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Ion channels have recently been recognized as novel therapeutic targets in cancer
research since they are overexpressed in different histological tissues, and their activity
is linked to proliferation, tumor progression, angiogenesis, metastasis, and apoptosis.
Voltage gated-potassium channels (VGKC) are involved in cell proliferation, cancer
progression, cell cycle transition, and apoptosis. Moreover, voltage-dependent sodium
channels (VGSC) contribute to decreases in extracellular pH, which, in turn, promotes
cancer cell migration and invasion. Furthermore, VGSC and VGKC modulate voltage-
sensitive Ca2+ channel activity by controlling the membrane potential and regulating Ca2+

influx, which functions as a second messenger in processes related to proliferation,
invasion, migration, and metastasis. The subgroup of these types of channels that have
shown a high oncogenic potential have become known as “oncochannels”, and the
evidence has highlighted them as key potential therapeutic targets. Scorpion venoms
contain a high proportion of peptide toxins that act by modulating voltage-gated Na+/K+

channel activity. Increasing scientific data have pointed out that scorpion venoms and their
toxins can affect the activity of oncochannels, thus showing their potential for anticancer
therapy. In this review, we provide an update of the most relevant voltage-gated Na+\K+

ion channels as cellular targets and discuss the possibility of using scorpion venom and
toxins for anticancer therapy.

Keywords: cancer, ion channels, scorpion venom, toxins, voltage-dependent
ION CHANNELS AND CANCER

Ion channels are critical regulators of cellular homeostasis in excitable and non-excitable cells,
regulating vital physiological processes, such as electrical signal transmission, gene expression, cell
signaling pathways, hormonal secretion, learning, and memory (Bates, 2015). During oncogenic
transformation, cancer cells acquire aberrant characteristics with respect to their normal
counterparts, which represent the core of cancer hallmarks, such as self-sustained proliferation,
tumor progression, angiogenesis, metastasis, and apoptosis resistance (Bates, 2015; Prevarskaya
et al., 2018). Many genes encoding ion channels are targets of oncogenic transformation, as
previously reported (Prevarskaya et al., 2018). In turn, these gene products contribute to the
development of one or more cancer hallmarks, promoting the transition to a more aggressive cancer
phenotype; this is exemplified by the positive correlation between ion channel overexpression and
in.org June 2020 | Volume 11 | Article 9131
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functional dysregulation with tumor progression, invasion, and
metastasis (Litan and Langhans, 2015; Prevarskaya et al., 2018).
The amount of evidence showcasing abnormal ion channel
activity linked to carcinogenesis, cancer migration, and
invasion has led to consideration of cancer as a channelopathy
(Litan and Langhans, 2015; Prevarskaya et al., 2018).

In cancer, the expression changes of ion channels can be
related to early diagnosis, prediction of disease aggressiveness, or
as markers that allow monitoring of the response to treatment
(Lastraioli et al., 2015; Kischel et al., 2019). Different ion channel
subfamilies have been associated with a great variety of cancers
from different histological origins and even with particular stages
of cancer initiation and progression (Rao et al., 2015; Kischel
et al., 2019).

In the present article, we focus on voltage-dependent K+- and
Na+-channels as these are the main targets of scorpion venom in
prey capture and self-defense behaviors (Quintero-Hernández
et al., 2013).
K+-CHANNELS IN CANCER

K+-channels control K+ permeability, and play crucial roles in
both excitable and non-excitable cells (Kuang et al., 2015).
Voltage-dependent K+-channels constitute the largest and most
diverse group of voltage-gated ion channels expressed in cells
and comprise a pore-forming subunit (KVa subunit) that may
associate with auxiliary KVb subunits (Tian et al., 2014; Kuang
et al., 2015). The KVb subunits modify ion channel function and/
Frontiers in Pharmacology | www.frontiersin.org 2
or localization and increase the diversity of physiological roles
associated with these ion channels, with implications in health
and disease (Tian et al., 2014; Serrano-Novillo et al., 2019). The
scientific literature shows a considerable amount of information
indicating the role of K+-channels in cell proliferation, cancer
progression (Wulff and Castle, 2010; Ouadid-Ahidouch et al.,
2016), and migration (Chow et al., 2018), and at least four
different mechanisms have been proposed (Figure 1), and
discussed in-depth in recent dedicated reviews (Huang and
Jan, 2014; Pardo and Stühmer, 2014).

