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Most herbal polysaccharides possess multiple benefits against metabolic disorders, such
as non-alcoholic fatty liver disease (NAFLD) and obesity. However, the underlying
mechanisms are largely unknown. Here, male C57BL/6J mice were fed with chow or
high-fat diet (HFD) with or without Astragalus polysaccharides (APS) supplementation,
and gut microbial profile and metabolite profile were studied by metagenomic sequencing
and untargeted metabolomics, respectively. APS was effective in alleviating HFD-induced
metabolic disorders, with the alteration of gut microbiota composition and function. A total
of 188 species, which mainly from Bacteroidetes, Actinobacteria, Firmicutes, and
Proteobacteria phyla, and 36 metabolites were markedly changed by HFD and revered
by APS. Additionally, the altered glutathione metabolism and purine metabolism pathways
were identified by both metagenomic function analysis and metabolite pathway
enrichment analysis. Furthermore, the gut microbial alteration was associated with the
changes of key intestinal metabolites. We found 31 and 20 species were correlated with
purine metabolism and glutathione metabolism, respectively. Together, our results
showed significant metagenomic and metabolomic changes after HFD feeding and
APS intervention, revealed the potential correlation between gut microbial species and
metabolites, and highlighted mechanisms of herb-derived polysaccharides by modulating
gut microbiome and host metabolism underlying their benefits on metabolic disorders.

Keywords: Astragalus polysaccharides, metagenomic, metabolomics, metabolic disorders, hepatic steatosis
INTRODUCTION

Metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD) and obesity, represent hugely
problems concerning the health worldwide (Jung and Choi, 2014). Significant interest has recently
focused on the effect of gut microbiota in metabolic disorders (Cani, 2019). Gut microbiota is a complex
microbial community with highly interactive microorganisms that maintain a close interplay with its
in.org June 2020 | Volume 11 | Article 8331
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host. Emerging evidence has revealed that gut microbiota plays an
essential role in prevention and treatment of human diseases, such
as obesity and NAFLD (Boulange et al., 2016). Changes in the
diversity and composition of gut microbiota directly affect host
physiology (Bennett et al., 2013; Yoshimoto et al., 2013; Khan et al.,
2016). In addition, the metabolic potential of gut microbiota has
been identified as a contributing factor to health (Dahiya et al.,
2017). Gut dysbiosis and subsequently altered metabolite profile can
lead to many health issues. Although the underlying mechanisms
require further investigation, there is an increasing body of evidence
that the bacterial metabolites, like short chain fatty acids (SCFAs),
bile acids, and tryptophan metabolites, are important modulators of
host physiology (Cani, 2019). Therefore, gut microbiota and its
metabolites have a pivotal role in the maintenance of physiologic
and metabolic homeostasis of the host. Targeting gut microbiota
and its metabolites might be a potential therapy for the treatment
and prevention of metabolic disorders.

Plant polysaccharides are natural macromolecules that are
widely present in various herbs with medicinal properties such as
anti-inflammation, anti-virus, and immune modulation (Mao
et al., 2007; Gu et al., 2015), as well as metabolic benefits (Chang
et al., 2015). Astragalus polysaccharides (APS) are extracted from
Astragalus mongholicus Bunge, a frequently used herbal
medicine with established efficacy in lowering plasma lipids,
improving insulin sensitivity (Zou et al., 2009; Ke et al., 2017),
and ameliorating metabolic risk in metabolically stressed
transgenic mice (Huang et al., 2017). Given the non-absorptive
properties of polysaccharides in the gastrointestinal tract, the
metabolic benefits of polysaccharides are usually associated with
modulation or recovery of gut dysbiosis such as the anti-obesity
effects of the polysaccharides extracted from Ganoderma
lucidum and Hirsutella sinensis (Chang et al., 2015; Wu et al.,
2018). However, the effect of plant polysaccharides on host
metabolism is still largely unknown.

