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Tuberculosis (TB), the leading cause of death due to an infectious agent, requires
prolonged and costly drug treatments. With the rise in incidence of MDR and XDR TB,
newer more efficacious treatments which are better able to permeate into the deeper
recesses of the human lung where bacteria reside are urgently required. To this end, two
new promising drug candidates, the decoquinate derivative RMB041 and the
phenoxazine PhX1, were assessed for their abilities to permeate into specific murine
organs. In particular, PhX1 permeation into the lungs and heart was notably efficient, as
reflected in the high relative AUC values of 9669 ± 120.2 min/nmol/mg and 12450 ± 45.2
min/nmol/mg for lung and heart tissue, respectively. However, neither compound
maintained a free concentration in the lung which exceeded the compound’s respective
MIC90 values, indicating the importance of correcting for organ specific binding.

Keywords: organ concentrations, tuberculosis, tuberculosis chemotherapy, decoquinate, phenoxazine, liquid
chromatography-tandem mass spectrometry
INTRODUCTION

The global incidence of tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is slowly
decreasing in response to the implementation of multi-drug treatment regimens, predominantly
involving the four first-line drugs isoniazid (INH), rifampicin (RIF), ethambutol (EMB), and
pyrazinamide (WHO, 2010; WHO, 2019). Despite this, in 2017, an estimated 10 million new cases,
and 1.5 million deaths due to TB were reported (WHO, 2019).

In relation to drug efficacy, plasma concentrations of the drug are normally used as a
positiveindicator. However, for TB, the situation is decidedly more complex. Mtb sequesters to
different compartments including macrophages, eventually within necrotic granulomas where Mtb
may be extracellular and metabolically quiescent, the inner surfaces of open cavities, where Mtb
occurs within, and extracellular to, multiple cell types. In an extracellular environment, Mtb is
protected from the host immune system and able to replicate freely. Bacilli reside in cells in
superficial tissues of the lung and in other organs (Ramıŕez-Lapausa et al., 2015). Such a diversity of
environments is associated with different physiological states of Mtb, including metabolically
quiescent bacteria arising through the stringent response known as ‘non-replicating persisters.’
Thus, the development of chemotherapeutic regimens capable of adequately sterilizing bacteria in
in.org May 2020 | Volume 11 | Article 7241
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these diverse environments is a formidable challenge. TB drug
discovery requires an examination of the target sites of
pulmonary TB, plasma concentrations of TB drugs do not
provide a reliable guide for estimates of drug concentration in
TB lesions (Dartois, 2014; Horsburgh et al., 2015; Lenaerts et al.,
2015). Intensive modeling of known drugs and experimental
compounds revealed a correlation of CLogP with ability to
penetrate the granuloma; that is, the more lipophilic
compounds are better (Dartois, 2014; Lenaerts et al., 2015). On
the other hand, although the polar TB drug ethambutol (EMB)
elicits relatively poor activity in vitro, it is notably efficacious in
vivo, and it efficiently partitions into caseous lesions, for reasons
that are not fully understood (Zimmerman et al., 2017). Clearly
then, studies that may provide data for selection of early lead
compounds must focus in addition on carefully conducted
permeation studies involving uptake into specific organs,
effects on quiescent bacteria, and judicious in vivo assays
(Voskuil et al., 2011; Sarathy et al., 2017; Zimmerman et al.,
2017; Strydom et al., 2019).

Thus, it is argued that better predictions for efficacy of a
compound against Mtb in vivo would be obtained by
determining specific drug concentrations at the target organ
(Müller et al., 2004; Tanner et al., 2018). Thus, studies assessing
drug concentration in target organs are necessary, preferably at
an early stage in the drug discovery process. This would also
assist in determining the main metabolizing organs for an
individual compound that should provide a better
understanding of organ specific metabolite formation and
toxicity. Ensuring that compound concentrations are
monitored as free fractions in organ(s) in which the disease
prevails will allow better prediction of efficacy, rather than
relying on proxies of target site concentrations (Rizk et al., 2017).

It has already been shown that concentration of a particular
drug in the lung for example may be higher than that in the
plasma (Sonopo et al., 2015). Indeed, this trend is shown to
obtain for the first-line TB drugs PZA, RIF, and INH whose
concentrations in the lungs of uninfected primate species
(baboons) were higher than in the plasma (Liu et al., 2010).
Additional studies using a murine model that focus
predominantly on lung tissue concentrations further support
the disconnect between plasma and lung concentrations
(Kjellsson et al., 2012; Lanoix et al., 2015; Prideaux et al., 2018).