In cancer cells, there are significant alterations in the
expression of K+-channels, which is manifested not only by the
increase in their total expression, but also in the relative
proportion of their different subtypes (Jiang et al., 2017; Zavala
et al., 2019). The most prominent ion channel subfamilies
present in primary tumors and metastases include Kv, Ether-à-
go-go (EAG), and KCa (Tian et al., 2014; Kuang et al., 2015).
Kv10.1, Kv11.1, KCa1.1, and Kv1.3 are the most investigated ion
channels, due to their cancer hallmark-related properties. Their
implication in preclinical and clinical behavior related to
different cancer stages raises them as potential targets for
therapy (Table 1) (Comes et al., 2015; Prevarskaya et al., 2018).

KV11.1 (also known as the human Ether-à-go-go (hERG)
channel) is probably the most studied ion channel in the EAG
subfamily. In normal healthy tissues, its expression is usually low.
In contrast, this ion channel is expressed in a higher proportion
in leukemia, ovarian, lung, and breast cancer cells, among others
(Jehle et al., 2011). KV11.1 channels have notable participation in
the cell cycle and appear as regulators of apoptosis and cell
FIGURE 1 | The global effect of scorpion toxins on cancer-related voltage-gated K+/Na+-channels. An “activation signal” (green) indicates the pathological feature of
ion channel activity in the context of cancer development. An “inhibition signal” (red) indicates inhibitory action of scorpion toxins, meaning cancer-hallmark inhibition.
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TABLE 1 | Main characteristics of the most studied cancer-related K+/Na+-channels and their recognized modulating toxins.
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proliferation in cancer cells (Staudacher et al., 2014; Arcangeli
and Becchetti, 2015). In the heart, Kv11.1 is key for cardiac
repolarization and therefore, its off-target inhibition induces long
QT syndrome. Thus, safety pharmacological studies include
KV11.1 channel assays as the primary test, decreasing its
practical impact as an anticancer therapy-related target
(Goversen et al., 2019).

KV10.1 channel is selectively expressed in brain areas (Table 1).
However, this channel is overexpressed inmore than70%of tumors
and in cancer cell lines from the cervix, lung, breast, ovary,
neuroblast, liver, prostate, glial cells, and gastrointestinal tract
(Martıńez et al., 2015; Wang et al., 2017). Moreover, its crucial
role in tumorigenesis, cell signaling, cell cycle, and tumor growth
has been recognized (Ouadid-Ahidouch et al., 2016). Different
experimental approaches have demonstrated the relationship
between KV10.1 channel blockage and anticancer effects,
including induction of apoptosis, inhibition of cell proliferation,
and delay in tumor growth (Cázares-Ordoñez and Pardo, 2017),
suggesting that this channel is a promising candidate as a tumorand
therapeutic marker in oncology.

KCa1.1 channel is ubiquitously expressed in human tissues
such as skeletal muscle and the nervous system, with the exception
of cardiac myocytes. KCa1.1 channels regulate calcium influx into
cells and thereby modulate Ca2+-signaling processes (Contreras
et al., 2013). This channel is overexpressed in cancer cell lines from
prostate, glia, breast, pancreas, and endometrium (Table 1) (Du
et al., 2014; Du et al., 2016; Klumpp et al., 2016; Li et al., 2018; Noda
et al., 2020). In the prostate, KCa1.1 channel overexpression
regulates proliferation and migration (Du et al., 2016) and in
breast cancer, its overexpression has been associated with
advanced tumor stage, high tumor cell proliferation, and poor
prognosis (Oeggerli et al., 2012).

