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During the resolution of acute inflammation, macrophages undergo reprogramming from
pro-inflammatory, to anti-inflammatory/reparative, and eventually to pro-resolving
macrophages. Galectin-1 (Gal-1) is a bona fide pro-resolving lectin while interferon b
(IFN-b) was recently shown to facilitate macrophage reprogramming and resolution of
inflammation. In this study, we found Gal-1null mice exhibit a hyperinflammatory phenotype
during the resolution of zymosan A-induced peritonitis but not during the early
inflammatory response. This phenotype was characterized by reduced macrophage
numbers, increased secretion of pro-inflammatory cytokines, such as interleukin-12 (IL-
12), and reduced secretion of anti-inflammatory cytokines, such as interleukin-10 (IL-10).
In addition, we found a delayed expression of the pro-resolving enzyme 12/15-
lipoxygenase in macrophages and heightened levels of the inflammatory protease
proteinase-3 (PR3) in peritoneal fluids from Gal-1null mice. Moreover, we observed sex-
dependent differences in the inflammatory profile of Gal-1null mice. Notably, we found that
IFN-b levels were reduced in resolution-phase exudates from Gal-1null mice.
Administration of IFN-b in vivo or ex vivo treatment was able to rescue, at least in part,
the hyperinflammatory profile of Gal-1null mice. In particular, IFN-b recovered a subset of
F4/80+GR-1+ macrophages, restored IL-12 and IL-10 secretion from macrophages to
WT values and diminished abnormal peritoneal PR3 levels in Gal-1null mice. In conclusion,
our results revealed a new Gal-1-IFN-b axis that facilitates the resolution of inflammation
and might restrain uncontrolled inflammatory disorders.
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INTRODUCTION

Inflammation is a beneficial host response to foreign challenges or tissue injury that, when resolved
in an effective and timely manner, leads to the restoration of tissue homeostasis (Filep, 2013;
Sugimoto et al., 2019). Nonetheless, prolonged inflammation ceases to be beneficial, and in turn,
contributes to the pathogenesis of various chronic diseases (Nathan and Ding, 2010; Spite et al.,
2014). Manifestations of localized chronic inflammation include impaired wound healing, tissue
in.org June 2020 | Volume 11 | Article 9011
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fibrosis, and organ dysfunction (Ueha et al., 2012; Ariel and
Timor, 2013; Gieseck et al., 2018; Krzyszczyk et al., 2018).

The active resolution of a localized acute inflammation
culminates in the elimination of short-lived neutrophils by
resolution-phase macrophages and the return of leukocyte cell
populations to homeostatic numbers (Ariel and Serhan, 2012;
Ariel and Timor, 2013; Greenlee-Wacker, 2016; Dalli and
Serhan, 2017; Elliott et al., 2017). One of the key mechanisms
underlying the tightly orchestrated resolution of inflammation is
macrophage reprogramming. Macrophages undergo conversion
from type I (M1-like, pro-inflammatory) to type II (M2c-like,
anti-inflammatory/deactivated) macrophages (Ariel and Serhan,
2012; Greenlee-Wacker, 2016; Elliott et al., 2017; Atri et al.,
2018). The clearance of apoptotic neutrophils leads to the
reprogramming of resolution-phase macrophages to a distinct
satiated/pro-resolving phenotype that is highlighted by the loss
of its phagocytic properties and the departure of the injury site
(Ariel and Serhan, 2012; Greenlee-Wacker, 2016; Elliott et al.,
2017). Type I macrophages secrete pro-inflammatory cytokines,
such as tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6),
and IL-12, whereas type II macrophages secrete anti-
inflammatory cytokines, such as transforming growth factor-b
(TGF-b) and in some cases IL-10 (Ariel and Serhan, 2012;
Greenlee-Wacker, 2016; Elliott et al., 2017; Atri et al., 2018).
As compared with type II macrophages, pro-resolving
macrophages show reduced expression of surface CD11b,
iNOS, and arginase-1 (Schif-Zuck et al., 2011). These
macrophages also express an enzyme that excels in producing
pro-resolving lipid mediators (SPM), namely 12/15-lipoxygenase
(12/15-LO) (Schif-Zuck et al., 2011; Ariel and Serhan, 2012; Ariel
and Timor, 2013; Headland and Norling, 2015; Dalli and Serhan,
2017). Notably, eosinophils are also key cellular effectors in the
resolution of inflammation (Yamada et al., 2011; Isobe
et al., 2012).

Galectin-1 (Gal-1), which belongs to a family of b-
galactoside-binding lectins, has been described as a modulator
of a wide range of immune responses, including macrophage-
mediated inflammation (Arthur et al., 2015; Sundblad et al.,
2017). The immunomodulatory properties of intracellular or
extracellular Gal-1 are ascribed to its ability to inhibit immune
cell adhesion, and alter cell signaling and cytokine production
under inflammatory conditions (Arthur et al., 2015; Sundblad
et al., 2017). We previously reported that Gal-1 treatment in vivo
and in vitro facilitates reprogramming towards CD11blow12/15-
LO+ pro-resolving macrophages (Rostoker et al., 2013). Recently,
we uncovered another macrophage-derived resolution-phase
effector cytokine – IFN-b (Kumaran Satyanarayanan et al.,
2019). IFN-b belongs to the family of type I interferons, which
confer cellular resistance to viral infections. However, it also
conveys other biological functions in macrophages and T cells,
including immune suppression and reprogramming in
autoimmune diseases and bacterial infections, respectively
(Severa et al., 2015; Snell et al., 2017).

Activated neutrophils secrete a specific set of serine proteases
that contribute to their ability to migrate through the basement
membrane, to degrade the extracellular matrix, and to digest
Frontiers in Pharmacology | www.frontiersin.org 2
pathogens (Kettritz, 2016). One of these serine proteases is
proteinase-3 (PR3), which can be either secreted or expressed
at the neutrophil cell surface (Kettritz, 2016; Thieblemont et al.,
2018). PR3 interferes with macrophage phenotype conversion,
thereby inhibiting resolution of inflammation (Millet et al., 2015;
Thieblemont et al., 2018).

Here, we examinedwhetherGal-1nullmice that undergo zymosan
A-induced peritonitis would exhibit a hyperinflammatory
phenotype, including increased PR3 levels. Indeed, we found that
Gal-1null mice displayed reduced macrophage numbers with
defective reprogramming and CD11b expression, as well as
increased PR3 levels. Moreover, our results showed that IFN-b was
upregulated by Gal-1 and acted as its downstream effector that
rescued Gal-1 deficiency.
MATERIALS AND METHODS

Antibodies and Recombinant Proteins
The indicated reagents were obtained as follows: ELISA kits for
mouse TNF-a, IL-10, IL-6, and IL-12 (Biolegend), and for mouse
CCL2 and CCL5 (R&D systems); FITC-conjugated anti-mouse
Gr-1, FITC-conjugated anti-mouse Ly6G, PE-conjugated anti-
mouse F4/80, PerCP-conjugated anti-mouse CD11b, PB-
conjugated anti-mouse Ly6C and PE/Cy7-conjugated anti-
mouse TLR4 (Biolegend); APC-conjugated anti-mouse Tim4
(Miltenyi); Alx647-conjugated anti-mouse IgG, goat anti-
mouse arginase-1, and rabbit anti-IFN-b antibodies (Abcam);
rabbit anti-mouse 12/15-lipoxygenase antibody (Cayman
Chemical); goat anti-mouse CD11b, goat anti-mouse b-actin
and goat anti-PR3 antibodies (Santa Cruz Biotechnology); anti-
p-STAT-1 and anti-p-STAT3 (Cell Signalling); anti-goat and
anti-rabbit horseradish peroxidase-conjugated antibodies
(Jackson ImmunResearch laboratories). Recombinant Gal-1
was generously provided by the laboratories of GR and Dr.
Lichtenstein (Universidad de Buenos Aires, Buenos Aires,
Argentina; Ben-Gurion University, Be'er Sheva, Israel);
monoclonal anti-Gal-1 IgG, isotype IgG and polyclonal rabbit
anti-Gal-1 antibody were obtained from the laboratory of GR,
and used as described (Toscano et al., 2007; Stowell et al., 2008;
Rostoker et al., 2013).

