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With the advancement of technology, drug delivery systems and molecules with more
complex architecture are developed. As a result, the drug absorption and disposition
processes after administration of these drug delivery systems and engineered molecules
become exceedingly complex. As the pharmacokinetic and pharmacodynamic (PK-PD)
modeling allows for the separation of the drug-, carrier- and pharmacological system-
specific parameters, it has been widely used to improve understanding of the in vivo
behavior of these complex delivery systems and help their development. In this review, we
summarized the basic PK-PD modeling theory in drug delivery and demonstrated how it
had been applied to help the development of new delivery systems and modified large
molecules. The linkage between PK and PD was highlighted. In particular, we exemplified
the application of PK-PD modeling in the development of extended-release formulations,
liposomal drugs, modified proteins, and antibody-drug conjugates. Furthermore, the
model-based simulation using primary PD models for direct and indirect PD responses
was conducted to explain the assertion of hypothetical minimal effective concentration or
threshold in the exposure-response relationship of many drugs and its misconception.
The limitations and challenges of the mechanism-based PK-PD model were
also discussed.

Keywords: drug delivery, modified protein, pharmacokinetic modeling, pharmacodynamic modeling, mechanism-
based PK-PD modeling, the minimal effective concentration
INTRODUCTION

The research field of drug delivery focuses on the development of new techniques to manipulate
drug absorption and disposition to achieve a desirable effect (Anselmo and Mitragotri, 2014; Asiri
and Mohammad, 2018). With the advancement of technology, drug delivery systems with more
complex architectures are developed. As a result, the drug absorption and disposition processes after
administration of these drug delivery systems become exceedingly complex. The lack of understanding
of the in vivo behavior of these delivery systems may limit their successful translation into clinics.
Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling could be used to untangle
in.org July 2020 | Volume 11 | Article 9971
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these complexities and improve the understanding of the in vivo
behavior of these drug delivery systems, consequently informing
their preclinical-to-clinical translation and clinical development.

PK-PD modeling, an indispensable component of drug
discovery and development, is a mathematical approach to
study pharmacokinetics (PK), pharmacodynamics (PD), and
their relationship (Peck et al., 1992; Danhof et al., 2005). As
Figure 1 shows, the mechanism-based PK-PD model can be
incorporated into multiple stages in drug development.
Explicitly, PK modeling quantitatively describes the process of
absorption and disposition of drug in the body. PD modeling
evaluates the time course of the pharmacological effects of drugs,
with the consideration of the mechanism of drug action and
major rate-limiting steps in the biology of the system (Mager et al.,
2003). The PK and PD modeling can quantify the relationship of
drug exposure and response, and further characterize the influences
of drug-specific, delivery system-specific, physiological and
pathological system-specific parameters on this relationship
(Agoram et al., 2007; Danhof et al., 2007). Drug-specific
parameters (e.g., drug clearance and receptor binding affinity)
illustrate the interaction between the drug and the biological
system. The drug delivery system-specific parameters represent
the properties of carriers, such as the clearance, release rate, and the
internalization rate of the carrier. The physiological system-specific
parameters represent physiological values such as blood flow, life-
spanof cells, expressionof enzymes, and transporters (Danhof et al.,
2005; Danhof et al., 2007; Sager et al., 2015).

Through the separation of drug-specific and system-specific
parameters in PK-PD modeling, the influences of various
properties of the delivery system on the in vivo drug effect
would be evaluated and facilitate its development. As shown in
the bottom panel of Figure 1, the mechanism-based PK-PD
models, developed based on the PK-PD data from preclinical
studies, can be used to optimize the drug delivery system and
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predict the dosing regimen in humans. Once the clinical PK-PD
data is available, they can be incorporated into the PK-PD
models to further optimize their design. The PK-PD modeling
can also evolve together with the clinical development to support
the final approval.

Currently, modeling technique is commonly applied in the
drug delivery system and modified large molecules. In the classic
drug delivery system, modeling has been widely utilized in aiding
the formulation design based on preclinical studies, such as
liposome, nanoparticle, and nanoemulsion (Soininen et al., 2016;
Benchimol et al., 2019; Kadakia et al., 2019).As for themodification
of large molecules related to drug delivery, such as PEGylated
protein, Fc-modified mAbs and antibody-drug conjugate (ADC),
modeling technique has beenwidely used inbothpreclinical studies
andclinical trials, providingvaluable information for theanimal-to-
human translation and dose regimen selection in clinical trials
(Mager et al., 2005; Zheng et al., 2011; Krzyzanski et al., 2013; Ait-
Oudhia et al., 2017; McSweeney et al., 2018). There are also many
review papers and book chapters on the recent advancement of
modeling in drug delivery, while those publications focused more
on pharmacokinetics (Yamashita and Hashida, 2013; Ait-Oudhia
et al., 2014; Diao and Meibohm, 2015; Singh et al., 2015; Hedrich
et al., 2018; Rodallec et al., 2018; Singh and Shah, 2018; Glassman
andMuzykantov, 2019;Heetal., 2019;Park, 2019).Onthecontrary,
in this review, the linkage between PK and PD is highlighted. We
introduce the basic theory of PK-PD modeling and its application
relevant to drug delivery. The theory of PK focuses on themodeling
of absorption and deconvolution, which is a technique used to
identify an appropriate model structure for describing complex
absorption. We further discuss the basic PD theory that links drug
concentration and therapeutic effect. A few case studies, including
the classic drug delivery system and modified large molecules, are
presented to exemplify the applicationof this theoretical framework
in practice. A model-based simulation is conducted to explain the
FIGURE 1 | Schematic of PK-PD modeling in the drug delivery system development. In the development of the drug delivery system, PK-PD modeling could guide
the formulation design and dosing regimen selection based on the preclinical and clinical data. This technique connects the drug dose to the physiological response,
related to the properties of the drug delivery system and physiological system. A chain of events illustrates the flow from the administration, drug exposure (plasma
and target site), receptor binding and activation, transduction to effect, and the effect on physiological response.
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assertion and misconception of a hypothetical minimal effective
concentration or threshold, which has been used to guide the
development of many drugs. Furthermore, the limitations and
challenges of the mechanism-based PK-PD model are discussed.
BASIC THEORY