In the present study, we proved the effect of APS in attenuating
metabolic disorders in high-fat diet (HFD)-fed mice. Cecum
metabolomics and bacteria composition was analyzed by liquid
chromatography/mass spectrometry (LC/MS)-based untargeted
metabolomics and metagenomic sequencing, respectively. Our
results showed APS was effective in reversing HFD-induced
changes of gut microbial structure and function as well as gut
metabolites. Additionally, through both metagenomic function
analysis and metabolites pathway enrichment analysis, we filtrated
out two metabolism pathways, purine metabolism pathway and
glutathione metabolism pathway, which might be important for
hepatic steatosis lowering effects of APS. Together, the present
study provided new evidences for the beneficial effect of APS on
regulating metabolic disorders at both metagenomic and
metabolomic levels.
MATERIALS AND METHODS

Preparation of APS Extracts
APS was provided by Ci Yuan Biotechnology Co., Ltd. (Lot#
20140504, Shanxi, China) with 90% purity of polysaccharides
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from Astragalus mongholicus Bunge. Briefly, polysaccharides
were extracted from Astragalus mongholicus Bunge with
distilled boiling water, and the supernatant was condensed and
precipitated with 70% ethanol. Crude polysaccharides extract
experienced deproteinization by sevage method before dialysis,
which was then lyophilized for subsequent monosaccharide
analysis and experiment (Li et al., 2003).

Characterization of Monosaccharide
Composition of APS
The extracted APS was hydrolyzed into monosaccharides with
trifluoroacetic acid, and the hydrolyzed monosaccharides from
APS and monosaccharide standards were acetylated according to
a previous method (Lin et al., 2016). The acetylated samples were
then analyzed by Agi lent Technologies 7890B gas
chromatograph (GC, USA) equipped with 3% OV-225/AW-
DMCS-Chromosorb W column (3 mm × 2.5 m). The heating
program for the GC analysis was as follows: the initial
temperature was 140°C, and increased to 198°C at a rate of 2°
C/min and maintained for 4 min, then the temperature was
increased to 214°C with a temperature gradient of 4°C/min, and
then increased to 217°C at the speed of 1°C/min and kept 4 min.
Finally, the temperature increased to 250°C at the rate of 3°C/
min and held constant for 5 min. The APS used in our current
study was composed of five monosaccharides including
rhamnose (1.6%), arabinose (23.39%), xylose (0.84%), glucose
(70.55%), and galactose (3.61%).

Animal Study
After 1-week accommodation, 15 mice were treated with chow
diet (Con, 16.5% calories from fat, SHOOBREE), HFD (60%
calories from fat, Research Diet, D12492) with or without APS
for 14 weeks, respectively. Since our preliminary data showed 8%
APS supplemented in diet had the most significantly metabolic
protective effect than 2% and 4% APS, the finial concentration of
8% APS was used in this study. The experiments were conducted
under the Guidelines for Animal Experiment of Shanghai
University of Traditional Chinese Medicine and the protocol
was approved by the institutional Animal Ethics Committee. At
the end of the experiment, mice were sacrificed after anesthesia
with 1% pentobarbital sodium solution intraperitoneally. Serum,
cecum contents, and tissue samples were collected, weighted, and
immediately frozen in liquid nitrogen and stored at −80°C for
further analysis.