Mice
Male and female C57BL/6 wild-type (WT) mice (7–8 weeks old)
were purchased from Harlan Biotech. Gal-1null (lgals-/-) mice on
a C57BL/6 background were obtained from Dr. Goldenberg, The
Hebrew University of Jerusalem. Mice were bred and maintained
under special pathogen-free conditions in the animal facility at
the Faculty of Biology in the Technion (Israel Institute of
Technology, Haifa, authorization no. IL-009-01-2010).

Zymosan A-Induced Peritonitis
Mice were injected intraperitoneally (i.p.) with freshly-prepared
zymosan A (1 mg/ml, 1 mg/25 g body weight, Sigma-Aldrich) in
sterile PBS, or were kept unchallenged. In some experiments,
recombinant IFN-b (250 ng in 1 ml of PBS, Biolegend) was
June 2020 | Volume 11 | Article 901
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injected i.p. 24 to 48 h post zymosan A injection. At 24, 48, 66, or
96 h post-zymosan A injection, mice were euthanized with CO2,
and peritoneal exudates were collected by lavage with 5 ml of
sterile saline. Exudate cells and supernatants were obtained by
centrifugation for further analysis and experimentation.

Isolation of Murine Peritoneal
Macrophages
Cells were recovered from peritoneal exudates at the indicated
time points following zymosan A challenge, Gal-1 or IFN-b
treatment. Macrophages were labeled with PE-conjugated rat
anti-F4/80 antibody and isolated using EasySep-PE selection
magnetic beads according to the manufacturer's instructions
(Stem-Cell Technologies).

Cell Culture
Murine peritoneal macrophages were obtained from mice at
indicated time points post peritonitis. The macrophages were
cultured (1 × 106 cells/0.5 ml) in RPMI 1640 (GIBCO),
supplemented with 10% fetal bovine serum (FBS), 2 µM
glutamine, 100 units/ml penicillin, and 100 µg/ml streptomycin.
In some experiments, the cells were treated with recombinant Gal-1
(4–8 µg/ml), IFN-b (25 ng/ml), LPS (1 µg/ml, Sigma-Aldrich), or
vehicle controls. Following incubation of 30 min for p-STAT1/3
analysis or 16 to 24 h for other analyses, the cells and the cell-free
supernatants were collected. The cells were evaluated by Western
blotting or flow cytometry, and cytokine/chemokine levels (TNF-a,
IL-1b, IL-12, IL-6, IL-10, CCL2, or CCL5) in the supernatants were
determined by standard ELISA according to the manufacturer's
instructions (R&D systems, BioLegend).

Flow Cytometry
For the determination of leukocyte subtypes and expression of
surface markers, exudate cells were first blocked with anti-CD16
and anti-CD32 antibodies to prevent non-specific staining. The
cells were stained with FITC-conjugated anti-mouse Gr-1 (0.5
µg/106 cells), FITC-conjugated anti-mouse Ly6G (0.2 mg/106

cells), PE-conjugated anti-mouse F4/80 (0.2 µg/106 cells),
PerCP-conjugated anti-mouse CD11b (0.2 µg/106 cells), PB-
conjugated anti-mouse Ly6C (0.2 mg/106 cells), PE/Cy7-
conjugated anti-mouse TLR-4 (0.5 mg/106 cells), and
APC-conjugated anti-mouse Tim4, CD206, or CD163 (0.3–0.5
mg/106 cells). For intracellular staining of Gal-1, cells were
blocked with anti-CD16/CD32 Ab (Biolegend) first, and then
stained for surface markers and fixated with 4% PFA in 5%
sucrose/PBS for 15 min at RT, followed by permeabilization with
0.01% tween-20 in 1% BSA in PBS for 20 min on ice. Then, the
cells were incubated with mouse anti-Gal-1 (0.5 mg/106 cells) or
without primary antibody and then with Alx647 or Alx488-anti-
mouse IgG (isotype control) for 20 min at RT, washed with 1%
BSA in PBS. Stained cells were analyzed using FACSCalibur or
FACSCantoII (BD Biosciences). Data analysis was performed
using the FlowJo software.

Western Blot
Cells were collected, centrifuged, washed with PBS, and lysed in
RIPA buffer containing Protease Inhibitors Cocktail (PIC,
Frontiers in Pharmacology | www.frontiersin.org 3
Sigma-Aldrich) and phosphatase inhibitor (phosStop, Roche),
diluted according to the manufacturer's instructions. Proteins
from cell-free exudates were also recovered. Alternatively,
peritoneal fluids were centrifuged, and cell-free supernatants
were recovered. Samples were run by SDS-PAGE (10%) and
transferred to PVDF membranes. The membranes were
immunoblotted with primary antibodies against the indicated
antigens (see above), followed by immunoblotting with matching
secondary antibodies. The membranes were developed with EZ-
ECL detection kit (Biological Industries) and analyzed using
Luminescent Image Analyzer LAS-4000 (Fujifilm Corporation).
Densitometry was performed using TotalLab TL100 (nonlinear
dynamics) image analysis software.

Zymography
The caseinolytic activity of peritoneal fluids was analyzed by
zymography. Casein from Bovine Milk (0.5 mg/mL, Sigma-
Aldrich) was added to 11% SDS polyacrylamide gels, and equal
amounts of peritoneal fluids (20 ml per well) was run under non-
reducing conditions at 4°C. Gels were washed with PBS containing
2.5% Triton X-100, followed by incubation overnight at 37°C in a
zymogram development buffer (Bio-Rad). Then, gels were washed,
stained with Coomassie blue, and washed again with a de-staining
solution. The gels were analyzed using Luminescent Image Analyzer
LAS-4000 (Fujifilm Corporation). The caseinolytic activity was
visualized as clear bands against a blue background, with
detection sometimes obscured by overlapping of non-reactive
proteins. Densitometry was performed using TotalLab TL100
(nonlinear dynamics) image analysis software.