In order to determine in vivo organ concentrations, two
methods are available: these entail either invasive techniques of
organ harvesting andmicrodialysis, and non-invasive instrumental
techniques using positron emission tomography (PET),
fluorescence molecular tomography (FMT), and magnetic
resonance spectroscopy (MRS) (Langer and Müller, 2004)). The
non-invasive methods allow for the semi-quantitative
determination of organ drug concentrations and have been used
extensively for evaluation of drug concentrations in sensitive tissues
including the brain (Yang et al., 2009; Vasquez et al., 2011).
However, there are limitations to these methods, including
difficulties in determining unbound tissue concentrations, the
radiometric labeling of compounds which may be difficult, and
the limited sensitivity of the techniques (Lin, 2006). Invasive
Frontiers in Pharmacology | www.frontiersin.org 2
methods such as organ homogenization combined with liquid
chromatography-tandem mass spectrometry (LC-MS/MS) have
allowed for accurate determinations of both bound and unbound
concentrations (Elmquist and Sawchuk, 2000; Langer and Müller,
2004). The methodology requires LC-MS/MS quantification of
drug concentrations from standard curves prepared using blank
organ homogenates (Tamvakopoulos et al., 2000; Mariappan et al.,
2013; Takai et al., 2014).

Drug discovery and development is a multifactorial process
that incorporates numerous parameters when assessing novel
compounds. Recently, attempts have been made to bridge the
gap between experimentally determined pharmacokinetic (PK)
and pharmacodynamic (PD) parameters and use this knowledge
to better understand how a drug might fare in human clinical
trials. This can be achieved by looking more closely at unbound
drug concentrations obtained at the target site. The importance
of determining unbound concentration has been described by
Morgan et al. as “one of the three pillars of survival” for
progressing a compound down the drug discovery pipeline,
along with sufficient binding to the target and target
modulation (Morgan et al., 2012).

In turning to our own work, following in-depth in vivo murine
studies, novel decoquinate derivative (RMB041) and a phenoxazine
derivative (PhX1) (Figure 1) are now selected for murine organ
analysis based on their promising in vitro ADME properties and
their relatively long half-lives (62.5 ± 6.73 h and 3.71 ± 0.67 h) and
large volumes of distribution (1.2 ± 0.03 L/kg and 11.1 ± 0.1 L/kg),
respectively (Tanner et al., 2019a; Tanner et al., 2019b).

MATERIALS AND METHODS

Ethics Statement
All animal studies were conducted with approval from the
Animal Ethics Committee of the University of Cape Town
FIGURE 1 | Structures of PhX1 incorporating the phenoxazine core, and
RMB041 derived from decoquinate incorporating the quinolone core.
May 2020 | Volume 11 | Article 724
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(017/032). The experiments were conducted in accordance with
the National Code for Animal Use in South Africa (National
Research Council, 2011).

Materials
The compounds RMB041 and PhX1 were synthesized and were
shown by high-performance liquid chromatography (HPLC)
analyses to be ≥96% pure (Shi et al., 2011; Beteck et al., 2018;
Tanner et al., 2019a; Tanner et al., 2019b). Potassium dihydrogen
phosphate and dipotassium hydrogen phosphate were purchased
from Merck (Darmstadt, Germany). Analytical-grade
ace ton i t r i l e (ACN) was purchased f rom Anatech
(Johannesburg, South Africa). Analytical-grade dimethyl
sulfoxide (DMSO), formic acid, and carbamazepine were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Water
was purified via a Milli-Q purification system (Millipore,
Bedford, MA, USA).

In Vivo Organ Concentrations
Animals
Healthy male C57BL/6 mice, 12 to 16 weeks old, weighing
approximately 30 g, were maintained at the Pharmacology
satellite animal facility of the University of Cape Town. Mice
were fed a standard laboratory diet and water was available ad
libitum. Mice were housed in 27 cm × 21 cm × 18 cm cages,
under controlled environmental conditions (26 ± 1°C with 12-h
light/dark cycles). Mice were acclimatized to their experimental
environment for 4 days before the experiment started.