Pharmacokinetic Modeling
PK modeling is critical to understand the time courses of drug
concentration following administration of various formulations and
quantify the dose-concentration relationship. The method of
compartmental modeling is commonly used to characterize PK
(Jones and Rowland-Yeo, 2013). After the drug enters the central
compartment (blood) via intravenous (IV) administration,
distribution, and elimination occur. A one-compartment model is
often used to describe the PK showing a monoexponential decline.
It assumes the entire body (including blood, organs, and tissues)
acts like a single, uniform compartment (Shargel et al., 1999). A
two- or three-compartment model describes the PK curve that
shows multi-exponential decay. Blood and well-perfused organs are
usually lumped together and considered as a central compartment,
while tissues with relatively slow but similar distribution rate are
grouped together as one or more peripheral compartments
(Ahmed, 2015). For drug administered via extravascular routes,
its absorption to the central compartment is usually described by a
first-order or zero-order process.

New drug delivery systems often significantly influence the
PK by modifying the in vivo drug release and absorption process.
By tuning the drug release profile, the apparent half-life of the
drug could be prolonged, and drug accumulation at the target
site may be enhanced (Shargel et al., 1999). Complex absorption
can involve multiple pathways that occur simultaneously or
sequentially, which could be challenging to model. Thus,
modelers often use a numerical deconvolution technique to
recover the complex drug absorption profile from the PK data
so that an appropriate model structure can be used accordingly
(Bonate and Steimer, 2011). More complex absorption models
may consist of sequential and/or parallel combinations of the
simple ones. Here, the simple model and basic techniques used in
the absorption modeling are discussed, including first-order and
zero-order absorption kinetics, flip-flop kinetics, and
deconvolution. While other PK techniques, such as the
population PK modeling and the physiologically based PK
(PBPK) modeling, are also commonly used in the modeling of
drug delivery system, basic concepts and principles of population
PK and PBPK modeling are beyond the scope of this report. For
readers who are interested with those two topics, several papers
in the literature provided recent advancement and excellent
review of these fields (Moss and Siccardi, 2014; Lestner et al.,
2016; Li et al., 2017; Chetty et al., 2018; Nikanjam et al., 2018;
Siccardi et al., 2018).

First-Order Absorption
The most common method to describe drug absorption after
extravascular administration assumes a first-order absorption.
Frontiers in Pharmacology | www.frontiersin.org 3
Figure 2 shows a one-compartmentmodelwithfirst-order absorption
and first-order elimination. The model equations are as follows:

dA1

dt
= −ka � A1 (1)

dA2

dt
= ka � A1 −

CL
V

� �
� A2 (2)

Cp =
A2

V
(3)

where A1 denotes the mass of drug at the administration site, ka
is the absorption rate, A2 denotes the mass of drug in the body,
CL represents the clearance, V represents the volume of
distribution, and Cp denotes the plasma drug concentration.
The initial conditions for Eqs. 1 and 2 are:

A10 = Dose � F (4)

A20 = 0 (5)

where Dose denotes the amount of drug administered, and F
represents the bioavailability. By solving the above differentiation
equations, the drug concentration, Cp, can be expressed as:

Cp =
F � ka � Dose
V(ka −

CL
V )

� (e−CL
V �t − e−ka�t) (6)

Zero-Order Absorption
Zero-order processes have also been used to describe the
absorption after extravascular drug administration, where the
drug is absorbed at a constant rate. The equations (Eqs.7 and 8)
for the one-compartment model with zero-order absorption and
linear elimination are:

dA2

dt
= K0 −

CL
V

� �
� A2 (7)

where K0 represents zero-order input. The drug concentration in
blood can be expressed as:

Cp =
K0

CL
� 1 − e−

CL
V �t

� �
(8)

Flip-Flop Kinetics
A popular formulation approach is to extend the release of drug
from the delivery system to reduce the dosing frequency and
FIGURE 2 | One compartment model with first-order absorption and first-
order elimination.
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improve patient compliance (Stege et al., 1996; Jadhav et al., 2006).
When the absorption process is much slower than the elimination
process, the apparent half-life significantly increases due to the
slow absorption step, resulting in flip-flop kinetics (Davis, 2018).
For instance, in a one-compartment model with first-order
absorption and elimination (Figure 2), when absorption rate ka
is much smaller than the elimination rate kel (derived by CL/V),
resulting in the flip-flop phenomenon. A schematic of flip-flop
kinetics in Figure 3 shows the simulated PK profile of a drug upon
IV and extravascular administration. With a rapid absorption
(ka > kel), the terminal slope of the concentration-time profile is
similar to that after IV administration route, reflecting the kel.
However, when drug absorption is slower than the elimination
(ka < kel), the absorption process becomes the rate-limiting step.
The downward concentration-time curve is less steep and reflects
the ka, while the upward curve reflects the elimination process, kel.

Flip-flop kinetics is commonly observed in the sustained- and
controlled-release formulations (Idkaidek et al., 1998; Stepensky
et al., 2001). However, the unawareness of flip-flop kinetics can
lead to the incorrect characterization of the absorption process.
In particular, the terminal phase of the PK profile might be
controlled by drug absorption instead of the elimination, which
cannot be distinguished with only PK data after extravascular
administration. Therefore, the IV data is indispensable to
recognize the flip-flop phenomenon and to accurately estimate
the PK parameters associated with the drug absorption (Reed
et al., 2017).

Deconvolution
Deconvolution has been widely used in PK modeling of drug
absorption. It generates an input profile that can be used to guide
the selection of the model structure for absorption (Deslandes et al.,
1992). By deconvolution, one can estimate the rate and extent of
absorption of various formulations via extravascular routes, such as
subcutaneous, oral, intranasal, rectal, and transdermal (Larsen et al.,
1991; Fiset et al., 1995; Björkman et al., 1997;Duquesnoy et al., 1998).