Statistical Analysis
Experiments were performed at least 2 times, with 4 replicates of
each data point. Results were analyzed by the two-tailed
Student's t-test and Mann–Whitney U test for comparison of
two groups, and one-way Kruskal–Wallis ANOVA test for
comparison of more than two groups. Data are presented as
mean ± SEM. Results were considered statistically significant
when p < 0.05 (*), 0.01 (**), 0.001 (***).
RESULTS

Gal-1 Is Expressed Primarily by Mature
Macrophages During the Resolution of
Inflammation
Gal-1 administration in mice facilitates the resolution of acute
inflammation (Rostoker et al., 2013; Sundblad et al., 2017). Using
a spontaneously resolving model of zymosan A-induced
peritonitis (Bannenberg et al., 2005; Cash et al., 2009), we
detected upregulation of Gal-1 expression in peritoneal fluids
and in isolated F4/80+ monocytes/macrophages, which peaked at
48 h post-peritonitis initiation (PPI), and declined afterwards
(Figures 1A–D and Supplementary Material, Figures S1A, B).
To identify the exact myeloid population that expresses Gal-1 we
performed intracellular staining of Gal-1 in peritoneal cells that
was analyzed using flow cytometry (see Supplementary
June 2020 | Volume 11 | Article 901
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Material, Figure S1C for gating strategy). Our results showed a
relative increase in the percentage and number of Gal-1+ cells at 12
and 48 h PPI (Figures 1E, F), compared to unchallenged mice.
Notably, the expression of Gal-1 reached maximal levels in F4/
80+Ly6C- mature macrophages at 48 h, whereas their Ly6ChiF4/80lo

precursors (Butenko et al., 2020) showed diminished expression of
intracellular Gal-1 upon progression from the inflammatory (12 h)
to the resolving (48 h) phases (Figure 1G). As expected from our
Western blot results, both Tim4+ and Tim4- peritoneal resident
macrophages expressed the lowest levels of Gal-1 (Figure 1H).
Ly6G+ neutrophils and Ly6CmedF4/80- cells (composed mostly of
neutrophils (Butenko et al., 2020) showed very similar levels of
expression of Gal-1 that did not change upon transition to the
resolution phase (Figure 1G). The coordinated increase in Gal-1
levels in peritoneal fluids and F4/80+ macrophages is in accord with
previous reports (Rostoker et al., 2013; Law et al., 2020), and
suggests that macrophages are the major cell population
responsible for Gal-1 secretion and peritoneal levels during the
resolution of inflammation. The temporal changes in Gal-1
expression and release underscore the involvement of Gal-1 in the
resolution of inflammation, which normally resolves within 48 to 96
h in the medium dose zymosan-induced peritonitis (Bannenberg
et al., 2005; Cash et al., 2009; Schif-Zuck et al., 2011).

Gal-1 Increases the Numbers of Peritoneal
Neutrophils, Eosinophils, and
Macrophages During the Resolution of
Inflammation
During the resolution phase of inflammation, there is a gradual
increase in macrophage and eosinophil numbers, concomitantly
with a decrease in the neutrophil numbers (Bratton and Henson,
2011; Ariel and Serhan, 2012; Ariel and Timor, 2013; Greenlee-
Wacker, 2016). Moreover, Gal-1 is able to block neutrophil
infiltration to inflamed sites during the onset phase (Rabinovich
et al., 2000) and promote monocyte/macrophages migration (Malik
et al., 2009; Gil et al., 2010). Curiously, some data indicates under
non-inflammatory conditions Gal-1 can attract neutrophils to the
peritoneum (Auvynet et al., 2013). Thus, we hypothesized that Gal-
1 deficiency in mice would lead to altered leukocyte populations
under inflammatory conditions. To test that hypothesis, we
examined peritonitis in male Gal-1null mice in comparison with
their WT counterparts. In accordance with the peak in Gal-1
expression (Figures 1A–D), we detected a trend of decrease in
total cell number in Gal-1null males (Figure 2A). Flow cytometry of
the isolated peritoneal cells revealed lower numbers of neutrophils,
eosinophils, and macrophages in Gal-1null males in comparison to
their WT counterparts, together with reduced expression of the
macrophage marker F4/80 (Figures 2B–E). To determine whether
Gal-1 deficiency affects leukocyte numbers during the resolution
phase exclusively, we treated WT male mice with neutralizing anti-
Gal-1 antibodies (Toscano et al., 2007) or their isotype controls.
Antibodies were administered 24 h before recovery of unchallanged
peritoneal cells, or 12 or 24 h prior to recovery of cells at 12 or 48 h
PPI, respectively. Our results (Figures 2F–O) determined Gal-1
neutralization did not affect neutrophil, monocyte or macrophage
frequency or numbers at 12 h. However, Gal-1 neutralization did
Frontiers in Pharmacology | www.frontiersin.org 4
reduce neutrophil numbers (the same cell population was detected
by two different staining protocols as either Ly6G+F4/80- or
Ly6CmedF4/80- cells) at 48 h PPI significantly. Curiously, the
neutralization of Gal-1 in unchallenged mice resulted in a
significant reduction in the frequency and numbers of F4/80+

macrophages (Figures 2L, M) due to a selective reduction in
Tim4+ yolk sac-originated macrophages (Figures 2N, O), but did
not affect the frequency or numbers of Ly6ChiF4/80lo monocytes or
Ly6C-F4/80+ macrophages [that are dominated by CD11bhi/
CD206hi/CD163hi M2-like cells (Supplementary Material, Figure
S1D)], in comparison to isotype control treatment. Of
Interest, intracellular Gal-1 expression in monocyte-derived
macrophages, but not neutrophils, monocytes or resident
macrophages, was reduced by neutralization of extracellular Gal-1
at either 12 or 48 h (Supplementary Material, Figures S2A–E).
These findings suggest Gal-1 promotes its own expression by
macrophages, and that the residual expression of Gal-1 in
macrophages is sufficient to maintain their numbers during the
resolution phase. Thus, macrophage-expressed Gal-1 seems to play
an essential role in controlling leukocyte numbers during the
resolution of inflammation.

The resolution of inflammation shows well-established sex-
dependent differences in its kinetics (Wang et al., 2012).
Therefore, we examined the impact of Gal-1 deficiency on
leukocyte numbers at 48 h PPI in females. In contrast to our
observations in males, Gal-1null females did not show a decrease
in leukocyte populations, except for a reduction in eosinophil
numbers (Supplementary Material, Figures S2F–J). Thus, Gal-
1 seems to exert a sex-specific regulation of leukocyte numbers
during the resolution of inflammation.

Gal-1 Shifts the Cytokine Production of
Resolution-Phase Macrophages to
Promote Their Reprogramming
The uptake of apoptotic cells by resolution phase macrophages
results in a shift from pro-inflammatory to anti-inflammatory
and pro-resolving cytokine secretion upon exposure to
bacterial moieties (Voll et al., 1997; Fadok et al., 1998; Schif-
Zuck et al., 2011; Kumaran Satyanarayanan et al., 2019).
Previous studies indicate Gal-1 has immune-modulatory
properties on macrophage cytokine secretion (Rostoker et al.,
2013; Sundblad et al., 2017). Hence, we reasoned that Gal-1
deficiency in mice would lead to a delayed resolution of
inflammation, culminating in hampered reprogramming of
resolution-phase macrophages. To determine whether this is
indeed the case, we isolated macrophages from zymosan A-
challenged WT and Gal-1null mice, and stimulated them with
LPS ex vivo to determine their cytokine secretion. Our results
indicate that non-stimulated macrophages secreted low levels
of cytokines that mostly did not differ between the macrophage
genotypes (Figures 3A–F and Supplementary Material,
Figures S3A–F). Yet, we detected a reduced IL-10 secretion
from non-stimulated male Gal-1null macrophages (Figure 3D)
in comparison to their WT counterparts. LPS stimulation, as a
mimicry for bacterial exposure, led to a significant increase in
cytokine secretion regardless of the macrophage genotype
June 2020 | Volume 11 | Article 901
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(Figures 3A–F and Supplementary Material, Figures S3A–F).
In response to LPS stimulation, however, significant
differences between Gal-1nul l macrophages and WT
macrophages were observed. LPS-stimulated macrophages
from Gal-1nul l males secreted higher levels of pro-
inflammatory cytokines, such as TNF-a, IL-12, and IL-6,
alongside lower levels of the anti-inflammatory cytokine IL-
10 (Figures 3A–D). Inflammatory chemokines, which attract
leukocytes to inflamed sites, are also modulated during
macrophage reprogramming (Aswad et al., 2017). Our results
revealed that LPS-stimulated macrophages from Gal-1null

males secreted similar levels of CCL2 and higher levels of
CCL5 in comparison to their WT counterparts (Figures 3E, F).
Moreover, we detected similar levels of TGF-b, which is an
essential mediator in the resolution of inflammation
(Bannenberg et al., 2005; Ariel and Timor, 2013), in the
Frontiers in Pharmacology | www.frontiersin.org 5
peritoneum of WT and Gal-1null males (Figure 3G). These
results did not support a complete debilitation of macrophage
reprogramming in Gal-1null mice, but rather an impaired
cytokine-based pro-resolutive switch.