Histological Evaluation on the Degree of
Hepatic Steatosis
Liver tissues were fixed with 10% neutral formalin for 24 h,
embedded in paraffin and stained with hematoxylin-eosin
staining (H&E) using a standard protocol. The degree of
hepatic steatosis was evaluated according to previous
publication in a blinded way (Peng et al., 2009). The criteria
for scoring: grade 0, no hepatocytes involved; grade 1, 1–25% of
the hepatocytes involved; grade 2, 26–50% of hepatocytes
involved; grade 3, 51–75% of hepatocytes involved; and grade
4, 76–100% of hepatocytes involved.
June 2020 | Volume 11 | Article 833
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Metagenomics
About 100 mg of cecum content were used for bacteria DNA
extraction using a fecal DNA extraction kit. Bacterial DNA
samples were fragmented to an average size of about 300 bp
using Covaris M220 (Gene Company Limited, China) for paired-
end library construction using TruSeqTM DNA Sample Prep Kit
(Illumina, San Diego, CA, USA). Adapters containing the full
complement of sequencing primer hybridization sites were
ligated to the blunt-end of fragments. Paired-end sequencing
was performed on Illumina HiSeq4000 platform (Illumina Inc.,
San Diego, CA, USA) at Majorbio Bio-Pharm Technology Co.,
Ltd. (Shanghai, China) using HiSeq 3000/4000 PE Cluster Kit
and HiSeq 3000/4000 SBS Kit according to the manufacturer's
instructions (www.illumina.com). Sequence data associated with
this project have been deposited in the NCBI Short Read Archive
database (Accession Number: PRJNA615253). Adapter sequence
were stripped from the 3' and 5' end of paired end Illumina reads
using SeqPrep (https://github.com/jstjohn/SeqPrep). Low-
quality reads (length < 50 bp or with a quality value < 20 or
having N bases) were removed by Sickle (https://github.com/
najoshi/sickle). Reads were aligned to the Mus musculus genome
by BWA (http://bio-bwa.sourceforge.net) and any hit associated
with the reads and their mated reads were removed. Data were
assembled using MEGAHIT (https://github.com/voutcn/
megahit) (Li et al., 2015), which makes use of succinct de
Bruijn graphs. Contigs with the length being or over 300 bp
were selected as the final assembling result, and then the contigs
were used for further gene prediction and annotation. Open
reading frames from each assembled contig were predicted using
MetaGene (http://metagene.cb.k.u-tokyo.ac.jp/) (Noguchi et al.,
2006). The predicted open reading frames with length being or
over 100 bp were retrieved and translated into amino acid
sequences using the NCBI translation table (http://www.ncbi.
nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?
chapter=tgencodes#SG1). All predicted genes with a 95%
sequence identity (90% coverage) were clustered using CD-
HIT (http://www.bioinformatics.org/cd-hit/) (Fu et al., 2012),
the longest sequences from each cluster were selected as
representative sequences to construct non-redundant gene
catalog. Reads after quality control were mapped to the
representative sequences with 95% identity using SOAPaligner
(http://soap.genomics.org.cn/) (Li et al., 2008), and gene
abundance in each sample were evaluated. Representative
sequences of non-redundant gene catalog were aligned to
NCBI NR database with e-value cutoff of 1e-5 using BLASTP
(Version 2.2.28+, http://blast.ncbi.nlm.nih.gov/Blast.cgi) for
taxonomic annotations.

Sample Preparation for Metabolomics
Study
For the metabolomics analysis, 10-mg cecum content was added
to 200-µl water and homogenized. The homogenate was added to
800 µl of ACN: MeOH (1:1, v/v), vortexed for 30 s, and sonicated
for 10 min. After overnight incubation at −20°C, samples were
centrifuged at 12,000 g for 15 min at 4°C. The supernatant was
Frontiers in Pharmacology | www.frontiersin.org 3
transferred into a clean dry tube and dried with nitrogen at 30°C,
the residue was reconstituted with 100 µl of ACN: H2O (1:1, v/v),
vortexed for 30 s, sonicated for 5 min in an ice bath, then
centrifuged at 12,000 g for 15 min at 4°C.

HPLC-QTOF/MS Analysis
Chromatographic analysis was performed using a Shimadzu
HPLC system (Nexera XR LC-20AD, Japan) equipped with an
ACQUITY UPLC BEH C18 column (2.1 × 100 mm, 1.8 µm). The
mobile phase A consists of 0.1% formic acid in H2O, mobile
phase B was ACN. The gradient was used as follows: 1% B, 0–1.5
min; 1%~99% B, 1.5–13 min; 99% B, 13–16.5 min; 99%~1% B,
16.5–16.6 min; 1% B, 16.6–20 min. The column temperature was
30°C, flow rate was 0.3 ml/min, and the volume of injection was 2
µl for each run.