KV1.3 channel is mostly expressed in neurons and immune
cells (Pérez-Verdaguer et al., 2016). It is located at the plasma
membrane, sets the resting membrane potential (RMP) and
regulates cell proliferation and cell volume. Furthermore, this
channel is also located in the inner mitochondrial membrane
(mKV1.3), where it plays a role in apoptotic signaling (Teisseyre
et al., 2019) (Table 1). Overexpression of KV1.3 channels is
observed in breast, colon, smooth muscle, skeletal muscle, and
lymph node cancers (Teisseyre et al., 2015; Teisseyre et al., 2019).
Its plasma membrane expression is associated with controlling
cell proliferation by inducing a transitory hyperpolarization
necessary to augment the driving force for Ca2+ influx during
G1/S progression (Serrano-Albarrás et al., 2018). Moreover,
mKV1.3 channels play a role in drug-induced apoptosis by
mechanisms that sensitize cancer cells (Pérez-Verdaguer et al.,
2016). The potential role of KV1.3 channels as cancer therapy
targets has been recently evidenced in in vitro and in vivo
experimental models of glioblastoma, melanoma, and
pancreatic adenocarcinoma, where mKV1.3 inhibition induces
apoptotic cell death in vitro (Leanza et al., 2017; Venturini et al.,
2017; Checchetto et al., 2019). All these pieces of evidence
promoted KV1.3 channels as attractive potential molecular
targets in both cancer diagnostics and therapy (Comes et al.,
2015; Prevarskaya et al., 2018).
T
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Notwithstanding that the ion channels mentioned above
represent some of the most prominent ones in cancer; other
voltage-gated ion channels linked to cancer proliferation and
progression are upregulated in some tumors and have been
described in dedicated reviews (Huang and Jan, 2014; Serrano-
Novillo et al., 2019).
NA+-CHANNELS IN CANCER

Voltage-dependent sodium channels (VGSC) are transmembrane
proteins that are generally expressed in excitable cells, although they
are also found, to a limited extent, in non-excitable cells (Catterall,
2012; Erickson et al., 2018). There are nine pore-forming a-
subunits of sodium channels, NaV1.1-NaV1.9, encoded by the
genes SCN1A-SCN11A. The pore-forming a-subunit comprises
four highly similar transmembrane domains (I-IV), each composed
of six transmembrane segments (S1–S6). The first four
transmembrane segments of each domain constitute the voltage
sensor domain, and the last two form the pore domain (Catterall,
2012). The a-subunit properties can be modulated in a subtype-
specific manner, by association with one or more than one smaller
auxiliary b-subunit (NaVb1–4); conferring tissue-specific expression
patterns, varying voltage dependent activation and inactivation, and
increasing functional channel density at the plasma membrane
(Catterall, 2017).

The oncogenic transformation of VGSC can contribute to the
development of one or more cancer hallmarks, promoting the
transition to more aggressive cancer phenotypes, as previously
reported (Prevarskaya et al., 2018); this is particularly
exemplified by the positive correlation between VGSC
overexpression and functional dysregulation with invasion/
migration and metastatic potential (Andrikopoulos et al., 2011;
Djamgoz et al., 2019; Mao et al., 2019) (Table 1).

Proliferating and cancer cells show a RMP between -10 to -50
mV, compared to normal and non-proliferating cells (-50 to -90
mV) (Yang and Brackenbury, 2013). This RMP range fits with
the window current range for VGSC, meaning that although the
majority of VGSCs will be inactivated, the small percentage of
non-inactivated channels will lead to a persistent Na+-current,
increasing the [Na]i (Yang and Brackenbury, 2013). The
augmented intracellular Na+ concentration leads to an
increased intracellular Ca2+ concentration, either by promoting
the reverse mode of the Na+/Ca2+ exchanger (NCX) or by
inducing plasma membrane depolarization and consequent
activation of voltage-sensitive Ca2+ channels (VGCC) (Patel
and Brackenbury, 2015; Roger et al., 2015). Both mechanisms,
driven directly or indirectly by VGSC, might be considered
relevant for cancer migration and invasion. However, there are
very few reports providing experimental evidence about the
functional link between VGSC, NCX, and VGCC (Besson
et al., 2015; Angus and Ruben, 2019; Rodrigues et al., 2019)
and this aspect needs broader investigation.

A hallmark of a tumor´s extracellular space is a more acidic
environment than in normal healthy tissues (pH 6.2–6.8 instead
of pH 7.2–7.4), as a consequence of the predominant glycolytic
Frontiers in Pharmacology | www.frontiersin.org 5
metabolism of cancer cells; this particular extracellular
environment enhances the degradation of the extracellular
matrix by favoring Cathepsin B and S activation, and thus,
promotes cell migration (Besson et al., 2015; Angus and
Ruben, 2019). This extracellular acidification is dependent on
Na+/H+ exchanger 1 (NHE1), which in turn depends on the
[Na+] transmembrane gradient (Besson et al., 2015; Angus and
Ruben, 2019). Given the increased [Na]i, a reduced NHE1
activity should be expected; however, two hypotheses have
been suggested to explain this apparent contradiction. i) that
these channels allosterically regulate NHE1 by inducing a higher
rate of H+ extrusion at neutral pHi ranges, and ii) that the
expression of VGSC in late endosome vesicles is responsible for
the extra-acidification of these vesicles (Besson et al., 2015;
Angus and Ruben, 2019). In this last scenario, the extracellular
acidic environment would be a consequence of vesicle release.