Deconvolution is achieved by the inverse operation of
convolution, which is an approach to create a new function by
combining two mathematical functions (Yanez et al., 2011). For
example, the time courses of drug concentration in plasma after
extravascular administration (Eq. 9) can be considered as a
Frontiers in Pharmacology | www.frontiersin.org 4
convolution of absorption and disposition functions and
expressed as:

F(t) = In(t) ∗D(t) (9)

whereF(t) represents the functiondescribing thedrugconcentration-
time profile, and In(t) andD(t) denote the input/absorption function
and output/disposition function, respectively. The symbol “*”
represents the convolution operation. The disposition function D(t)
can be obtained from the PK profile after IV administration. As long
as PK profiles after IV and extravascular administrations are known,
the profile for absorption function In(t) can be derived by numerical
deconvolution algorithms in software. Currently, deconvolution
algorithms are readily available in commercial software such as
Phoenix WinNonlin 8.1 (Pharsight Corporation, Cary, North
Carolina), Kinetica (Thermo Scientific), and GastroPlus
(Simulations Plus, Lancaster, CA) (da Silva Honório et al., 2013;
Balakrishnan, 2014).

Pharmacodynamic Modeling
PDmodels quantify the relationship between drug concentration
and therapeutic effect. In this section, the PDmodels that capture
the main mechanisms of drug action are presented, including
direct effect, biophase, and indirect response models. Similar to
PK, PD is usually described by the compartmental models, and
complex PD models are created by combining the simple model.

Direct Effect Models
At the beginning of the research field of pharmacodynamics, it is
recognized that the pharmacological effect is linearly related to drug
concentration or logarithm of drug concentration (Levy, 1964). It
was supported by the clinical data of tubocurarine (Levy, 1966). The
plasma drug concentration decreased exponentially after
intramuscular injection, and the degree of muscle relaxation
decreased linearly with time. However, the relationship between
the effect and tubocurarine concentration is linear only if the effect is
either less than 20% (linear) or within 20 to 80% of the maximum
(log-linear) effect (Emax) (Mager et al., 2003). Due to the limitation,
the nonlinear Emax model was introduced (Wagner, 1968). The
rationale for the Emax model is based on the classic receptor
occupancy theory, and it assumes the drug effect (E) is directly
proportional to the fraction of occupied receptors:

E = g � RC (10)

where RC represents the concentration of drug-receptors complex,
and g is the proportional factor. The drug-receptor complex
equilibrium function is described as below:

RC =
R0 � Cp

KD + Cp
(11)

where R0 is the total receptor concentration in the tissue, and KD is
the dissociation constant for the drug-receptor complex. By
combining Eq. 10 to 11, the Emax model equation could be derived:

E =
Emax � Cp

EC50 + Cp
(12)
FIGURE 3 | Schematic of extravascular administration with flip-flop kinetics.
Simulated PK profile of the same drug to illustrate the effect of differences in the
absorption rate. The slow absorption process results in a prolonged half-life.
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where Emax is the maximum possible effect and equal to g∙RC, and
EC50 is a sensitivity parameter representing the drug concentration
producing the half-maximal effect. The Emax model is frequently
used to describe the in vivo exposure-effect relationship of many
central system drugs and cardiovascular agents (Minematsu et al.,
2001; Friberg et al., 2005), where a rapid onset of drug effect is
induced. For instance, the Emaxmodel has been used to describe the
relationship between cocaine concentration and cardiovascular
effect, including systolic and diastolic blood pressures as well as
the heart rate (Laizure and Parker, 2009).

In addition to the linear relationship between the effect and
the drug-receptor complex, a nonlinear relationship has also
been proposed as the operational model of agonism (Black and
Leff, 1983). The model is expressed as:

E =
Emax � RC
KE + RC

(13)

where KE is the concentration of the drug-receptor complex that
triggers a half-maximum effect. By combining Eq.11 and Eq.13,
the relationship between the drug effect and the concentration of
agonist (A) can be derived as below:

E =
Emax � t � A

KD + (t + 1) � A (14)

where t represents the operational efficacy of agonist and is
defined by the total concentration of receptor (R0) divided by KE.
It should be noted that the concentration of drug achieving
maximum effect is no longer EC50 as defined in Eq.12. As the
concentration of drug (A) goes to infinity, the maximal effect is
described by the asymptote parameter (a) of Eq.15:

a =
Emax � t
1 + t

(15)

The concentration of agonist producing the half-maximal
effect (A50) could be derived and shown in Eq. 16:

A50 =
KD

1 + t
(16)

In Eq.15, when t is large ( t
1+t approaches to 1),a approaches to

Emax, andA50 is much smaller thanKD, suggesting the drug is a full
agonist. However, when t is small ( t

1+t approaches to 0), a is
smaller than Emax, and A50 approaches to KD, indicating a partial
agonism.Theoperationalmodel of agonismsuggested that the drug
triggering effect is a two-step process, where the first step is the
receptor binding process, and the second step is the signal-
transduction process. Therefore, it can simultaneously analyze
concentration-response data of compounds with different binding
affinities (KD) and efficacy (t), such as full and partial receptor
agonists (Danhof et al., 2007). Ithasbeenapplied inmopioid (MOP)
receptor agonists with varying affinities of receptor and intrinsic
efficacies (Scott et al., 1991; Cox et al., 1999).

The models mentioned above (the Emax model and the
operational model of agonism) describe the direct effect of drugs,
when there is no time delay between plasma concentration and
response. However, the lag between therapeutic effect and plasma
concentration is commonly observed. Depending on the
Frontiers in Pharmacology | www.frontiersin.org 5
mechanism of the delay, this phenomenon can often be explained
by either the biophase model or the indirect response model.

Biophase Distribution Model
The biophase model attributes the delay between the drug
concentration and therapeutic effect to the time that it takes
for the drug in the plasma to distribute to the target site (Sheiner
et al., 1979; Danhof et al., 2007). A biophase compartment was
proposed to represents the drug at the target site. In Figure 4, a
biophase model has been utilized to explain the delayed effect in
relation to the plasma drug concentration of d-tubocurarine
(Sheiner et al., 1979), where the plasma concentration is linked to
biophase concentration with the following differential equation:

dCe

dt
= keo � Cp − keo � Ce (17)

where Ce and Cp represent the concentrations in the biophase
and plasma, respectively, and keo represents the first-order
distribution rate constant. As the delay in response due to the
distribution process, it could be affected by the physicochemical
properties of the drug (e.g., molecule size), binding to plasma
protein, and transporter expression (Danhof et al., 2007).