The metabolomics profiling analysis was performed on an
SCIEX Triple TOF 5,600+ with information dependent
acquisition (IDA). For the positive mode, the collision energy
(CE) spread were set as 40 and 10 eV, declustering potential (DP)
set at 60 V, the ion spray voltage floating (ISVF) set at 5,500 V,
and the temperature set to 550°C. For the negative mode, the CE
spread were set as −40 and −10 eV, DP set at −60 V, the ion ISVF
set at 4,500 V, and the temperature set at 450°C. The other source
same parameters settings in the two modes were as follows: the
ion source gas1 and gas2 were set at 60 psi with curtain gas was
set at 35 psi, the TOF/MS full scan was operated with the mass
range was 60–1,000 Da and the TOF-MS/MS full scan was
operated with the mass range was 25–1,000 Da, and the
accumulation time was 0.15 s. The mass spectrometer was
automatically calibrated by the calibration delivery system
(CDS) once every six injections.

Metabolomics Data Processing and
Metabolites Identification
The wiff data were imported to the Progenesis QI (Waters,
Milford, MA, USA) for data processing. The converted files
were calculated for generation of alignment, peak picking,
deconvolution, filter data and identifying compounds. For the
identification of potential biomarkers, several online databases,
such as the HMDB (http://www.hmdb.ca/) and LIPIDMAPS
(http://www.lipidmaps.org/) were selected for metabolite
identification based on exact mass measurement (mass error <
10 ppm) obtained from HPLC-QTOF/MS. Other parameter
settings were designed as default for data processing
automatically. A data matrix containing retention times,
accurate masses, and peak intensities was exported into
SIMCA-P 13.0 software (Umetrics, Umeå, Sweden) for
principal component analysis (PCA).

Statistical Analysis
Data are shown as means ± sem unless otherwise noted. Multiple
comparisons were performed by using one-way ANOVA
followed by Tukey's honest significant difference post hoc test
with SPSS software (21.0). p < 0.05 was considered
statistically significant.
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RESULTS

APS Attenuates HFD-Induced Metabolic
Disorders
To explore the effect of APS on improving metabolic disorders, 4-
week-old mice were fed with chow diet, or HFD with or without
APS supplementation for 14 weeks. Administration of HFD
resulted in significant increases of body weight, liver weight, and
hepatic steatosis as revealed by H&E, while APS supplementation
reversed these changes (Figures 1A–D). In addition, APS
significantly reduced serum total cholesterol (TC), alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
fasting blood glucose, and insulin levels, which were increased
by HFD (Figure 1E-I). These results indicated that APS was
effective in attenuating HFD-induced metabolic disorders in mice.

APS Reverses Gut Dysbiosis in HFD-Fed
Mice
Since most plant-derived polysaccharides are non-absorbable, we
hypothesized that the effect of APS was probably associated with
the modulation of gut microbiota. Cecum contents were
collected and used for metagenomics sequencing. An average
of 92.8 ± 1.5 (SEM) million reads per sample were generated.
Shannon index was reduced significantly in the HFD group and
increased by APS supplementation, indicating APS was effective
in increasing microflora diversity (Figure 2A). Bray-Curtis
Frontiers in Pharmacology | www.frontiersin.org 4
PCoA showed clear separation among groups, which was
consistent with the heatmap of Hierarchical clustering (Figures
2B, C). In addition, taxonomic profiling of top 9 most abundance
phylum indicated that HFD obviously increased the relative
abundance of Firmicutes, Deferribacteres, and Synergistetes
phyla, and reduced the relative abundance of Bacteroidetes
phylum, whereas APS reversed above changes (Figure 2D).

In order to find the specific bacterial species which might
mediate the metabolic benefits of APS, we analyzed metagenomics
data at species level. Total 8,323 species were annotated in Con
group, while only 7,572 species were annotated in HFD-fed mice.
Different with the reduced species number found in HFD group,
APS supplement increased the species number to 7,972 (Figure
2E). In addition, a total of 188 species which differentially changed
by HFD and reversed by APS supplement were determined with
the double criteria of both fold change ≥ 2 (or ≤ 0.5) and p < 0.01.
The differential species were mainly from Actinobacteria,
Firmicutes, Proteobacteria, and Bacteroidetes phyla. Among
them, 74 species were reduced in HFD group and reversed by
APS supplement which mostly from Bacteroidetes phylum, while
the other 114 species showed opposite changes which mostly from
Actinobacteria, Firmicutes, and Proteobacteria phyla (Figure 2F).
These data suggested APS played an essential role in regulating gut
microbiota composition. APS supplementation was effective in
reversing HFD induced dysbiosis, which might be associated with
the improved metabolic disorders.
A B C