Oral Drug Administration and Sample Collection
Clear suspensions of RMB041 and PhX1 were prepared in 100%
hydroxypropyl methylcellulose. The compounds were
administered via oral gavage at a dose of 10 mg/kg (n = 3 per
time-point). The total volume administered per mouse was
approximately 200 µl. At time points pre-determined by the
PK study of these compounds, animals were anesthetized via
intraperitoneal injection of ketamine/xylazine (75–100 mg/kg +
10 mg/kg) with depth of anesthesia monitored by the absence of
the pedal withdrawal reflex. Blood samples, approximately 20 µl,
were collected via tail bleeding 10 min before murine euthanasia
at 1, 6, and 24 h post-drug administration. The organ collection
was completed at set time points determined by the previous PK
studies of the specific compounds (Tanner et al., 2019a; Tanner
et al., 2019b). Following complete anesthesia, the mice (n = 3 per
time-point) were then euthanized by exsanguination (cardiac
puncture and the removal the majority of vascular blood), with
both femoral arteries cut and approximately 20 ml of saline
injected into the right aorta to rinse the circulatory system of
blood, which continues until the organs experience a pale colour
change which was followed by the surgical procedure. The area
was shaved and washed before dissection along the mid-ventral
line of the animal to expose the organs. The organs were then
dissected out, weighed and flash frozen in liquid nitrogen, and
stored at −80°C. To obtain blank matrix for calibration curve
spiking, in order to determine concentrations of drug in the
organs, the process was repeated in three mice that did not
receive any compound.
Frontiers in Pharmacology | www.frontiersin.org 3
Preparation of Calibration Standards and Quality
Control Samples
Serial dilutions of each compound were spiked into blank murine
organ homogenate to generate calibration standards (3.9–4000
ng/ml) and quality control (10–3200 ng/ml) samples (n = 3).

Sample Processing
Organ samples were homogenized using an Omni Bead Ruptor
(Omni, Georgia, USA). The settings programmed for each organ
are presented in Table 1. Organ samples were diluted 1:1 with
PBS solution and homogenized according to the specific setting
for each organ type. Blank homogenate samples were pooled in
order to maximize organ volume for standard curve preparation.

After homogenization, organ samples (30 µl) were extracted
using a liquid–liquid extraction method (LLE) using ethyl acetate
(250 µl) and a 0.1-M Britton Robinson buffer (50 µl) at pH 4 for
PhX1 and pH 10 for RMB 041, containing 1 µg/ml IS
(carbamazepine) solution. Samples were vortexed (1 min) and
centrifuged at 10,621g (5 min). Thereafter, 200 µl of the organic
layer was removed and dried down under nitrogen. Samples were
reconstituted in 150 µl of injection solvent (1:1 H2O: ACN)
before being submitted for LC-MS/MS analysis.

LC-MS/MS Analysis
A reverse-phase HPLC column (Gemini NX, C18, 2.6 mm, 50mm×
2.1 mm, Phenomenex) was used to separate the compounds and IS
(mobile phase B, 0.1% FA in ACN; mobile phase A, 0.1% FA in
analytical-grade water). Briefly, an Agilent 1200 Rapid Resolution
HPLC system comprising a binary pump, degasser, and auto-
sampler (Agilent, Little Falls, Wilmington, USA) coupled to an
AB Sciex 4000 QTrap hybrid triple quadrupole linear ion-trap mass
spectrometer (AB Sciex, Framingham, MA, USA) was used for
sample analysis (Table 2). Gradient reversed-phase HPLC systems
were used. For PhX1 an HPLC gradient using an elution profile
consisting of mobile phase A (90%) for 0.5 min, decreased to 10%
until 2 min, held at 10% mobile phase A for a further 1.6 min, then
TABLE 1 | Homogenization parameters for organ experiments.

Parameter Liver Kidney Lung Spleen Brain Heart

Speed (m/s) 5 5.2 6 6 5 6
Cycle time (s) 30 30 30 30 30 30
Cycles 2 1 3 2 2 3
Dwell time (s) 10 10 10 10 10 10
May 20
20 | Volum
e 11 | Artic
TABLE 2 | MS/MS settings used for analysis of carbamazepine, RMB041, and
PhX1 in mouse organ samples.