Indirect Response Models
Indirect response (IDR) models are widely used to describe the
delayed response generated by the indirect mechanism.
Specifically, the drug could stimulate or inhibit either the
production or the dissipation of drug response, causing the
delay. Jusko and his group formalized four basic indirect
response models to describe diverse clinical pharmacodynamic
data (Dayneka et al., 1993; Jusko and Ko, 1994). As shown in
Figure 5, Model I and Model II show the inhibitory effect on the
input or loss of response, and Model III and Model IV show the
stimulatory effect. The models are expressed as:

dR
dt

= kin 1 −
Imax � Cp

IC50 + Cp

 !
− kout � R      Model I (18)
FIGURE 4 | Schematic of biophase model. Ce and Cp represent the
concentration at the biophase and plasma, respectively. keo represents the
first-order distribution rate constant.
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dR
dt

= kin − kout 1 −
Imax � Cp

IC50 + Cp

 !
� R      Model II (19)

dR
dt

= kin 1 +
Smax � Cp

SC50 + Cp

 !
− kout � R      Model III (20)

dR
dt

= kin − kout 1 +
Smax � Cp

SC50 + Cp

 !
� R      Model IV (21)

where R represents the response; Imax and Smax are defined as the
maximal effect of inhabitation or stimulation, respectively; IC50 and
SC50 are the concentration trigger the half-maximal effect of
inhibition or stimulation, respectively. The IDR model I has been
applied to describe the PK-PD relationship of Warfarin, a vitamin
K epoxide reductase inhibitor. Warfarin takes effect by inhibiting
the production of prothrombin and cause a delayed anticoagulant
effect (Nagashima et al., 1969). A number of papers have reviewed
the applications of IDR models (Sharma and Jusko, 1998; Mager
et al., 2003; Danhof et al., 2007). The IDR models can be extended
to characterize more complex dynamics. A life-span based IDR
model has been developed for therapeutic growth factors that alter
the production of natural cells (Krzyzanski et al., 1999). A
precursor-dependent IDR model has been used to describe the
drug effect on the production of endogenous mediators from a
specific precursor (Sharma et al., 1998).

Furthermore, integration of IDR model I with the operational
model (Eq.22) has been applied in A1 adenosine receptor
agonists with different binding affinities, to describe the
relationship between their plasma concentrations and
antilipolytic effects (Van der Graaf et al., 1997; Van der Graaf
et al., 1999):

dR
dt

= kin � 1 −
Emax � t � A

KA + (t + 1) � A
� �

− kout � R (22)

The operational model with IDR model I (Eq. 22) might be
preferred than the original IDR model I (Eq.18), because it
assumes the nonlinear transduction between the drug-receptor
complex and the effect of stimulation of kin. However, this model
requires PK-PD data from both full and partial agonists to
resolve the model parameters. Given such data are often not
available, the original IDR model is more commonly applied to
characterize the PK-PD relationship of a single compound.

and stimulatory effect, respectively.
Frontiers in Pharmacology | www.frontiersin.org 6
Application of PK-PD Modeling
In this section, we will discuss the application of PK-PD
modeling in the development of four different types of drug
delivery systems, including extended-release formulation,
modified protein, liposome, and antibody-drug conjugates.
Furthermore, a model-based simulation using a spectrum of
basic PD models was conducted to illustrate the hypothetical
minimum effective concentration (MEC).

Complex PK-PD models, as shown in Figures 6–9, are often
constructed by assembling basic PK and PDmodel components that
have been discussed in previous sections. Table 1 summarizes the
building blocks of PK and PD models that are used to characterize
the activity of the compounds in the case studies. For example, the
PK-PDmodel for rHuEPO in Figure 8 is a combination of the first-
order absorption model, target-mediated drug disposition (TMDD)
model (Mager and Jusko, 2001a), operational model of agonism
(Black and Leff, 1983), precursor-pool dependent IDR model
(Sharma et al., 1998), and transit compartment model for
transduction process (Mager and Jusko, 2001b).

Application to Paliperidone Palmitate
The development of a 3-month extended-release (ER) formulation
of paliperidone palmitate (PP3M), demonstrates how the PK-PD
modeling can contribute to the development of new ER
formulation. Paliperidone (9-hydroxy-risperidone) is an
antipsychotic agent for the acute and maintenance treatment of
schizophrenia (Samtani et al., 2009). PP3M is a long-acting
injectable formulation of paliperidone palmitate, which is the
insoluble ester prodrug of paliperidone (Cleton et al., 2014; Gopal
et al., 2015). After intramuscular injection, paliperidone palmitate
particles slowly dissolve into the localfluids at the injection site.Due
to the poor aqueous solubility, the drug release from the
formulation is a dissolution-driven process and becomes the rate-
FIGURE 5 | Indirect response model structure. kin and kout represent the
first-order production constant and the first-order dissipation rate constant of
the response, respectively. The open and solid box represents the inhibitory
FIGURE 6 | The PK-PD model of paliperidone palmitate. The absorption model
was divided into two components: f2 and (1- f2). f2 denotes the fraction that
enters the central compartment via a zero-order process, and (1-f2) denotes the
fraction that enters the central compartment via a first-order process. tlag is the lag
time, ka is the absorption rate, D2 is the duration of f2 for zero-process and equal
to tlag, CL represents clearance, RO represents receptor occupancy, ROmax

represents the maximal occupancy can be achieved, Cp represents the plasma
concentration, and KD is the equilibrium dissociation constant.
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FIGURE 7 | The PK-PD model of the free doxorubicin and liposomal doxorubicin. Free doxorubicin and liposomal doxorubicin are represented by white and grey
circles, respectively; the disposition of free doxorubicin and liposomal doxorubicin was described by a two-compartment and a one-compartment model,
respectively. The intra-tumor disposition is described by a physiological model linked with tumor blood flow rate (Q). Tumor tissue was divided into three
compartments: capillary (CAP), interstitial (INT), and tumor cell. The former two are considered in the extracellular compartment (ESC). kRES represents
reticuloendothelial system (RES) mediated elimination rate constant of liposomal doxorubicin; liposomal doxorubicin was unidirectionally transported from CAP into
INT (ktu); krel represents the first-order release rate constant of free doxorubicin from liposomes in blood, CAP and INT; distribution of free doxorubicin to tumor cells
was described using kte and ket; k21, k12, and k10 represent the micro-pharmacokinetic constants for free doxorubicin. For the pharmacodynamic model, a cell-kill
kinetic model was linked with the PK model. The mass balance equation describes the change rate of cell number, where Cs represents cell number, fb∙Cecs