E F

H I

G

D

FIGURE 1 | APS attenuates hepatic steatosis in HFD-fed mice. Male C57BL/6J mice (4-week-old) were treated with chow-diet (Con) or high-fat diet (HFD) with or
without APS supplementation (8% APS in HFD) for 14 weeks. (A) Body weight. (B) Liver weight. (C) Hepatic steatosis scores. (D) Representative photomicrographs
of liver tissue with H&E staining (magnification, ×200, 50 mm). (E) Serum total cholesterol (TC) level. (F) Serum alanine transaminase (ALT) level. (G) Serum aspartate
aminotransferase (AST) level. (H) Fasting blood glucose level. (I) Fasting blood insulin level. n = 5, **p < 0.01, ***p < 0.001.
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APS Improves Metabolic Function of
Microbiome in HFD-Fed Mice
The changes of gut microbiota structure are always accompanied
with the alternation of gut microbial function. Hence, we further
investigated the functional consequences after APS
supplementation. Bray-Curtis PCoA based on Kyoto
Encyclopedia of Genes and Genomes (KEGG) orthologs level
(KOs) showed clear separation among groups, with APS group
clustered between Con and HFD groups (Figure 3A). At KEGG
level 1 level, the top differential altered pathways were
metabolism, environmental information processing, cellular
processes, and human diseases. Among them, the metabolic
Frontiers in Pharmacology | www.frontiersin.org 5
pathway had the highest proportion (Figure 3B). Then, we
further studied the KEGG level 3 pathway under metabolism.
By LDA Effect Size (LEfSe) Analysis, 27 metabolic pathways were
screened with the criteria of LDA > 2 (Figure 3C). Among them,
six metabolic pathways were increased by HFD and reversed by
APS supplement significantly, including tryptophan metabolism,
methane metabolism, sulfur metabolism, insect hormone
biosynthesis, limonene and pinene degradation, and
nitrotoluene degradation. Meanwhile, eight metabolic pathways
were reduced by HFD and increased by APS supplement,
including taurine and hypotaurine metabolism, acarbose and
validamycin biosynthesis, isoquinoline alkaloid biosynthesis,
A
B C

D E

F

FIGURE 2 | APS reverses gut dysbiosis in HFD-fed mice. Cecum samples of Con, HFD, and APS groups were analyzed with metagenomics. (A) Shannon index.
(B) Bray_curtis based PCoA analysis followed by Permutational Multivariate Analysis Of Variance (PERMANOVA, R2: 0.695, p-value: 0.005, p.adjust: 0.005).
(C) Bray_curtis based distance matrix. (D) Multigroup difference analysis of the top 9 abundant phyla. (E) Venn diagram illustrating the overlap of species in intestinal
microbiota among the samples and number of species in three groups. (F) Co-occurrence network deduced from 188 differential species significant changed in HFD
group compared to Con group and restored in APS group. Red edges, Spearman's rank correlation coefficient > 0.8, p < 0.01; blue edges, Spearman's rank
correlation coefficient < −0.8, p < 0.01. n = 3 per group. **p < 0.01.
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streptomycin biosynthesis, tropane, piperidine and pyridine
alkaloid biosynthesis, nicotinate and nicotinamide metabolism,
polyketide sugar unit biosynthesis, and zeatin biosynthesis
(Figure 3C). In addition, glutathione metabolism was increased
by HFD and tended to be reduced by APS (p = 0.07), while purine
metabolism was significant reduced by HFD and tended to be
increased by APS (p = 0.07). Altogether, the metabolic function of
bacteria that changed by HFD could be partially reversed by
APS supplementation.