Parameter RMB041 PhX1 Carbamazepine

Protonated precursor ion (m/z) 505.2 394.4 237.1
Product ion (m/z) 400.2 316.1 194.1
Ion spray voltage (V) 4,500 4,500 4,500
Nebulizer gas (AU) 40 40 40
Curtain gas (AU) 20 20 20
Turbo gas (AU) 20 20 20
Source temperature (°C) 400 400 400
AU, arbitrary unit.
le 724
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increased to 90% over 0.1 min, and finally held at 90% A for a
further 2.3 min for a total run time of 6 min. For RMB041 an HPLC
gradient using an elution profile consisting of mobile phase A (95%)
for 0.5 min, decreased to 5% for a further 1.5 min, held at 5%mobile
phase A for a further 1.6 min, then increased to 95% over 0.1 min,
and finally held at 95%A for a further 2.3 min for a total run time of
6 min. The calibration curves generated were used to quantitatively
determine the concentration of each analyte in the respective
murine organ samples.

Unbound Tissue Concentrations
Spiking solutions were diluted in phosphate buffer (final
concentration = 1 mg/ml) and spiked into each respective organ
tissue homogenate (total volume = 1 ml). Following vortexing (1
min), aliquots were transferred in duplicate to: (i) a final
concentration plate that was immediately quenched with ACN
containing internal standard (IS, carbamazepine (23.6 ng/ml)), (ii)
a degradation control, which was placed in a water bath at 37°C for
4 h, and (iii) ultracentrifuge tubes, which were centrifuged for 4 h
at 37°C and 30,000g. All reactions were stopped by the addition of
ACN containing IS. The samples were subjected to liquid
chromatography-tandem mass spectrometry (LC-MS/MS)
analysis on an AB Sciex 4000 Q Trap hybrid triple quadrupole
linear ion-trap MS (AB Sciex, Framingham, MA, USA) coupled to
an Agilent 1200 HPLC (Agilent) with a reverse-phase Gemini-C18
analytical column (5 µm, 50 mm × 2 mm; Phenomenex) at 35°C.
Mobile phases comprised 0.1% FA in water, and 0.1% FA in ACN.
The flow rate was 600 µl/min with a run time of 6 min.
RESULTS

Murine Organ Drug Analyses
LC-MS/MS Assay Performance
A quadratic regression equation, plotting peak area ratio against
concentration was fitted to the calibration curves. The curves
were weighted by 1/concentration (1/x). The accuracy (%NOM)
for all calibration standards and QC samples was between 84.2 ±
4.1% and 117.7 ± 4.1% in this study, with precision (%CV) less
than 15% for all samples. This indicated that the murine organ
calibration curve performed well in the analysis of murine
organ samples.

Murine Organ Concentrations of PhX1 and RMB 041
Murine organ concentrations were determined as described
above for PhX1 with the results presented in the figures [data
presented as concentrations in nmol of compound/mg of tissue
(Figure 2)]. Standard deviations were used to generate error bars
for each time point (n = 3).

Organ AUC was assessed by determining the area under the
concentration time curve to provide values of exposure for each
organ in the murine model over the 24-h testing period which is
displayed in the bar graph and heat map of PhX1 in Figure 3.
Organ concentrations obtained for PhX1 indicate drug
accumulation within the lung (Cmax 22.4 ± 2.35 nmol/mg) and
Frontiers in Pharmacology | www.frontiersin.org
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heart (Cmax 8.83 ± 3.16 nmol/mg) tissue.
RMB041 concentrations were assessed using the methodology

described above for PhX1. This resulted in the concentration
time curve produced below (Figure 4). Standard deviations were
used to generate error bars for each time point (n = 3).

Murine exposures for RMB041 in each organ were assessed
using the area under the concentration time curve in Figure 4
and are presented in the bar graph and heat map below
(Figure 5). Significantly lower concentrations of RMB041 were
seen in all organs, with the lung tissue displaying the highest
concentration (3.2 nmol/mg).

Free Drug Concentrations
It is essential to understand how much free drug is available to
treat a specific microbe at the target site where the disease
May 2020 | Volume 11 | Article 72
FIGURE 2 | Total PhX1 concentrations in murine organs (oral dose, 10 mg/
kg) (n = 3 per time-point; data presented as means ± SD).
FIGURE 3 | PhX1 exposure in each organ (AUC) (n = 3 per time-point; data
presented as means ± SD).
4
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persists. In this study, drug concentrations were adjusted
according to the protein binding experiments conducted for
each tissue type (Table 3). Both PhX1 and RMB041 displayed
unbound fractions between 0.18 and 0.01.