represents the unbound drug concentration in ESC, ks is the cell proliferation rate constant, and k is the drug-induced irreversible cell-death rate constant.
FIGURE 8 | Mechanism-based PK-PD model of ESAs. The upper panel of the flow schematic is based on the TMDD model to describe the PK process. D and AD

represent the duration of the zero-order input and absorption compartment for the SC route, respectively. F is the bioavailability, and ka is the first-order absorption
rate constant. CA, CB, and RC represent the concentration of free ESAs, endogenous EPO (eEPO), and the EPO-receptor complex, respectively. ATA and ATB are
tissue compartments, ktpA, ktpB, kptA, and kptB are tissue distribution rate constants; konA, konB, koffA, and koffB represents second-order rate constants for forming RC
and first-order dissociation rate constants of ESAs and eEPO; Rtot represents total receptor concentration; CLA and CLB are the first-order elimination rate constants;
kint is the first-order internalization and degradation rate constant; kEPO represents the synthesis rate of eEPO. The PD model contains delay parameters, indicating
the life span of various erythropoietic cells. P1, P2, and P3 represent three different maturation-level erythroid precursor cell compartments; RET is reticulocytes, and
RBCM is mature red blood cell; HGB represents hemoglobin. KIN0 represents production process for P1 cells, Smax represents the maximal effect of RC on the
proliferation of precursor cells, and SRC50 is the concentration of drug-receptor complex to induce half of Smax; TP, TR, TB, mean residence time for precursor cell,
reticulocytes, and mature red blood cell. PD effect of the expansion of precursor cell on Rtot mediates the PK process in return, and x is the factor of proportionality.
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limiting step of absorption.Ultimately, the slow absorption resulted
in flip-flop kinetics and prolonged apparent half-life.

The formulation of PP3M was developed from a 1-month
formulation (PP1M) based on the knowledge gained from PK-PD
modeling,which identified the injectionvolumeas a significant factor
Frontiers in Pharmacology | www.frontiersin.org 8
affecting the release rate (Samtani et al., 2009). The PK-PDmodel of
paliperidone palmitate is shown in Figure 6. For the PKmodeling in
PP1M, the deconvolution technique was utilized to identify the
appropriate absorption model. A fraction of the dose was initially
absorbed via a zero-orderprocess, and the remaining fractionentered
TABLE 1 | PK-PD model components and related mechanisms of action of drugs.

Drug PK model components PD model components Contribution of PK-PD modeling

Paliperidone
palmitate

One-compartment model with
First-order elimination
First-order absorption
Zero-order absorption
Flip-flop kinetics

Dopamine D2 receptor occupancy
regulation (Kapur et al., 2000)

Optimized formulation and dose regimen
Accelerated the clinical trial

Liposomal
doxorubicin

Two-compartment model for doxorubicin
One-compartment model for liposome
Flip-flop kinetics

Biophase model (Sheiner et al., 1979)
Cell-killing kinetic model (Jusko, 1973)

Evaluated the influence of drug-, carrier-, and
system-specific parameter on anti-tumor efficacy

Erythropoiesis
stimulating
agents

Two-compartment model
First-order absorption
Flip-flop kinetics
TMDD model (Mager and Jusko, 2001a)

The operational model of agonism
(Black and Leff, 1983)
Precursor-Pool dependent indirect
response model (Sharma et al., 1998)
Transit compartment model (Mager and
Jusko, 2001b)

Quantified minimal-effect concentration
Explained the relationship between in vivo binding
affinity and effect

Brentuximab-
vedotin

Two-compartment model with
first-order elimination

Emax model (Wagner, 1968)
Biophase model (Sheiner et al., 1979)
Transit compartment model (Mager and
Jusko, 2001b)

Predicted the clinical response by preclinical data
FIGURE 9 | The multiscale PK-PD model of brentuximab-vedotin. The PK model is an integration of a modified two-compartment model in tumor to simultaneously
characterize the plasma and intracellular PK of ADC and the payload. After the IV administration of ADC, partial ADC dissociates and releases payloads. ADC and
the free drug in the central compartment can be eliminated, distribute to the peripheral compartment, or distribute to the tumor compartment. In the tumor tissue,
the free drug could enter the cell by passive diffusion and bind to the target or go back into the extracellular environment. ADC in the tumor environment interacts
with the antigen on the tumor cell membrane, and is internalized into the tumor cell. Subsequently, ADC is degraded in lysosomes to release the free drug
intracellularly. The intracellular concentration is considered as the concentration in the biophase compartment. X1ADC, X2ADC, X1PL, and X2PL, the amount of ADC or
payload in the central or peripheral compartment; V1ADC, V2ADC, V1PL, and V2PL, volume of distribution of ADC or payload in the central or peripheral compartment;
CLADC, plasma clearance of ADC; CLDADC, distribution clearance of ADC; ADCFree and ADCBound, free and bound ADC concentration in tumor tissue; Ag: total
antigen; PLFree and PLBound, free and bound payload concentration in cancer cell; DAR, average drug antibody ratio; kdis, dissociation rate of payload from antibody-
drug conjugate; kint

Ag, internalization rate of antigen inside the cell; kon
ADC and koff

ADC, association and dissociation rate constants between antibody-drug conjugate
and antigen; kon

PL and koff
PL, association and dissociation rate constants between drug and intracellular drug target; kin

PL, drug nonspecific uptake rate in cancer cell;
kout

PL, efflux rate of payload from the cancer cell; V1, V2, V3, and V4, tumor volume in the growth.
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the central compartment via a first-order process after a delay. Since
paliperidone is a dopamine receptor D2 antagonist, the clinical
response is linked with the D2 receptor occupancy (Nordström
et al., 1993; Kapur et al., 2000; Arakawa et al., 2008). The previous
study has indicated that over 70% receptor occupancy is needed for
the therapeutic effect (Arakawa et al., 2008). A PK model-based
covariate analysis suggested the absorption rate (ka) of PP1M is
negatively associated with injection volume. Thus, the PP3M
formulation was developed with an increase in the injection
volume. Together with the benefit of an increased drug
concentration in the suspension, the half-life of the new
formulation is long enough to maintain an effective concentration
over three months (Samtani et al., 2009; Samtani et al., 2016).