Modulation of macrophage reprogramming could take place
through modulation of their TLR expression or changes in their
intracellular signaling. To determine whether the hampered
reprogramming of Gal-1null resolution-phase macrophages is
due to altered expression of TLR4, we determined TLR4
expression on various leukocyte subsets at 12 and 48 h PPI
following neutralization of Gal-1. Our results (Figures 3H–K)
show neither macrophages, monocytes or neutrophils modulate
their TLR4 expression upon Gal-1 neutralization. However,
treatment of resolution phase macrophages with recombinant
Gal-1 resulted in a significant increase in STAT3 and a reduction
in STAT1 activation (Figure 3L).
June 2020 | Volume 11 | Article 901
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FIGURE 1 | Peritoneal macrophages increase the expression of Gal-1 in response to acute inflammation. WT mice were injected intraperitoneally with zymosan A (1
mg/mouse in 1 ml of PBS) to initiate peritonitis. Peritoneal exudates were collected at 0, 24, 48, 66, and 96 h post peritonitis initiation (PPI). Cell-free fluids were
separated, peritoneal cells were examined by flow cytometry (see Figure S1C for gating strategy), and macrophages were isolated from the cellular fraction using
magnetic beads. (A–D) Peritoneal fluids (A, B) and lysates from macrophages (C, D) were run by SDS-PAGE, followed by immunoblotting for Gal-1 and actin as a
loading control. (A, C) Representative blot images. (B, D) Gal-1 protein expression was quantified by densitometry, and expression relative to 24 h was calculated.
Original blot images are presented in Figure S7. (E–H) Peritoneal leukocytes were enumerated, immunostained for the surface antigens Ly6G, Ly6C, F4/80, Tim4, and
intracellular Gal-1, and analyzed by flow cytometry. (E, F) Gal-1+ leukocytes are presented in percentage or in total numbers/ml in peritoneal fluids, n = 4. (G, H)
Intracellular Gal-1 expression (MFI) in the following leukocyte populations: Ly6G+F4/80- neutrophils, Ly6CmedF4/80- neutrophils, Ly6ChiF4/80lo monocytes, F4/80+Ly6C-

macrophages, F4/80+Tim4- monocyte-derived resident macrophages and F4/80+Tim4+ yolk sac-originated resident macrophages, n = 4. Altogether, the data
represent at least 2 independent experiments and are presented as mean ± SEM. Statistical analysis by two-tailed Student's t-test; *p < 0.05, **p < 0.01, ***p < 0.001.
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To determine whether Gal-1null mice are hampered in
macrophage reprogramming regardless of inflammation, we
isolated naïve peritoneal macrophages from unchallenged WT
and Gal-1null mice and stimulated them with LPS ex vivo. Our
results (Figures 4A–F) indicate that resident peritoneal
Frontiers in Pharmacology | www.frontiersin.org 6
macrophages from Gal-1null mice secreted similar levels of
TNF-a, IL-12, IL-6, CCL2, and CCL5 in comparison to their
WT counterparts. Moreover, unlike resolution-phase Gal-1null

macrophages, their resident peritoneal counterparts did not
show a reduction in IL-10 levels upon LPS exposure
A B C D

E F G H

I J K

M N O

L

FIGURE 2 | Gal-1 increases the numbers of peritoneal neutrophils, eosinophils, and macrophages. (A–E) Peritoneal exudates were collected from WT and Gal-1null

male mice 48 h PPI. Peritoneal leukocytes were enumerated, immunostained for Gr-1, F4/80, and CD11b, and analyzed by flow cytometry, n = 6–10. (A) The
number of peritoneal leukocytes/ml in peritoneal fluids. (B) The total number of macrophages. (C) The ratio of F4/80 expression, based on MFI. (D) The total number
of neutrophils. (E) The total number of eosinophils. (F–O) 12 to 24 h prior to peritoneal cell collection mice were administered with neutralizing anti-Gal-1 mAb (anti-
Gal-1) or isotype IgG (Iso Ab). Peritoneal cells were collected from unchallenged mice, or at 12 or 48 h PPI. Upon recovery, peritoneal leukocytes were enumerated,
immunostained for the surface antigens Ly6G, Ly6C, F4/80, and Tim4, and analyzed by flow cytometry. Eosinophils were gated out due to unspecific binding of 2nd

antibody to anti-Gal-1 mAb, which was performed concomitantly. Leukocytes are presented in percentage (F, H, J, L, N) or in total numbers/ml (G, I, K, M, O) in
peritoneal fluids, n = 4. Measurements of the following leukocyte populations: Ly6G+F4/80- neutrophils (F, G), Ly6CmedF4/80- neutrophils (H-I), Ly6ChiF4/80-

monocytes (J, K), F4/80+Ly6C- macrophages (L, M), F4/80+Tim4- monocyte-derived resident macrophages and F4/80+Tim4+ yolk sac-originated resident
macrophages (N, O). Altogether, the data represent at least two independent experiments and are presented as mean ± SEM. Statistical analysis by two-tailed
Student's t-test; *p < 0.05, **p < 0.01, ***p < 0.001.
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(Figures 3D and 4D). Altogether, our results suggest that
male Gal-1 is key for macrophage reprogramming exclusively
during the resolution of inflammation, probably by
modulating STAT signaling.
Frontiers in Pharmacology | www.frontiersin.org 7
When examining whether the impact of Gal-1 on
macrophage reprogramming is sex-dependent we found
reduced secretion of TNF-a and IL-6, but not other cytokines
or chemokines, from non-stimulated female Gal-1null
A B C

