessive H2S initiates neuro-cytotoxic mechanism in the brain.
Cells and tissues need to maintain appropriate concentrations of
H2S to prevent potential toxicity. There is no doubt that the
misfolding of proteins and the accumulation of unfolded
proteins in the ER cavity trigger neurotoxic effects. The
Frontiers in Pharmacology | www.frontiersin.org 9
overload of ER activates the ERS pathway and plays a role in
the pathogenesis of a series of neurological diseases. Potential
mechanisms that trigger the ERS response may be closely related
to toxic levels of homocysteine, oxidative stress, and abnormal
epigenetic modification. H2S can regulate the expression of
various proteins and genes under the condition of ERS,and
maintain the homeostasis of cells in vivo. It is considered using
H2S to directly or indirectly target drug-mediated treatment of
CNS diseases by modulating the ERS mechanism. One challenge
of H2S-based therapeutics is its delivery development. H2S has
attractive applications in neurological diseases and psychiatry.
H2S will be a promising agent for neurodegenerative diseases.
AUTHOR CONTRIBUTIONS

HZ and HY discussed the concepts and wrote the manuscript.
JC, JS, LG, PH, and YZ reviewed the literature and provided
critical revision of the manuscript for important content.
FUNDING

This study received support from the Shanghai Municipal Health
and Family Planning Commission Traditional Chinese Medicine
Research Project Foundation (No.2018JP008).
FIGURE 4 | Neuroprotective effects of H2S in major depression disorder. ERS linked to the pathogenesis of depression caused by CUMS. Hippocampal
neurogenesis and the BDNF/TrkB pathway may be involved in the pathophysiology of depression. H2S interferes with the process of hippocampal neuron volume
reduction and impaired function. H2S not only attenuates homocysteine-induced apoptosis in hippocampal neurons and ERS by upregulating the expression of
BDNF-TrkB in the MDD model, but also improves CUMS-induced depression and inhibits hippocampus by promoting the expression of hippocampal Sirt-1 ERS.
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