PK-PD modeling also accelerated the clinical development of
PP3M. Based on the Phase I study of PP3M, a populationPKmodel
was developed. Model-based simulations were conducted to find
thedosewithaPKprofilematching thatof thePP1Mformulation in
the Phase III study (Samtani et al., 2016). The PKmatching strategy
hypothesized that the drug effect was dependent on the drug
concentration in plasma above a targeting concentration
supported by the PP1M PK/PD studies. Eventually, based on the
PK-PD study of PP1M and limited single-dose Phase I data of
PP3M, a prospective dose in Phase III was selected without
conducting any Phase II dose-finding study. The Phase III study
in the end achieved predicted PK and efficacy. The development of
the PP3M formulation is a successful case, demonstrating that PK-
PD modeling can significantly accelerate the clinical development
of a drug delivery system and reduce the cost.

Application to Long-Circulating Liposomal
Doxorubicin
The PK-PD model in Figure 7 described the disposition of
liposomal doxorubicin and free doxorubicin, and quantitatively
evaluated the relationship between drug exposure and anti-tumor
effect by separating the carrier specific-, drug-specific- and system-
specific parameters (Harashima et al., 1999). The model was
developed based on reported and experimentally obtained
preclinical data. The PK profile of liposomal doxorubicin and free
doxorubicin in the blood were described by one- and two-
compartment models, respectively. Extracellular (ESC)
compartment at the tumor site is considered as the biophase
compartment, where the concentration has been linked with a
cell-killing function.A sensitivity analysis suggested that the rates of
liposome clearance (kRES) anddrug release (krel) play critical roles in
drug delivery. Lower kRES could mitigate the loss of liposomal
doxorubicin in blood tomaintain a longer blood circulation period
of liposomes. Subsequently, the accumulation of liposomes in the
tumor site (ESC) would increase, resulting in a better tumor-killing
effect. Furthermore, the simulation results suggested that amedium
release rate (krel at 0.06 h

−1) was optimal to achieve higher efficiency
in rodents. Comparedwith the rapid-release formulations, a slower
release rate could increase the free drug accumulation in the ESC
compartment, instead of being cleared in blood. However, if the
release rate was too low (krel at 0.006 h

−1), the formulation failed to
achieve the critical drug concentration to inhibit tumor
proliferation (Harashima et al., 1999). Therefore, the optimal
Frontiers in Pharmacology | www.frontiersin.org 9
medium release rate suggested by the model was a balance
between the drug elimination from blood and the drug
accumulation in the tumor site.

In this mechanism-based PK-PD model, the separation of the
delivery-specific properties from the drug- and system-specific
properties allows predicting the in vivo anti-tumor effect under
different experimental conditions. One can predict the in vivo
outcome in various tumor models by changing the system-
specific parameter (e.g., the sensitivity of the tumor to the anti-
cancer drug). Similarly, by simulating PD associated with various
carrier-specific parameters (e.g., clearance of the carrier), one can
compare the performance of different carriers. Hence, PK-PD
modeling and simulation can predict the drug effect in different
disease models for carriers with varying PK properties.

Application to Erythropoiesis-Stimulating Agents
Mechanism-based PK-PD modeling was applied to quantify the
MEC of erythropoiesis-stimulating agents (ESAs), and explain the
paradox that ESAs with lower binding affinity has a higher in vivo
activity (Yan andKrzyzanski, 2013). By binding to the erythropoietin
receptor (EPOR)on themembraneof erythroidprecursor cells, ESAs
stimulate the proliferation and differentiation of erythroid precursor
cells (Elliott et al., 2008). Current ESAs include epoetin alfa,
darbepoetin alfa, and continuous erythropoietin receptor activator
(CERA) (Locatelli and Del Vecchio, 2011). Epoetin, the first
recombinant human erythropoietin (rHuEPO), has a half-life
between 5 and 12 hours and requires thrice-weekly dosing.
Darbepoetin, a hyperglycosylated analog of rHuEPO, has 3- to 4-
fold longer half-life than epoetin. However, the receptor binding
affinity of darbepoetin is 4.3-times lower than that of epoetin, yet it
has higher in vivo efficacy (Egrie and Browne, 2001). CERA was
developed by incorporating a 30 kDa methoxy polyethylene glycol
polymer chain to rHuEPO (Macdougall, 2005). It has a longer half-
life, but its receptor binding affinity is much lower (50–100 times)
than that of epoetin.

It was hypothesized that the effect of ESAs is not dependent on
the peak concentration but on the duration of drug concentration
above a ‘critical concentration’, also known as the MEC (Kiss et al.,
2010). ESAswith a lower receptor-binding affinity are considered to
have ahigherMEC level to ensure sufficient receptor binding.Given
MEC varies among various ESAs with different receptor binding
affinity, the dosing of darbepoetin and CERA cannot be directly
derived by PK matching with their predecessor, epoetin. Without
the quantitative definition of MEC, a large number of clinical trials
had been conducted to optimize the dosing regimen of darbepoetin
(Glaspy et al., 2001; Glaspy et al., 2002; Vansteenkiste et al., 2002).