PhX1 concentrations were assessed in each organ and
corrected for using the fraction unbound value for each organ.
This resulted in the concentration time curve produced below
(Figure 6). Standard deviations were used to generate error bars
for each time point (n = 3).
Frontiers in Pharmacology | www.frontiersin.org 5
RMB041 concentrations were assessed in each organ as
indicated above and corrected for using the fraction unbound
value for each organ, resulting in the concentration time curve
produced below (Figure 7). Standard deviations were used to
generate error bars for each time point (n = 3).
DISCUSSION

The decoquinate derivative, RMB041, and the phenoxazine
derivative, PhX1, displayed significantly different concentrations
FIGURE 4 | Total RMB041 concentrations in murine organs (10 mg/kg oral
dose); (n = 3 per time-point; data presented as means ± SD).
FIGURE 5 | Total drug exposure (AUC) in organs after oral administration of
RMB041 (n = 3 per time-point; data presented as means ± SD).
TABLE 3 | PhX1 and RMB 041 bound ratio in specific tissue types.

Tissue type Ratio bound PhX1 Ratio bound RMB041

Blood 0.88 0.82
Liver 0.99 0.91
Lung 0.97 0.93
Heart 0.98 0.97
Brain 0.98 0.98
Kidney 0.97 0.97
Spleen 0.94 0.92
May 2020 |
FIGURE 6 | Free concentration of PhX1 (µM) following correction according
to tissue binding.
FIGURE 7 | Free concentration of RMB041 (µM) following correction
according to tissue binding.
Volume 11 | Article 724
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in each murine organ. Concentrations of PhX1 were significantly
different at the 1- and 6-h time-points with concentrations in the
heart and lungs, decreasing to similar concentrations seen in other
organs at the 24-h time point. Compound exposure in the lungs
and heart was also higher with AUC values of 9669 ± 120.2 min/
nmol/mg and 12450 ± 45.2 min/nmol/mg for lung and heart
tissue, respectively. Significantly lower concentrations were
reported in the murine kidney, spleen, brain, and liver for PhX1.
These results are consistent with findings from murine
experiments using the structurally-related riminophenazine
antibiotic clofazimine (CLZ; Baik et al., 2013). Long-term drug
exposure over a period of 8 weeks resulted in accumulation of CLZ
into the spleen, lungs, and other organs, leading to the formation
of crystal-like drug inclusions (CLDIs). This study focused on a
24-h period of standardized dosing to investigate detectable drug
accumulation, while the study by Baik et al. included intensive
dosing over 3 to 8 weeks and a follow-up washout period (Baik
et al., 2013). Despite these differences similar trends were seen in
accumulation between PhX1 and CLZ in the heart and lung
tissues. Moreover, the brain and kidneys showed no significant
drug accumulation at any stage (Figures 2 and 3). Baik et al.
postulated that accumulation of drug in the spleen following
cessa t ion of drug admini s t ra t ion may be due to
immunomodulated accumulation of CLZ in macrophages (Baik
and Rosania, 2012), a characteristic also observed after PhX1
administration in this study. Both compounds are planar
aromatic molecules and are lipophilic and weakly basic (Wan
et al., 2003). As such, these drugs, with their lysosomal trapping
capacity, tend to accumulate in acidic organelle compartments via
pH-dependent ion trapping mechanisms, potentially explaining
accumulation in specific organ compartments (De Duve
et al., 1974).

RMB041 accumulated to significantly lower levels than PhX1
in all organs, with the greatest concentrations observed in the
lungs, spleen, and heart. Relatively low levels of RMB041 were seen
in the murine liver, kidney, and brain. It must be noted that
RMB041, although achieving lower maximum concentrations in
all organs, displayed similar concentrations to PhX1 after 24 h,
particularly in the lungs. Compounds that maintain
concentrations in tissues for a prolonged period have a greater
chance of clearing an infectious agent, such as Mtb. This is
supported by the long half-life of RMB041 both in vitro and in
vivo, respectively (Tanner et al., 2019b). Alternative explanations
for the extended half-life of RMB041 accompanied by minimal
drug accumulation in the murine organs, includes the
accumulation of compound into adipose tissues (Hartmann
et al., 2016) and organs, which were not assessed in this study.
These results showed that the greatest exposure of RMB041 in
murine organs over 24 h was observed in the lungs, spleen, and
heart. However, these exposures were significantly lower than
those obtained for PhX1.