D E F

G H I

J K L

FIGURE 3 | Gal-1 shifts the cytokine production of resolution-phase macrophages to promote their reprogramming. (A-G) Peritoneal macrophages were isolated
from WT and Gal-1null male mice 48 h PPI and then exposed to vehicle or LPS for 24 h. The concentrations of the following cytokines and chemokines were
measured in the culture media by ELISA, n = 4–6: (A) TNF-a, (B) IL-12, (C) IL-6, (D) IL-10, (E) CCL2, and (F) CCL5. (G) TGF-b concentrations in the peritoneal
fluids at 48 h were directly measured. (H–K) Peritoneal cells were collected from mice treated with anti-Gal-1 or Iso Ab immunostained as in Figure 2, as well as for
TLR4, and analyzed by flow cytometry. Then, TLR4 expression on various leukocyte subsets at 12 and 48 h was determined. (L) Macrophages were isolated from
peritoneal exudates of four mice at 48 h PPI and treated with vehicle or Gal-1 (4 mg/ml) for 30 min. Then, macrophages were lysed and their protein content was run
by SDS-PAGE and blotted for phospho-STAT1, phospho-STAT3, and actin. Representative images are shown. Full blot images are shown in Figure S8. Altogether,
the data represent at least two independent experiments and are presented as mean ± SEM. Statistical significance relative to WT mice was analyzed by two-tailed
Student's t-test; *p < 0.05, **p < 0.01, ***p < 0.001.
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macrophages compared to the ir WT counterparts
(Supplementary Material, Figures S3A–F). LPS-stimulated
macrophages from Gal-1null females did not demonstrate a
hyperinflammatory phenotype as observed in Gal-1null males.
Rather we observed reduced secretion of TNF-a, IL-12, and IL-
10, and similar levels of IL-6 in comparison to LPS-stimulated
WT female macrophages (Supplementary Material, Figures
S3A–D). LPS-stimulated macrophages from Gal-1null females
secreted similar levels of both CCL2 and CCL5 (Supplementary
Material, Figures S3E, F) in comparison to their WT
counterparts. Unexpectedly, Gal-1null females demonstrated an
increase in peritoneal TGF-b levels (Supplementary Material,
Figure S3G) when compared to WT controls. The response of
female resident macrophages to LPS was very similar to the
response in males, albeit with significant increases in IL-10 and
CCL5 secretion (Supplementary Material, Figures S4A–F).
Thus, both resolution phase and resident macrophages from
Gal-1null females seem to be hyper responsive to LPS, rather than
exert hampered reprogramming,

Gal-1null Mice Express Diminished
Pro-Resolving Properties
During the course of peritonitis, monocytes/macrophages convert
from an inflammatory CD11bmed/arginase-1low/12/15-LOneg

phenotype to a reparative CD11bhigh/arginase-1high/12/15-LOlow
Frontiers in Pharmacology | www.frontiersin.org 8
phenotype, and then to a pro-resolving CD11blow/arginase-1low/
12/15-LOhigh phenotype (Bannenberg et al., 2005; Schif-Zuck et al.,
2011; Ariel and Serhan, 2012; Kumaran Satyanarayanan et al.,
2019). Hyperinflammation is often associated with loss of the
pro-resolving, CD11blow phenotype in macrophages (Ariel and
Timor, 2013; Aswad et al., 2017; Kumaran Satyanarayanan et al.,
2019). Moreover, we previously reported that Gal-1 administration
during peritonitis promotes this pro-resolving, CD11blow phenotype
in macrophages and the production of the 12/15-LO product RvD1
(Rostoker et al., 2013). In line with our observation of defective
resolution in Gal-1null mice, our results revealed a lower expression
of 12/15-LO, arginase-1, and CD11b in peritoneal macrophages 48
h PPI in males as compared with their WT counterparts (Figures
5A, B). Strikingly, at 66 h PPI we detected an increased expression
of 12/15-LO and arginase-1 in male Gal-1null macrophages
compared with their WT counterparts (Figures 5C, D),
suggesting a delay in macrophage conversion to the reparative
and pro-resolving phenotypes during the resolution of
inflammation. Notably, resolution-phase macrophages from
female Gal-1null mice only showed reduced 12/15-LO expression,
but not in the other functional markers, and this reduction was
limited to 48 h PPI, (Supplementary Material, Figures S5A–D).

High expression of the serine protease PR3 is an attribute of a
neutrophilic inflammation that fails to resolve (Millet et al., 2015;
Thieblemont et al., 2018). Therefore, we examined whether PR3
A B C

D E F

FIGURE 4 | Gal-1null naïve macrophages are more sensitive to LPS stimulation. Peritoneal naïve macrophages were isolated from unchallenged WT and Gal-1null

male mice and then exposed to vehicle or LPS for 24 h. The concentrations of the following cytokines and chemokines were measured in the culture media by
ELISA: (A) TNF-a, (B) IL-12, (C) IL-6, (D) IL-10, (E) CCL2, and (F) CCL5. Altogether, the data represent two to three independent experiments and are presented as
mean ± SEM, n = 4–8. Statistical significance relative to non-stimulated macrophages was analyzed by two-tailed Student's t-test; *p < 0.05, **p < 0.01, ***p <
0.001.
June 2020 | Volume 11 | Article 901

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Yaseen et al. Galectin-1-IFN-b Axis Promotes Inflammation Resolution
expression in peritoneal exudates is modulated by Gal-1. Our
results indicate that Gal-1null mice demonstrated a significant
increase in various isoforms of PR3 in comparison to their WT
counterparts (Figure 5E and Supplementary Material, Figure
S5E). In addition to the well-known monomeric (29 kDa) and
dimeric (56 kDa) PR3, additional forms of this enzyme appeared
(78 and 23 kDa) and one form disappeared (17 kDa, probably a
degradation product) (Figure 5E and Supplementary Material,
Figure S5E). In support, zymography-based evaluation of PR3
proteolytic activity demonstrated a significant increase at 96 h
PPI in Gal-1null mice (Figure 5F, Supplementary Material,
Frontiers in Pharmacology | www.frontiersin.org 9
Figures S5F and S6A, B), suggesting that resolution of
inflammation is blocked or delayed. In general, PR3 expression
and proteolytic activity were stronger in females than males,
regardless of genotype.

We recently reported that macrophage-derived IFN-b serves
as a new effector cytokine in the resolution of inflammation
(Kumaran Satyanarayanan et al., 2019). The IFN-b-IL-10 axis
balances the activation of the STAT transcription factors to
modulate cytokine production in macrophages (Chang et al.,
2007; Hu et al., 2008) and our results in Figure 3 indicate
STAT1/3 are modulated in macrophages treated by Gal-1.
A B C D

E F

G H I

FIGURE 5 | Gal-1null mice express diminished pro-resolving properties. (A, B) Peritoneal macrophages from WT and Gal-1null male mice were isolated at 48 h (A, B)
and 66 h (C, D) PPI. The lysed macrophages were run by SDS-PAGE, followed by immunoblotting for 12/15-LO, arginase-1, CD11b, and actin as a loading control.
(A, C) representative blot images. (B, D) graphs averaging protein expression after quantification by densitometry, normalizing to actin, and calculation of ratio to
expression in WT macrophages. Full blot images are shown in Figures S9 and 10. (E, F) Peritoneal exudates were collected at 24, 48, 66, and 96 h PPI. (E) Equal
volumes of cell-free fluids were run by SDS-PAGE, followed by immunoblotting for PR3; representative blot images. (F) Proteolytic activity of PR3 in exudates was
examined by casein zymography; representative gel images. Full blot and zymography images are shown in Figure S11. (G, H) Equal volumes of cell-free fluids
recovered at 48 h PPI were run by SDS-PAGE, followed by immunoblotting for IFN-b; representative blots (G) and mean ± SEM (H) Full blot images are shown in
Figure S12. (I) Peritoneal fluids were obtained from WT and Gal-1null male and female mice at 48 h PPI. IFN-b expression by Western blotting. Altogether, the data
represent two to three independent experiments and are presented as mean ± SEM, n = 3–4. Statistical significance relative to WT mice (B, D, H) or between males
and females (I) was analyzed by two-tailed Student's t-test; *p < 0.05, **p < 0.01.
June 2020 | Volume 11 | Article 901

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Yaseen et al. Galectin-1-IFN-b Axis Promotes Inflammation Resolution
Therefore, we examined whether Gal-1 deficiency affects IFN-b
expression by resolution phase macrophages. In accord with the
results presented here, we detected reduced levels of the IFN-
b protein in the peritoneal exudates of Gal-1null mice at 48 h
PPI compared with WT controls (Figures 5G, H and
Supplementary Material, Figures S5G, H). Moreover, female
mice had lower levels of IFN-b in peritoneal exudates during
the resolution phase, suggesting a sex-dependent role for this
cytokine in resolving inflammation (Figure 5I). Taken together,
our results suggest Gal-1 is an important effector molecule in
regulating macrophage reparative and pro-resolving properties
in a sex-dependent manner in resolving inflammation.