It was believed that establishing a relationship between the
MEC and receptor binding affinity may help to find the optimal
regimen for various ESAs. A mechanism-based PK-PD model
was, therefore, developed to quantify the MEC of various ESAs
based on the clinical PK-PD data of rHuEPO (Yan et al., 2012;
Yan and Krzyzanski, 2013). The model structure is provided in
Figure 8. This model incorporated the operational model of
agonism into the PK-PD modeling, which helped to dissect the
influence of receptor binding affinity on the drug effect.
Furthermore, the binding between ESAs and EPOR results in
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receptor-mediated drug elimination (Yan and Krzyzanski, 2013).
A model-based simulation was conducted to simulate the PK-PD
profile of epoetin and darbepoetin under a thricely weekly IV
bolus regimen. The PK profiles were overplayed with the C50 (Eq.
23) and showed that C50 could be considered as the MEC:

C50 =
KD

1 + t
(23)

where C50 is the ESA concentration that triggers the half-maximal
effect, t is the efficacy parameter in the operationalmodel of agonism,
and KD is the dissociation equilibrium constant of ESAs. Consistent
with the MEC hypothesis, darbepoetin has with a lower binding
affinity (higher KD), but a higher C50 value compared to epoetin.
However, the simulation also demonstrated that lower binding
affinity of darbepoetin leads to lower receptor-mediated drug
elimination and hence a slower clearance of the drug compared to
epoetin. Therefore, the duration of darbepoetin concentration
maintained above C50 is longer than that of epoetin, leading to a
higher invivoactivity (YanandKrzyzanski, 2013). Inotherwords, the
higher concentration and prolonged duration above MEC will
eventually compensate for the counteracting effects of lower
receptor binding affinity, thereby increasing their in vivo activities.
Model-based simulations further successfully predicted that CERA
had the highest in vivo potency among the three ESAs when
administered with the same molar dose at any of the approved
dosing regimens (i.e., thrice weekly, once weekly, and once every 2
weeks). Themodel also predicted that if the receptor binding affinity
was too low, thebenefit (i.e., longerhalf-life)of lower receptorbinding
affinity dissipated and eventually led to a lower in vivo activity.

Application to Brentuximab-Vedotin
PK-PD modeling is applied to improve the understanding of the
complex PK-PD relationship of ADC. ADC consists of a
monoclonal antibody (mAb), a cytotoxic payload, and a linker
(Tsuchikama andAn, 2018). After binding to the antigen expressed
on the surface of a tumor cell, ADC is internalized and transported
to lysosomes. Once inside of lysosomes, the linker is cleaved to
release the cytotoxic payload. It can enhance the selective delivery of
the payload to the tumor cell and reduce the systemic toxicity.
Brentuximab-vedotin is an anti-CD30 based ADC (Shah et al.,
2012). A multiscale PK-PD model (Figure 9) was developed to
simultaneously captures the disposition of brentuximab-vedotin
and its payload, at the cellular and physiological (plasma and tumor
tissue) level. The detailed descriptionof themodel is provided in the
legend of Figure 9. A cellular PKmodel was developed based on in
vitro experiments, to mimic the intracellular and extracellular
(tumor) PK activities of the payload and the ADC. Then, based
on the preclinical and clinical in vivo data, the PK model of ADC
andpayload inplasmaand tumorwasdeveloped. In termsof thePD
model, the Emax model was used to describe the nonlinear
relationship between the intracellular concentration and the
tumor-killing rate. The PD parameters were estimated based on the
preclinical tumorgrowth inhibitiondata inmice.By integrationof the
multiscale PK-PD model and PK data of brentuximab-vedotin in
patients, clinical responses were predicted. A retrospective
comparison suggested that model-predicted progression-free
survival and complete response rates were comparable to those
Frontiers in Pharmacology | www.frontiersin.org 10
observed in clinical trials (Bartlett et al., 2009; Younes et al., 2010;
Fanale et al., 2012). This example shows that the PK-PDmodel could
integrate the in vitro and in vivopreclinical information topredict the
ultimate clinical response.

Furthermore, this ADC disposition model offers a conceptual
framework for the design of ADC and facilitates the preclinical-to-
clinical translation. ThePKmodel described abovehasbeenapplied
in auristatin-based anti-5T4 antibody-drug conjugates (Shah et al.,
2014). Itwas discovered that the stability of the payloadon theADC
and tumor size are the two most influential factors to the payload
exposure in plasma. The linker controls the stability of payload and
its dissociation from the antibody. The occurrence of extracellular
dissociation increases the systemic exposure of toxic payload and
results in a severe adverse effect. Therefore, it offered a rationale to
modify the linker to increase the stability of the payload on ADC.
Also, the sensitivity analysis suggestedan increase in tumorsizemay
lead to a rise in payload exposure in plasma.When tumors are small
and avascular, ADC could only diffuse from the tumor periphery to
the tumor. However, as a tumor grows and becomes vascularized,
ADCcan quickly enter the tumor bydiffusion from the vasculature.
Subsequently, the payload released from ADC inside of the tumor
would also increase and diffuse to the systemic circulation. The
author suggested that the difference in tumor size between animals
and patients should be considered during the preclinical-to-
clinical translation.

Model-Based Simulation to Illustrate the
Hypothetical MEC
During the development of delivery system, maintaining drug
concentration at a threshold concentration (e.g., IC50 and EC50) in
blood or target site has often been used as a simple method to
evaluate the performance of diverse formulation (Mishra et al.,
2011). For example, drug release from nanocarriers is often
deliberately controlled to maintain the plasma drug level within
the therapeutic window between the MEC and the minimum toxic
concentration (Siegel and Rathbone, 2012). The presented case
studies also implied the presence of MEC and the importance of
maintaining drug concentration above a MEC.

In this section, we use PK-PD modeling and simulation to
illustrate the assertion and misconception of MEC. Simple direct
response model (Eq. 12), indirect response model III (Eq. 20), and
indirect model III with the operational model of agonism (Eqs. 15
and 20) are used in PD simulations to accommodate major
mechanisms of drug action. A one-compartment model with
first-order absorption and first-order elimination is used to
simulate PK. The duration of drug concentration above a
threshold was manipulated by changing the value of the
absorption rate (ka), mimicking the different release rates of
various drug delivery systems. EC50 and A50 are used as the
concentration threshold in the simulation. The relationship
between duration of drug concentration above a threshold, and
the response was investigated. All the simulations were performed
using mrgsolve, an open-source R package (Elmokadem et al.,
2019). Parameter values are provided in the legend of Figure 10.