Data from comparative studies for compounds related to
those in this study are scarce, as only plasma concentrations of
DQ, a quinolone derivative (Figure 1), have been assessed
(Li et al., 2017). A study involving the quinolone antibiotics
Frontiers in Pharmacology | www.frontiersin.org 6
LVX, ciprofloxacin (CIP), and ampicillin, administered at a
significantly higher dose (120 mg/kg) in a Streptococcus
pneumoniae-infected mouse model, showed large maximal
lung concentrations of 5.95, 1.10, and 1.71 µg/g, respectively
(Ishida et al., 1999). This is supported by evidence of the uptake
of fluoroquinolones into human-derived macrophage cells
(Carryn et al., 2002; Michot et al., 2005; Vallet et al., 2018).
The fluoroquinolones, however, differ significantly in their ability
to permeate into cells and tissues, and even small changes in the
structure of the compound could lead to differences in
accumulation, as observed for RMB041.

Administration of higher or multiple doses of either of these
compounds may lead to increased concentrations in the lungs
and, with very little brain or liver exposure, the risk of toxicity is
low. A concern arising from this study was the relatively high
exposure of PhX1 in cardiac tissue. As it is unknown whether
these compounds may cause human ether à-go-go-related gene
(hERG) inhibition, which could interfere with electrical
conductivity in the heart and result in arrhythmic conditions
such as drug-induced QT prolongation. Confirmation of
compound-related hERG toxicity is advisable before increasing
the dose (Raschi et al., 2009).

Although PhX1 seemed to accumulate significantly within the
lungs and heart, the total concentration of both compounds was
significantly below the MIC90 level of 0.196 µM for PhX1 and
1.61 µM for RMB041 (Figures 6 and 7). It is important to
develop an understanding of how the compound may behave at
the target site of pulmonary TB (Tanner et al., 2018). The
estimated organ free fraction concentration values for PhX1
and RMB041 were below the MIC90 values for both
compounds (Figures 6 and 7). This finding is particularly
important given the concentration-dependent nature of PhX1
killing (data not shown), with PhX1 present in the lungs at a
concentration lower than the estimated free lung MIC90 value
possibly indicating diminished efficacy within this lung
environment (Figure 6). The time-dependent nature of
RMB041’s mode of killing, with the free organ concentrations
never above the MIC90 value points to a decreased level of killing
in the lung environment (Figure 7). The MIC90 value for each
compound assessed in this study may also be very different in the
clinical in vivo situation.

The practice of comparing tissue concentrations determined
in healthy animals to MIC values determined in different
experiments has been criticized by Mouton and colleagues,
who have stated that such data sets are not comparable, and
that disease state could significantly alter the values obtained in
these experiments (Mouton et al., 2008). In order to better utilize
these data, the compounds assessed could be compared to other
drugs known to accumulate significantly in healthy animal
tissues. For example, bedaquiline (BDQ), a clinically successful
drug, administered at 25 mg/kg accumulates to significant levels
within healthy murine lung tissue (Cmax, 24 µM) but is also
highly protein bound, leaving 0.18 µM free drug available, a value
that is slightly higher than that for PhX1 and significantly higher
than that for RMB041 (Irwin et al., 2016). Translating these data
May 2020 | Volume 11 | Article 72
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to clinical TB treatment becomes difficult, as changes in disease
state within the same patient influence the protein binding over
time (Grainger-Rousseau et al., 1989). This makes the
interpretation of fraction unbound concentrations significantly
more challenging in isolated use (Smith et al., 2010). However,
comparing the MIC values to the free fraction offers some insight
into the in vivo potency of the compound (Deitchman
et al., 2018).

Testing these compounds in an Mtb-infected murine model
would provide the chance to measure MIC values and drug
concentrations in infected mice. This would provide a clearer
understanding of whether in vivo efficacy and accumulation are
influenced by the introduction of Mtb infection. These
experiments would also allow for the continuous assessment of
plasma protein binding over time in an in vivo situation.
Administration of multiple or higher doses could also be
assessed over a longer period to evaluate drug accumulation in
a more clinically relevant situation, as few drugs are ever
administered once-off and measured for 24 h in clinical practice.
CONCLUSION

The murine organ analysis provided an insightful glimpse into
the exposure of each murine organ to PhX1 and RMB041, the
two compounds that yielded the most promising results in
murine blood PK experiments. PhX1 showed significant
accumulation in the heart and lung tissues, whilst RMB041
accumulated in these tissues to a significantly lesser extent,
although neither compound produced free fractions greater
than its respective MIC90 values. Progression into an infected
murine model coupled with multiple-dosing would allow for a
more clinically relevant estimate of drug concentrations in
each organ.
Frontiers in Pharmacology | www.frontiersin.org 7
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