IFN-b Reduces Neutrophil and Increases
Macrophage Distribution in Resolving
Exudates
The reduction in IFN-b expression in Gal-1null mice suggests that
IFN-b acts downstream of Gal-1 in resolving acute inflammation.
Due to the hampered resolution of inflammation in Gal-1null males,
we exclusively examined the rescue of resolution keys in these mice
by exogenous IFN-b. To this end, we treatedWT and Gal-1null mice
with IFN-b at 24 h PPI, followed by isolation of peritoneal
leukocytes at 48 h PPI. Our results indicate that IFN-b treatment
in vivo was not able to restore the decline in peritoneal neutrophil
numbers in Gal-1null mice (Figures 6A–C). Rather, it further
reduced the percentage of neutrophils and the expression of the
neutrophil marker Gr-1 in both WT and Gal-1null mice (Figures
6B, D). These findings are in accord with the facilitation of
neutrophil apoptosis and efferocytosis by macrophages by IFN-b
(Kumaran Satyanarayanan et al., 2019). On the other hand, IFN-b
treatment in vivo increased the percentage of macrophages in WT
mice, but not in Gal-1null mice (Figure 6E). This observation was
not reflected in macrophage numbers (Figure 6F). Of interest, we
detected an increase in the percentage of double-positive
macrophages (F4/80+Gr-1+) following IFN-b pre-treatment in
vivo in both WT and Gal-1null mice (Figure 6G). This
observation was not reflected in double-positive macrophage
numbers (Figure 6H). Moreover, this subset of macrophages
expressed elevated levels of the macrophage marker F4/80 in
response to IFN-b, regardless of genotype (Figure 6I). In WT
mice, but not in Gal-1null mice, this subset expressed lower levels of
neutrophil marker Gr-1 (Figure 6I). IFN-b treatment in vivo did
not affect the percentage of peritoneal eosinophils in the exudates of
Gal-1null mice (data not shown). In summary, IFN-b treatment in
vivo did not normalize the peritoneal leukocyte distribution of Gal-
1null mice, yet, it increased the numbers of double-
positive macrophages.

IFN-b Rescues Hampered Keys of
Resolution of Inflammation in Gal-1null

Mice
Next, we sought to determine whether exogenous IFN-b can
rescue the hampered resolution keys observed in Gal-1null mice.
To this end, mice undergoing peritonitis received IFN-b at 24 h
PPI, and at 48 h PPI peritoneal macrophages were isolated and
stimulated with LPS. In accord with previous experiments, LPS-
Frontiers in Pharmacology | www.frontiersin.org 10
stimulated Gal-1null macrophages secreted higher IL-12 levels
and lower IL-10 levels compared with WT macrophages
(Figures 7A, B). IFN-b treatment in vivo did not significantly
affect cytokine secretion from LPS-stimulated WT macrophages
(Figure 7). However, it significantly reduced IL-12 secretion and
increased IL-10 secretion from LPS-stimulated Gal-1null

macrophages (Figures 7A, B). Thus, IFN-b restored the
hampered macrophage reprogramming index (Aswad et al.,
2017) of Gal-1null mice. Unexpectedly, IFN-b treatment in vivo
did not affect TNF-a and IL-6 secretion from LPS-stimulated
macrophages (data not shown). To determine whether IFN-b
directly affects Gal-1null macrophages, we treated peritoneal
macrophages, isolated at 66 h PPI, with IFN-b ex vivo. As
expected, LPS-stimulated Gal-1null macrophages secreted higher
IL-12 levels and lower IL-10 levels in comparison with their
WT counterparts (Figures 3B, D and Figures 7C, D). Strikingly,
IFN-b treatment ex vivo also rescued the reprogramming index
of LPS-stimulated Gal-1null macrophages, by reducing IL-12
levels and increasing IL-10 levels (Figures 7C, D). Notably,
IFN-b reduced IL-12 secretion in WT macrophages and
increased IL-10 secretion in WT and Gal-1null macrophages also
in the absence of LPS stimulation (Figures 7C, D). Thus, IFN-b
rescues hampered reprogramming in Gal-1null resolution-
phase macrophages.

8Next, we determined whether IFN-b rescues the increased PR3
expression and proteolytic activity in the peritoneal exudates ofmale
Gal-1null mice as compared with maleWT controls. In line with our
previous results (Figure 5C), vehicle-treated Gal-1null males
expressed higher levels of PR3 compared with their WT
counterparts (Figure 7E). IFN-b treatment in vivo significantly
reduced PR3 expression in both Gal-1null and WT mice. This
response was particularly impactful in Gal-1null mice, where the
23 kDa form of PR3 completely disappeared (Figure 7E). Along
these lines, IFN-b treatment in vivo significantly inhibited the
proteolytic activity of PR3 measured by zymography analysis
(Figure 7F and Supplementary Material, Figure S6C).
Altogether, our results suggest IFN-b rescues hampered resolution
of inflammation in Gal-1null mice.
DISCUSSION

Accumulating evidence from various experimental studies points
at the lectin Gal-1 as a central immunomodulator in various
inflammatory and autoimmune disorders (Rabinovich and Croci,
2012; Sundblad et al., 2017). By inhibiting leukocyte motility and
activation (Norling et al., 2008; Cooper et al., 2010), Gal-1
regulates different types of immune responses, from immune-
tolerance, exploited by cancer cells, to acute and chronic
inflammation (Sundblad et al., 2017; Chou et al., 2018). Gal-1
also elicits type II anti-inflammatory responses in macrophages
and microglia (Correa et al., 2003; Starossom et al., 2012;
Abebayehu et al., 2017), therefore mediating pro-resolving and
neuroprotective effects (Kurihara et al., 2010; Rostoker et al.,
2013). In this study, we detected an elevation of Gal-1
expression in F4/80+Ly6C- peritoneal macrophages accompanied
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with decreased expression in their monocyte precursors 48 h after
the onset of spontaneously-resolving peritonitis (Bannenberg
et al., 2005; Cash et al., 2009), indicating a possible role in the
initiation of the resolution of inflammation. Of interest, peritoneal
resident macrophages expressed relatively low levels of Gal-1, but
neutralization of this protein from other sources lead to a
significant reduction in the numbers of Tim4+ resident
peritoneal macrophages, possibly by diminishing their
proliferation or survival. Indeed, we and others, have shown that
Gal-1 enhances the resolution of inflammation (Rostoker et al.,
2013; Seropian et al., 2013; Sundblad et al., 2018; Law et al., 2020).
Thus, we reasoned that peritonitis-inflicted Gal-1null mice would
Frontiers in Pharmacology | www.frontiersin.org 11
display hampered resolution, culminating in hyperinflammation
and reduced macrophage reprogramming. Our analysis is divided
to two parts. In the first part, in Figure 2 and Supplementary
Material, Figure S2, we distinguished immature monocytes
(Ly6C+F4/80lo) from mature macrophages (Ly6C-F4/80+) and
found a reduction in mature macrophage numbers and F4/80
expression in Gal-1null mice. However, the observed difference in
macrophages differentiation from inflammatory monocytes can
only partly explain the differences in macrophage cytokine
production we found in Gal-1null macrophages, and this is
probably not due to shifts from M1 to M2. It is more likely
related to the changes in the expression of arginase 1 and 12/15-
June 2020 | Volume 11 | Article 901
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FIGURE 6 | IFN-b reduces neutrophil and increases macrophage distribution in resolving exudates. WT and Gal-1null male mice undergoing peritonitis were
administered with IFN-b or vehicle 24 h PPI, and their peritoneal exudates were collected 24 h later. Peritoneal leukocytes thereof were enumerated, immunostained
for Gr-1 and F4/80, and analyzed by flow cytometry. (A) Representative dot plots. (B) The percentage of neutrophils. (C) The total number of neutrophils (D) The
ratio of Gr-1 expression, based on MFI. (E) The percentage of macrophages (F) The total number of macrophages. (G) The percentage of F4/80+Gr-1+