Tetrodotoxin (TTX) is a toxin, mainly associated with fishes
of the Tetraodontidae family, that specifically blocks a subgroup
of VGSCs and inhibits the migration and invasion of cancer cells,
indicating that cell motility requires Na+-channel activity
(Nelson et al., 2015a) a feature mainly associated with
overexpression of the neonatal variants of NaV1.5 (nNaV1.5),
NaV1.6, and NaV1.7 (Roger et al., 2015; Mao et al., 2019).

nNaV1.5 overexpression was initially identified in the
metastatic human breast cancer cell line MDA-MB-231 and
breast biopsy samples (Table 1) (Yamaci et al., 2017). Later,
the same positive correlation was found between the expression
of nNaV1.5 channels and the high invasive potential of cancer
cells from diverse histological origins (Djamgoz et al., 2019),
suggesting that the overexpression of nNaV1.5 channel is
necessary and sufficient to increase the metastatic potential of
cancer cells (Nelson et al., 2015b).

NaV1.6 is overexpressed in cervical cancer biopsies, cancer
cell lines, and primary cultures positive for the human
papillomavirus (Table 1). In these cases, a NaV1.6 splice
variant with preferential cytoplasmatic localization is expressed
(Lopez-Charcas et al., 2018). Overexpression of NaV1.6 protein is
associated with invasive status in cervical cancer and low-grade
astrocytoma, mediated through increased MMP-2 activity
(Lopez-Charcas et al., 2018; Guan et al., 2018).

NaV1.7 is ectopically expressed in particular types of cancers
(Table 1) (Campbell et al., 2013; Xia et al., 2016; Chen et al., 2019).
In gastric cancer, this channel is associated with poor patient
outcomes by promoting cell invasion through the modulation of
H+ efflux (Xia et al., 2016). In rat prostate cancer, NaV1.7 channel
activity promotes the activation of p38/NF-kb, and Rho GTPase
signaling pathways as a linking node for controlling cellular motility,
cell adhesion, and vesicular trafficking (Chen et al., 2019). In non-
small cell lung cancer, the NaV1.7 channel is overexpressed in
metastatic cells by more than 60% when compared to their non-
metastatic counterparts (Campbell et al., 2013).

Independent of their function as auxiliary subunits, NaVb1-3
are overexpressed in different cancers and have been associated
with increased cellular motility, invasion, and metastasis
(O'Malley and Isom, 2015; Bouza and Isom, 2018).
Additionally, NaVb1 has been linked to tumor growth, increase
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of vascular endothelial growth factor secretion, and angiogenesis
(O'Malley and Isom, 2015; Bouza and Isom, 2018). In contrast,
NaVb3 functions as a tumor suppressor by inducing p53-
dependent apoptosis when overexpressed (Bouza and Isom,
2018). Thus, the NaVb-subunits are interesting and poorly
explored potential targets for cancer therapy, needing an in-
depth investigation to identify their complete clinical and
physiopathological relevance.

Overall, VGSCs and NaVb are up-regulated in numerous
types of metastatic cancer cells and play important roles in
regulating cell migration and invasion in solid tumors.
Therefore, they can be considered as key regulators of cancer
development and the metastatic cascade (Mao et al., 2019). The
noncanonical activity of VGSC that regulates other cancer
hallmarks (i.e., cell proliferation) is scarcely understood and
needs to be investigated with more detail (Black and
Waxman, 2013).
SCORPION VENOM AND THEIR TOXINS
IN CANCER

Worldwide, there are more than 2,200 scorpion species, grouped
in 19 families (Ward et al., 2018). The scorpion venom is a
complex mixture containing a great variety of proteins with
molecular weights between 3 kDa and 90 kDa, which constitute
most of the components. The main biological activity of the
scorpion venom is due to the presence of low molecular weight
peptide toxins of basic nature, which are highly cross-linked (3–4
disulfide bridges) (Quintero-Hernández et al., 2013; Kuzmenkov
et al., 2015). These peptides exhibit different pharmacological
and toxicological activities (Quintero-Hernández et al., 2013;
Kuzmenkov et al., 2015). Until now, only a few scorpion species
have been experimentally tested as anticancer agents, mainly for
cancer cells from solid tumors and to a lesser extent, for
hematopoietic cancers (Raposo, 2017).