Figure 10 shows the simulated PK, PD, and the area under the
effect versus time curve (AUEC) for each model with different
absorption rates (ka), which controls the duration of concentration
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B

C

FIGURE 10 | Model-based simulations with different absorption rates. Drug concentration, response (effect), and area under response (AUEC) versus time profiles
have been simulated with different PD models: (A) direct response model, (B) indirect model, and (C) indirect response model with operational model of agonism.
The dose is 1000 mg. The absorption rate varies from 0.001 to 1 h−1. The red dashed line shows the EC50 values or the A50 values, which are equal to 1 mg/L.
Clearance (CL) is 27 L/h, the volume of distribution (V) is 90 L (kel = 0.3 h−1), concentration of receptor complex that triggers the half-maximum effect (KE) is 5 mg/L,
Emax is 1, response production rate constant (kin) is 0.1 h−1, response elimination rate constant (kout) is 0.02 h−1, equilibrium dissociate rate (KD) is 2, target
production (ksyn) are 1 h−1, and degradation (kdeg) rate are 0.2 h−1.
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above EC50 orA50.After the last dose treatment onday 21, the order
of the AUEC under varying ka values are ka = 0.06 > ka = 0.2 > ka=
0.006 > ka = 0.6 > ka=1 > ka = 0.001, which is consistent with the
order of duration of drug concentration maintained above the
threshold (red dashed line) in the PK profiles. Themedium value of
absorption ka = 0.06 triggers the highest effect in all three models.
Comparedwithka =0.06 group, a largerka value (ka =0.2, 0.6, and1)
results in faster absorption and subsequent elimination, and a
shorter duration of concentration above the threshold. On the
otherhand,whenka is smaller (ka = 0.006 and0.001), the absorption
is too slow to achieve the threshold concentrationduring the dosing
period. These simulations demonstrate that the duration of drug
concentration above a threshold is the determining factor for the
therapeutic effect. Therefore, many formulations have focused on
optimizing the drug release rate formaintainingdrug concentration
above MEC.

Although EC50 and A50 are used as the threshold in the present
simulation, it should be noted that the threshold is a hypothetical
concept and arbitrarily selected. The concentration-effect
relationship (as expressed as Emax model or the operational model)
is a continuous function without such a threshold. It means
maintaining concentration above a specific threshold may not be
appropriate for formulation selection, unless the concentration and
response relationship is known, and the response associatedwith this
threshold concentration is desired. Therefore, simulation based on
the PK-PD relationship is preferred than a single threshold to select
the formulation and dosing regimens.
CHALLENGE AND STRATEGY

Although PK-PD modeling has facilitated drug development,
several challenges are associated with its application. First,
assumptions that are used to simplify the drug delivery process in
PK-PD modeling might not always be appropriate. A reliable
assumption requires a detailed understanding of both the
physiological system and a drug delivery system. Due to the lack
of relevant information, it’s challenging to validate these
assumptions (Suryawanshi et al., 2010). For instance, the PK-PD
model of ADC we discussed previously assumed the drug
concentration in tumor cells was related to the cell-killing effect
(Shah et al., 2012). However, without actual measurement in the
distribution cascade, the validity of this assumption is uncertain.

Furthermore, extrapolation fromanimals tohumansbasedon the
PK-PDmodeling is also challenging. For instance, in the case studyof
liposomal doxorubicin, the author suggested that the optimal rate of
drug release in rodents was different from that in humans
(Harashima et al., 1999). Although there is no universal solution,
some methods could be considered to minimize the error of scaling.
First, we should always select the appropriate animal species for
scalling tohumans (Tibbitts et al., 2010). For instance, it is knownthat
dog is themost relevant species tohuman forpreclinical cardiacsafety
assessment (Gralinski, 2003; Dubois et al., 2017). Second, allometric
scaling usingmultiple species has been applied tominimize the error
and increase the accuracy of prediction (Huh et al., 2011). This
method is commonly used to predict human PK (Amantana et al.,
2013; Di Martino et al., 2019). Third, for some pharmacological
Frontiers in Pharmacology | www.frontiersin.org 12
systems, such as the erythropoietic system, the method of scaling
from animal to human has already been established (Mager et al.,
2009).Thus, given theavailableprior information, it is relativelymore
acceptable to scale from animal to human. Fourth, PK-PDmodeling
based on data collected from tumor xenograft mice model has been
extensively used in oncology. This is supported by that the predicted
threshold concentration derived from xenograft experiments
correlates with the active dose in humans for several marketed
chemotherapy drug (Rocchetti et al., 2007). Such a correlation can
also be observed in targeted therapies, including both small and large
molecules (Yamazaki, 2013; Lindauer et al., 2017). Therefore, the
effective concentration in preclinical species could serve as a
minimum target concentration that needs to be achieved in humans.

It should be pointed out that modeling assumptions are usually
based on prior experience and knowledge and are not equal to
random guessing (even they are often not be provided bymodelers).
They contribute to thepowerofmodeling.Having assumptionshelps
us to fill the missing pieces among existing information and simplify
the understanding of a complex system. However, modelers should
be mindful of and acknowledge explicitly the assumptions and
limitations of the model, and develop models that are fit for their
purpose (Zhang et al., 2008). Methods like sensitivity analysis and
external validation can check model’s dependency on assumptions,
and allows to identify alternative assumption and the information
that is needed to in future experiments. An optimal study design can
be achieved by simulation and re-estimation, to ensure that the
informationcollected in futureexperiments is informativeon thenew
assumption (Suryawanshi et al., 2010). Once the new data become
available to validate the predicted outcome, the assumption can be
further refined and updated. Such a process can be repeated until the
final goal of modeling is achieved.
SUMMARY

In this review, we have presented the basic theory and techniques
of PK-PD modeling and highlighted its application in the
development of different drug delivery systems and modified
large molecules. PK-PD modeling and simulation are used to
illustrate the misconception of the concentration threshold. The
development of new technology can improve the understanding
of the physicochemical properties of the delivery system and
their interactions with the physiological system. Thus, the
predictive ability of PK-PD modeling can be enhanced to guide
the development of new drug delivery systems.
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