APS Reverses Metabolomic Changes in
HFD-Fed Mice
To elucidate the metabolic character of APS, the LC/MS-based
untargeted metabolic profiling in positive and negative mode was
performed on fecal samples. The unsupervised PCA, which was
performed to visualize the general differences among samples,
showed clear separation among groups in both positive and
negative modes (Figures 4A, B). With the criteria of either
VIP> 1 (multivariate statistical analysis) and p < 0.05 (univariate
statistics), 36 metabolites were significantly altered by HFD and
reversed by APS supplementation (Figure 4C). We next carried
Frontiers in Pharmacology | www.frontiersin.org 6
out the metabolic pathway analysis on the 36 differential
metabolites. The top 5 significant altered pathways, which
covered nine differential metabolites including deoxyguanosine,
guanosine, uracil, inosine, pyroglutamic acid, glutamic acid,
maltose, glucose, and pantetheine, were starch and sucrose
metabolism, neomycin, kanamycin, and gentamicin
biosynthesis, pantothenate and CoA biosynthesis, glutathione
metabolism, and purine metabolism (Figure 4D). It is interesting
to note that the glutathione metabolism and purine metabolism
pathways were also identified based on altered bacterial function.
These findings suggested that APS was effective in reversing
HFD-induced dysregulated metabolism, which is associated with
its effect on regulating gut microbiota composition.

Correlation Between Gut Microbial
Species and Differential Metabolites
Since two important metabolic pathways, glutathione metabolism
and purine metabolism, were found both in metagenomic
function analysis and metabolites pathway enrichment analysis,
we investigated the correlation of 188 differential bacterial species
with five differential metabolites enriched in these two pathways
A B

C

FIGURE 3 | APS regulates gut microbial function in HFD-fed mice. (A) Bray_curtis based PCoA analysis in KEGG orthologys (KOs) level followed by Permutational
Multivariate Analysis Of Variance (PERMANOVA, R2: 0.745, p-value: 0.002, p.adjust: 0.002). (B) Multigroup difference analysis in KEGG pathway at level 1. *p < 0.05,
**p < 0.01. (C) LDA Effect Size (LEfSe) Analysis of gut microbial function at level 3 of metabolism was profiled among three groups. Heatmap of the relative
abundances of the metabolic pathways with the criteria of LDA > 2. The black dots mean significant difference (p < 0.05) between HFD and Con groups or between
HFD and APS groups.
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by spearman's correlation analysis. The heatmap revealed 49
species were correlated with four metabolites (Figure 5). The
correlation analysis showed that the differential metabolites from
glutathione metabolism, including pyroglutamic acid and
glutamic acid, showed negative correlation with 14 and 8
differential bacterial species, respectively, with Streptococcus_equi
and Bizionia_argentinensis negatively correlated with both
metabolites. In addition, guanosine and inosine, which are from
purine metabolism pathway, were positively correlated with 17
and 5 differential bacterial species respectively, and showed
negative correlation with seven and two species respectively.
Interestingly, deoxyguanosine from purine pathway was not
correlated with any species. These results suggested certain
Frontiers in Pharmacology | www.frontiersin.org 7
bacteria that were shifted by APS were correlated with
metabolites in glutathione metabolism and purine metabolism,
indicating the important roles of these bacteria in APS-associated
beneficial effects.
DISCUSSION

The beneficial effects of herbal polysaccharides on metabolic
disorders have been shown to closely related to the alternation of
gut microbiota composition and function as well as metabolites.
In our current study, we performed metagenomic sequencing
A B

C

D

FIGURE 4 | APS changes fecal metabolome in HFD-fed mice. The LC/MS-based untargeted metabolic profiling in positive and negative mode was performed on
fecal samples (n = 5). The SIMCA positive-derived (A) and negative-derived (B) PCA among the Con, HFD, and APS groups. (C) Heatmap of differential metabolites
identified in cecum samples between Con vs HFD, and HFD vs APS groups respectively with the double criteria of both VIP > 1 and p < 0.05. Each column
represents an individual sample. (D) Bubble diagram of metabolic pathways enrichment based on the differential metabolites among three groups. One bubble
represents one metabolic pathway. Top 5 pathways were listed on the right.
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and untargeted metabolomics to uncover the regulatory
mechanism of APS on host health. The metagenomic and
metabolic profiling revealed that APS partially reversed HFD
induced changes of bacterial structure and function as well as
metabolism. Purine metabolism pathway and glutathione
metabolism pathway might play important roles on the
improvement of metabolic disorders by APS.