In only two cases (B. martensii and R. junceus), the scientific
results correlate with the experiences in traditional medicine and
with the low toxicity recognized in toxicological experiments in
mice (Wang and Ji, 2005; Diaz-Garcia et al., 2019a; Dıáz-Garcıá
et al., 2019b). The anticancer effect of B. martensii scorpion
venom has been tested successfully against human glioma U251-
MG by using rodent xenograft models (Wang and Ji, 2005).
Likewise, in vivo toxicological studies have been carried out,
using R. junceus venom administered through intraperitoneal
(10 mg/kg) or oral (2,000 mg/kg) routes, and toxic effects have
not been observed (Garcia-Gomez et al., 2011; Lagarto et al.,
2020). Pharmacokinetic and biodistribution studies carried out
on breast tumor-bearing mice administered with a single dose
(12.5 mg/kg), by intravenous or oral routes, showed that medium
residence time (MRT) of venom in tumor tissue was higher than
in the remaining organs tested, suggesting a high selectivity for
tumor tissue, adding to their antitumor effect (Diaz-Garcia et al.,
2019a). Additionally, breast tumor-bearing mice injected
intraperitoneally with ten consecutive doses of R. junceus
venom (3.2 mg/kg), showed reduced tumor progression and
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reduction of Ki67 and CD31 tumor markers, confirming its
anticancer potential (Dıáz-Garcıá et al., 2019b). Two additional
scorpion species, Androctonus amoreuxi (Salem et al., 2016) and
Leiurus quinquestriatus (Al Asmari and Khan, 2016), have been
tested with some favorable in vivo anticancer effects, even though
both are two of the most dangerous species (Ward et al., 2018).
These overall promising results have focused the scientific
research on the isolation and identification of the components
responsible for the anticancer effects of scorpion venoms.

Peptides recognizing K+- and Na+-channels are prominent in
scorpion venoms, constituting more than 75% of all peptide/
proteins (de Oliveira et al., 2018; Cid-Uribe et al., 2019). Most
peptides recognizing K+ channels are pore-blocking peptides and
some of them have been studied in the context of cancer (Table
1). For example, KAaH1, a KV1.1 and KV1.3 blocker, and
KAaH2, a KV1.1 blocker, both derived from the Androctonus
australis Hector venom, have shown anticancer potential
(Aissaoui et al., 2018). KAaH1 inhibits migration and adhesion
of different cancer cells, whereas KAaH2 inhibits the
proliferation of gliomas (Aissaoui et al., 2018). Evidence
indicates that iberiotoxin inhibits cell proliferation, migration,
and invasion in breast and endometrial cancer cell lines, due to
its blocking effects on BK channels (Schickling et al., 2015; Li
et al., 2018); while charybdotoxin, a known blocker of KCa3.1,
KV1.3, and BK channels, inhibits proliferation and cell cycle
progression in pancreatic and endometrial cancer cell lines (Jager
et al., 2004; Schickling et al., 2015; Li et al., 2018). Both toxins
were isolated from the Leiurus quinquestriatus scorpion.
Similarly, margatoxin (MgTX), a peptide isolated from
Centruroides margaritatus, is a selective KV1.3-blocker that
reduces cell proliferation, and tumor progression, decreases the
expression of cell cycle regulators and increases the expression
level of proapoptotic proteins in cancer experimental models
(Jang et al., 2011). CsEKerg1 toxin, from the Centruroides
sculpturatus scorpion has been evaluated as a hERG current
inhibitor in an in vitro cancer model, suggesting its potential use
in Kv11.1 channel-overexpressing cancer cells (Nastainczyk
et al., 2002); this result opens a window of opportunity for
other Kv11.1-blocking toxins described until now (Jimenez-
Vargas et al., 2012). k-Hefutoxin 1 from Heterometrus fulvipes
scorpion venom (Moreels et al., 2017) has been identified as the
first toxin recognizing KV10.1 channels, without affecting other
voltage-gated K+-channels (Moreels et al., 2017). Moreover,
maurotoxin isolated from Scorpio maurus palmatus scorpion
can block various potassium channels, including SK, IK, KV1.1,
and KV1.3, some of which have been recognized as cancer-
related ion channels (Castle et al., 2003). Tapamin, a toxin
isolated from the Mesobuthus tamulus scorpion, can block
some cancer-related ion channels, such as SK and KCa3.1, and
exerts a cytotoxic effect on cancer cells (Pedarzani et al., 2002;
Ramirez-Cordero et al., 2014).