macrophages. (H) The total number of F4/80+Gr-1+ macrophages. (I) The ratio of F4/80 and Gr-1 expression, based on MFI, in F4/80+Gr-1+ macrophages. Data are
presented as mean ± SEM, n = 4. Statistical significance relative to vehicle-treated mice was analyzed by two-tailed Student's t-test; *p < 0.05, **p < 0.01.
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LO that were detected in the second part of our analysis (Figure 5
and Supplementary Material, Figure S5). Overall, our findings
supported the hypothesis that Gal-1null resolution phase
macrophages are hyperinflammatory with imbalanced
reprogramming since they secreted higher levels of pro-
inflammatory cytokines, such as TNF-a, IL-6, and IL-12, while
secreting lower levels of the anti-inflammatory cytokine IL-10 upon
LPS exposure. This phenomenon was not associated with any
changes in TLR4 expression, but Gal-1 treatment ex vivo induced
a reduction in STAT1 activation while STAT3 was activated. Thus,
Gal-1null macrophages had a reduced reprogramming index than
Frontiers in Pharmacology | www.frontiersin.org 12
their WT counterparts with possible contribution frommodulated
STAT signaling.

Along the lines of hampered reprogramming, Gal-1null

macrophages had a delayed expression of the pro-resolving
macrophage-expressed enzyme 12/15-LO, suggesting an
aberrant production of resolution-promoting SPM (Rostoker
et al., 2013; Ackermann et al., 2017), and the anti-
inflammatory/reparative macrophage enzyme arginase-1.
Although pro-resolving macrophages normally do not express
arginase-1, type II macrophages express it as a bypass for NO
production that characterizes type I macrophages (Freire-De-
A B
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FIGURE 7 | IFN-b rescues hampered keys of resolution of inflammation in Gal-1null mice. (A, B) WT and Gal-1null male mice undergoing peritonitis were
administered with IFN-b or vehicle 24 h PPI, and their peritoneal exudates were collected 24 h later. Macrophages were isolated from the exudates and exposed to
vehicle or LPS for 24 h. (C, D) Peritoneal macrophages were isolated from WT and Gal-1null male mice 66 h PPI. Then, the macrophages were treated with IFN-b or
vehicle, and in parallel exposed to vehicle or LPS for 24 h. The concentrations of the following cytokines and chemokines were measured in the culture media by
ELISA: (A, C) IL-12, and (B, D) IL-10. (E, F) Mice were administered with IFN-b or a vehicle 24 h PPI, and peritoneal exudates were collected 48 h PPI. (E) Equal
volumes of cell-free fluids were run by SDS-PAGE, followed by immunoblotting for PR3; representative blot images. (F) Proteolytic activity of PR3 in exudates was
examined by casein zymography; representative gel images are shown. Full blot and zymography images are shown in Figure S13. Data are representative of two
to three independent experiments and are presented as mean ± SEM, n = 4–8. Statistical significance relative to vehicle-treated mice or between LPS-stimulated WT
and Gal-1null macrophages was analyzed by two-tailed Student's t-test; *p < 0.05, **p < 0.01, ***p < 0.001.
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Lima et al., 2006). Arginase-1 is expressed by CD11bhigh

macrophages during the early phase of resolution of
peritonitis. Therefore, diminished expression of this enzyme,
together with reduced CD11b, reflects dysregulated maturation
of macrophages in this model (Schif-Zuck et al., 2011; Lumbroso
et al., 2018). Since Gal-1 treatment in vitro rapidly enhances
arginase-1 expression in macrophages (Rostoker et al., 2013), our
results of lower arginase-1 expression at first, followed by higher
expression later, are consistent with hampered macrophage
maturation and reprogramming from inflammatory to anti-
inflammatory/reparative phenotype in Gal-1null mice.

Interestingly, the numbers of peritoneal leukocytes, including
macrophages, neutrophils, and eosinophils, declined in
peritonitis-inflicted Gal-1null mice, whereas neutralization of
extracellular Gal-1 resulted in reduced peritoneal neutrophil
numbers during the resolution, but not the onset, of
inflammation. Gal-1 neutralization also exclusively reduced its
expression by resolution phase macrophages but did not affect
their numbers at 48 h, possibly due to residual activity of
inaccessible stores of this protein. It remains to be determined
whether Gal-1null mice have a lower capacity to produce
leukocytes upon inflammatory stimuli, and/or whether they
exert impaired leukocyte recruitment to inflammation sites.
Accordingly, Gal-1 treatment in vitro enhances myeloid cell
differentiation (Vas et al., 2005), to account for the lower
leukocyte numbers in Gal-1null mice. On the other hand, Gal-1
treatment was shown to inhibit or promote myeloid cell
migration, depending on the experimental design (Malik et al.,
2009; Paclik et al., 2011; Auvynet et al., 2013). Gal-1
administration slows down neutrophil recruitment in vivo (La
et al., 2003; Gil et al., 2010), however, with time it increases
monocyte/macrophage recruitment (Gil et al., 2010). Under
non-inflammatory condit ions Gal-1 funct ions as a
chemoattractant by binding CD43 (Auvynet et al., 2013), and
might act similarly during the resolution of peritonitis when
chemoattractant levels are below detection (Bannenberg et al.,
2005). Thus, temporally-changing regulation may also play a role
in our inflammatory model. We focused on examining leukocyte
populations and the cytokine repertoire at 48 h PPI, when Gal-1
expression is at its peak. Examining leukocyte populations and
cytokine-secretion repertoire at other time points could provide
valuable information on how the Gal-1 feedback loop regulates
the inflammatory response in a timely manner.