The gut microbiota composition has been shown to closely
link with host health. Our data showed HFD increased the
abundance of Firmicutes and decreased abundance of
Bacteroidetes, while APS was effective in reversing these
changes. A large number of clinical studies show that fecal
microbiota from patients with non-alcoholic fatty liver and
cirrhotic contained an increased abundance of Firmicutes and
a decreased abundance of Bacteroidetes (Wei et al., 2016;
Sookoian et al., 2020). Increased Firmicutes can produce more
lipopolysaccharide and deoxycholic acid, which pass into the
liver through hepatic portal vein, leading to inflammation in the
Frontiers in Pharmacology | www.frontiersin.org 8
liver (Yoshimoto et al., 2013; Bourzac, 2014). Bacteroidetes, that
mostly inhabits the distal gut, participates in the fermentation of
indigestible polysaccharides, such as dietary fiber includes
cellulose, hemicellulose, b-glucan, to produce SCFAs (Salyers
et al., 1977; Koropatkin et al., 2012). SCFAs can directly activate
G protein-coupled-receptors (GPCRs), inhibit histone
deacetylases, and serve as energy substrates, thus regulate
various physiological processes and may contribute to health
(Henao-Mejia et al., 2012; Bourzac, 2014). Interestingly, in our
study, APS significantly reduced the abundance of
Deferribacteres. Deferribacteres is a kind of bacteria that obtain
energy through obligate or facultative anaerobic metabolism.
Walker A et al., unraveled the nature and specificity of metabolic
profiles related to gut ecology in obesity through combinatory
approach using metabolomics and gut microbiome analysis, and
found significant differences between the microbiome of the
C57BL/6J mice (C57J, without obesity susceptibility) and the
C57BL/6N mice (C57N, with obesity susceptibility) on phylum
FIGURE 5 | Spearman correlations between differential metabolites and differential bacterial species. Positive correlations indicated by red cubes and negative
correlations indicated by blue cubes. A Spearman's correlation coefficient less than −0.7 or more than 0.7 with p < 0.01 was selected. The selected species were
shown with its phylum and genus information.
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level of Deferribacteres, which propose an essential role of the
microbiome in obesity susceptibility (Walker et al., 2014).

Polysaccharides can be used as carbon source for the growth
of gut microbiota, which partially or completely fermented in the
large intestine (El Kaoutari et al., 2013). Recent studies have
noticed that polysaccharides intervention might be an efficient
method to improve glycometabolism-related diseases by
modulating specific bacteria associated with glycometabolism
disorder (Jackson et al., 2018; Sanna et al., 2019). The
polysaccharides from Ophiopogon japonicus (Thunb.) Ker
Gawl. significantly improved the gut dysbiosis in obese mice,
with the increase of the number of Lactobacillus (Shi et al., 2015).
The intake of Ganoderma lucidum polysaccharides alleviated
obesity on mice, with reduced Firmicutes to Bacteroidetes ratio
in the intestinal tract (Chang et al., 2017), which is consistent
with our finding.