Although Na+-channel-modulating peptides represent the
highest percentage among all scorpion venom-derived toxins
(Cid-Uribe et al., 2019), the identification of scorpion venom
peptides that interact with metastatic-related Na+ channels has
been difficult, and only three cases have been identified (Table 1).
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Cn2, a b-toxin from Centruroides noxius Hoffmann scorpion
venom, modulates NaV1.6 activity in F11 neuroblastoma cells
(Escalona et al., 2014). In cell culture, Cn2 reduces proliferation
by increasing cells at the SubG1 and G0/G1 stages, leading to
apoptosis induction (Escalona et al., 2014). This toxin binds to
the receptor site 4, located in the S3–S4 and S1–S2 extracellular
loops of the VGSC channel domain II, enhancing channel
activation by shifting the voltage-dependence of channel
activation to the left, as a consequence of voltage-sensor
trapping (Cestele et al., 1998), and reducing the Na+ current
peak amplitude (Pedraza Escalona and Possani, 2013). AGAP,
isolated from Buthus martensii, is an a-toxin that interacts with
Na+-channels. Evidence suggests that AGAP affects the
translation of the NaVb1 subunit in cancer cells and has been
successfully evaluated against Ehrlich ascites tumor and S-180
fibrosarcoma models in vivo. Furthermore, this peptide can
inhibit cancer cell stemness, epithelial-mesenchymal transition
(EMT), migration, and invasion in MCF-7 and MDA-MB-231
human breast cancer cells in vitro and tumor growth in vivo
(Guo et al., 2016; Kampo et al., 2019). Finally, AaHIV toxin,
isolated from Androctonus australis venom, is a Na+ channel-
modulating toxin active against cancer cells (BenAissa et al.,
2019). AaHIV can interact with the extracellular loops of
segments S1–S2 in the voltage sensor domain, prolonging the
inactivation recovery time of Nav1.6 channels, and inhibiting
cancer cell proliferation in a dose-dependent manner (BenAissa
et al., 2019). Unlike anti-migratory and anti-metastatic
properties, the antiproliferative properties of Na+-channel-
interacting scorpion toxins represent an unexpected feature
that should be deeply investigated. There is no doubt that
scorpion venom peptide toxins inhibit the functional activity of
voltage-gated K+/Na+-channels, reducing their impact on the
hallmark of cancer (Figure 1).

It is worth mentioning that Chlorotoxin is the only toxin from
scorpion venom that has been successfully evaluated in cancer
preclinical and clinical trials (Cohen-Inbar and Zaaroor, 2016;
Mahadevappa et al., 2017; Cohen et al., 2018). However, this
toxin recognizes voltage-dependent Cl- channels (Dardevet et al.,
2015), which was not within the scope of this review.
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CONCLUDING REMARKS

Evidence indicates that upregulation of voltage-dependent K+ and
Na+ channels is linked to cancer hallmarks. Thus, they have
become key player as new alternatives to be used as diagnostic,
prognostic, and therapeutic targets in cancer. Scorpion venoms
contain small peptides acting either at the cell membrane or
intracellularly, and even cross the blood-brain barrier. The
mechanisms of action of scorpion venom toxins described here,
related to ion channel-modulating effects, give new insights to the
plethora of potential new mechanisms of action that could be
discovered from scorpion venom peptides. Laboratories dedicated
to scorpion venom research have usually described the anticancer
effects of scorpion venom and/or components for the first time; far
away from the anticancer drug development programs and their
resources. There is no doubt that the inclusion of these natural
products, such as plant extracts, as part of the anticancer drug
discovery programs, might increase the arsenal of active
components as potential new drugs against relatively new targets.
Importantly, the interaction of both research areas might represent
a substantial qualitative leap that could open a highway of
promising alternatives to be used as adjuvant therapeutic
approaches or conventional treatment in anticancer therapy.
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