PR3 plays pleiotropic roles in escalating inflammatory
response (Kettritz, 2016; Thieblemont et al., 2018); therefore,
we evaluated PR3 expression and proteolytic activity, and
detected increased expression and activity in Gal-1null mice.
Of note, we detected increased expression of an additional ~80
kDa form of PR3 that seems to be released from late apoptotic
PMN (data not shown) in Gal-1null mice. Previous reports
show that PR3 shapes the microenvironment (Millet et al.,
2015), allowing the recruitment of inflammatory cells, which
was not the case in our study. However, leukocyte migration
and PR3 release usually precede the resolution phase and takes
place at 4 to 12 h PPI. The increases in free PR3 levels in the
Frontiers in Pharmacology | www.frontiersin.org 13
peritoneum during the resolution phase seem to not be related
to the number of peritoneal neutrophils that decrease in Gal-
1null mice. Rather, since IFN-b promotes neutrophil caspase-
dependent apoptos i s and e ff e rocy tos i s (Kumaran
Satyanarayanan et al., 2019; Law et al., 2020), its down-
regulation in Gal-1null mice could divert neutrophils to a
necroptotic state that allows release of PR3 to the
resolving tissue. PR3, in turn, limits complement-mediated
efferocytosis (Tacnet-Delorme et al., 2018) and macrophage
reprogramming that is observed in Gal-1/IFN-b-deficient
macrophages as well (Figure 3 and (Millet et al., 2015;
Kumaran Satyanarayanan et al., 2019). Another plausible
explanation for the increase in PR3 release in Gal-1null mice
could emanate from the role of PR3 in regulating caspase-
dependent neutrophil apoptosis (Loison et al., 2014) that is
promoted by Gal-1/ IFN-b. The reduced neutrophil apoptosis
observed in Gal-1/IFN-b-deficient mice could be due to release
of lysosomal PR3 to the extracellular milieu rather than to the
neutrophil cytosol, and this miss-localization of PR3 would
concomitantly diminish PMN apoptosis and efferocytosis, and
macrophage reprogramming. Reduced IFN-b could also play a
role in the decline in neutrophil and macrophage numbers in
Gal-1null mice. Since IFN-b was recently shown to be involved
in the attraction of both neutrophils and macrophages to the
peritoneum during zymosan A peritonitis (Kumaran
Satyanarayanan et al., 2019), its down-regulation in Gal-1null

mice could lead to their diminished recruitment.
Notably, peritonitis-inflicted Gal-1null females exhibited

a different phenotype, which was generally less hyperinflammatory
as compared with Gal-1null males. Leukocyte distribution, except for
eosinophils, was unaffected, and secretion of the pro-inflammatory
cytokines TNF-a and IL-12 demonstrated a reduction rather than
an increase. Unlike in males, TGF-b levels in the peritoneum, which
are normally associated with inflammation resolution or tissue
fibrosis (Bannenberg et al., 2005; Ariel and Timor, 2013),
presented an increase. Additionally, apart from initial reduced
expression of 12/15-LO, expression of other macrophage
reprogramming markers was not affected in Gal-1null females.
Conversely, Gal-1null macrophages from challenged females
secreted lower levels of IL-10, and Gal-1null macrophages from
unchallenged females secreted higher levels of the pro-
inflammatory cytokines TNF-a and IL-12. PR3 expression and
proteolytic activity were substantially stronger in Gal-1null females.
Taken together, some features in Gal-1null females were consistent
with a hyperinflammatory phenotype and some did not. It has been
shown that estrogen accelerates the resolution of inflammation
(Villa et al., 2015); therefore, the consequence of Gal-1 deficiency
might not be as detrimental in females as in males. Of note, the
importance of Gal-1 in fetomaternal immunotolerance and the
existence of estrogen response element on the promoter of the
Gal-1 gene imply a complex sex-dependent immunoregulation of
this lectin (Than et al., 2008; Sundblad et al., 2017).

Recently, we reported that IFN-bnull macrophages display
hampered reprogramming, resulting in higher secretion
of pro-inflammatory cytokines and lower levels of
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anti-inflammatory cytokines, whereas IFN-b treatment in vivo and
ex vivo leads to the opposite response (Kumaran Satyanarayanan
et al., 2019). Thus, IFN-b regulates macrophage reprogramming in
a similar manner toGal-1 (Rostoker et al., 2013). In support, IFN-b
seems to be a downstream effector of Gal-1, based on our
observation that IFN-b expression was downregulated in both
Gal-1null males and females. Furthermore, the findings of this
study revealed that IFN-b treatment in vivo or ex vivo rescued in
part the hampered resolution culminating from Gal-1 deficiency.
IFN-b treatment reduced the LPS-stimulated secretion of pro-
inflammatory IL-12, but not TNF-a and IL-6, and increased the
secretion of anti-inflammatory IL-10 from Gal-1null macrophages.
In addition, it reduced PR3 expression and proteolytic activity in
exudates fromperitonitis-inflictedmice. The downstream signaling
that links Gal-1 and IFN-b activities remains unknown; as far as we
know, no data in the literature links between IFN-b and other
galectins as well. Notwithstanding, the immunomodulatory effects
of Gal-1 are mediated only in part by IFN-b, suggesting the
existence of additional downstream effectors, and IFN-b by itself
has effects that are Gal-1–independent. For example, IFN-b
treatment led to a further decrease in neutrophil numbers and
Gr-1 expression in Gal-1null mice rather than to a rescue of the
aberrant phenotype. This outcome is expected, considering that
IFN-b promotes neutrophil apoptosis during cancer development
as well as the resolution of inflammation (Andzinski et al., 2015;
Kumaran Satyanarayanan et al., 2019).Of interest, IFN-b increased
Frontiers in Pharmacology | www.frontiersin.org 14
F4/80expressionand the relativeproportionofmacrophages inWT
and Gal-1null mice. This observation could be a result of enhanced
macrophage recruitment and/or retention. Our previous report
indicated a diminished efferocytosis in macrophages as well as a
lower degree of neutrophil apoptosis in IFN-bnull mice (Kumaran
Satyanarayanan et al., 2019). Because Gal-1null macrophages had a
lower expression of IFN-b, this pro-resolving cytokine could
enhance their efferocytosis, together with the increased
abundance of apoptotic neutrophils. IFN-b has also been shown
to increase monocyte/macrophage migration and recruitment to
inflammatory sites (Goossens et al., 2010; Venkatesh et al., 2013;
Ruiz Silva et al., 2016). Whether IFN-b rescues macrophage
recruitment and efferocytosis in Gal-1null mice is a subject for
future studies. Notably, regardless of genotype, IFN-b increased
the fraction of double-positive F4/80+Gr-1+ macrophages.
Although the nature of this sub-population under the
experimental design of our study is undeciphered, GR-1+

macrophages are phagocytic cells that can efferocytose apoptotic
neutrophils, thereby taking an active part in the resolution of
inflammation (Mordue and Sibley, 2003; Kataru et al., 2009).

In summary, our study revealed a novel Gal-1-IFN-b axis in
mouse macrophages that plays an immunomodulatory role
during the resolution of inflammation, driving macrophage
reprogramming (Figure 8). These results have therapeutic
implications, since both Gal-1 and IFN-b can exert pro-resolutive
actions in various types of chronic inflammatory diseases.
FIGURE 8 | The Gal-1-IFN-b axis drives macrophage reprogramming during the resolution of inflammation. Schematic illustration of our current understanding of the
role of the Gal-1-IFN-b axis in macrophage reprogramming during resolution of inflammation, based on our current findings and recent reports (Schif-Zuck et al.,
2011; Ariel and Timor, 2013; Rostoker et al., 2013; Kumaran Satyanarayanan et al., 2019). Acute inflammation is characterized by recruitment of short-lived
polymorphonuclear (PMN) cells, which in turn, undergo apoptosis and engulfment by pro-inflammatory monocytes/macrophages that converts them to reparative/
phagocytic/CD11bhigh macrophages. CD11bhigh/phagocytic macrophages produce Gal-1 (A) that promotes macrophage satiation and reprogramming to the pro-
resolving/CD11blow phenotype (B). Gal-1 also promotes macrophage migration to lymphatics (C). Our study suggests that Gal-1-induced apoptotic PMN uptake
triggers a positive feedback loop, mediated by IFN-b. The uptake of apoptotic PMN triggers IFN-b production and secretion (D). IFN-b, in turn, mediates Gal-1-
induced macrophage reprogramming (E), PMN apoptosis (F), and efferocytosis (G). Validation that all these steps of the Gal-1-IFN-b feedback loop take place in a
coordinated fashion requires further investigation.
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