The gut microbiota exerts an enormous impact on the health
status of the host via modulation of its metabolic functions. In
the present study, we found six bacterial pathways were increased
and eight bacterial pathways were reduced by HFD based on
metagenomic sequencing, and APS could reverse thus changes.
For example, tryptophan metabolism and methane metabolism
were significantly enriched by HFD and reversed by APS
supplementation. Tryptophan metabolism has a central role in
physiology and physiopathology. Disorder of tryptophan
metabolism has been linked to irritable bowel syndrome,
metabolic syndrome, obesity, infectious diseases, and
neuropsychiatric disorders (Agus et al., 2018; Platten et al.,
2019). In addition, methane metabolism is associated with
obesity. Several studies suggested that methane-produced
bacteria were significantly negatively associated with the
percentage of visceral fat (Visconti et al., 2019). Moreover,
nicotinate and nicotinamide metabolism pathway were reduced
by HFD intake and increased by APS. In obese human subjects,
low nicotinate intake is associated with reduced a-diversity and
Bacteroidetes abundance in the microbiome (Fangmann et al.,
2018). In humans in vivo, gut-targeted delayed-release nicotinate
significantly increases Bacteroidetes, with an improvement of
biomarkers for systemic insulin sensitivity and metabolic
inflammation (Fangmann et al., 2018). Our current study
suggested that differential shifted bacterial pathways that
induced by HFD and reversed by APS can explain the
beneficial effect of APS on improving metabolic disorders to a
certain extent.

Gut metabolites, which are jointly generated by host and gut
microbiota, play essential roles in maintaining host health. In
order to find out the differential metabolites that involved in the
beneficial effect of APS, we analyzed metabolite profile and
metabolic pathway changes using cecum samples. The starch
and sucrose metabolism pathway, which contains two differential
metabolites glucose and maltose, showed the highest fold
enrichment. A number of studies have shown that long-term
HFD feeding result in dysregulated glucose homeostasis and
insulin resistance (Luck et al., 2019), and our results confirmed
that APS could normalize the fasting blood glucose and insulin
levels in HFD-fed mice. In addition, purine metabolism and
Frontiers in Pharmacology | www.frontiersin.org 9
glutathione metabolism were reduced and increased by HFD,
respectively, and tended to be reversed by ASP supplementation
in metagenomic function analysis. Meanwhile, purine
metabolism and glutathione metabolism were also significantly
changed based on metabolites pathway enrichment analysis.
Three differentially changed metabolites deoxyguanosine,
guanosine, and inosine are from the purine metabolism
pathway. The dysfunction of purine metabolism has drastic
physiological and pathological consequences (Daignan-Fornier
and Pinson, 2019). Additionally, purine metabolic pathway is
involved in various inflammatory processes (Crittenden et al.,
2018), and its end product, uric acid, is associated with a series of
metabolic disorders, including insulin resistance, obesity,
NAFLD, and chronic kidney disease (Ndrepepa, 2018).
Moreover, we noticed that different species were correlated
with these three metabolites with no overlap, suggesting that
these differential species might involve in different stages of
purine metabolism pathway. Two differential metabolites,
pyroglutamic acid and glutamic acid, which were changed by
HFD and reversed by APS, are included in glutathione
metabolism pathway. Glutathione plays critical roles in
protecting cells from oxidative damage and the toxicity of
xenobiotic electrophiles and maintaining redox homeostasis
(Wu et al., 2004). Glutamic acid and pyroglutamic acid are
intermediates in the glutathione metabolism. Elevated glutamic
acid and pyroglutamic acid levels are involved in impaired
glutathione metabolism (Emmett, 2014; Liu et al., 2014). Our
data suggested that APS reduced these two metabolites, which
were increased by HFD intake, indicating the protective effect of
APS on normalizing glutathione metabolism. In addition, we
also found 20 differential species, including Streptococcus_equi
and Bizionia_argentinensis, were negatively correlated with
glutamic acid and pyroglutamic acid, suggesting these species
might participate in the effects of APS on altering
glutathione metabolism.

Altogether, our current study highlights that APS has
beneficial effects on reversing HFD-induced metabolic
disorders by regulating intestinal metabolism as well as gut
microbial structure and function. The gut microbial alteration
of APS mice is correlated with the changes of metabolites in the
cecum. Additionally, purine metabolism and glutathione
metabolism were found both in metagenomic function analysis
and metabolites pathway enrichment analysis, suggesting the
importance of these two pathways in APS-associated
improvement of metabolic disorders. In conclusion, our
current study provides novel evidence of the underlying
mechanisms of APS in treating metabolic disorders at both gut
microbiota and metabolism levels.
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