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Voltage-gated potassium channels (KVs) perform vital physiological functions and are
targets in different disorders ranging from ataxia and arrhythmia to autoimmune diseases.
An important issue is the search for and production of selective ligands of these channels.
Peptide toxins found in scorpion venom named KTx excel in both potency and selectivity
with respect to some potassium channel isoforms, which may present only minute
differences in their structure. Despite several decades of research the molecular
determinants of KTx selectivity are still poorly understood. Here we analyze MeKTx13-3
(Kalium ID: a-KTx 3.19) from the lesser Asian scorpionMesobuthus eupeus, a high-affinity
KV1.1 blocker (IC50 ~2 nM); it also affects KV1.2 (IC50 ~100 nM), 1.3 (~10 nM) and 1.6 (~60
nM). By constructing computer models of its complex with KV1.1–1.3 channels we identify
specific contacts between the toxin and the three isoforms. We then perform mutagenesis
to disturb the identified contacts with KV1.1 and 1.2 and produce recombinant MeKTx13-
3_AAAR, which differs by four amino acid residues from the parent toxin. As predicted by
the modeling, this derivative shows decreased activity on KV1.1 (IC50 ~550 nM) and 1.2
(~200 nM). It also has diminished activity on KV1.6 (~1500 nM) but preserves KV1.3 affinity
as measured using the voltage-clamp technique on mammalian channels expressed in
Xenopus oocytes. In effect, we convert a selective KV1.1 ligand into a new specific KV1.3
ligand. MeKTx13-3 and its derivatives are attractive tools to study the structure-function
relationship in potassium channel blockers.

Keywords: scorpion venom, neurotoxin, voltage-gated potassium channel, potassium channel blocker, molecular
modeling, molecular dynamics
INTRODUCTION

It is believed that potassium (K+) channels arose near the time of life origin on the earth. K+

channels are key membrane proteins of all living organisms, and about 80 genes encoding the main
a-subunits are found in mammalian genomes (Alexander et al., 2019). The most prevalent family of
K+ channels in mammals is voltage-gated potassium channels (KVs) that includes 40 isoforms
(Attali et al., 2019). These proteins control neuronal excitability, heart rate, muscle contraction,
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hormonal secretion, cell proliferation, etc. It is not surprising that
modulation of KVs provokes changes in the physiology of a cell
or even of the whole organism (Hille, 2001).

KV1.3 is one of the most studied and pharmacologically
important isoforms of K+ channels. At least two major
directions of biomedical research are associated with this type
of channel. First, KV1.3 in T lymphocytes is a validated target for
diverse autoimmune diseases, such as multiple sclerosis,
rheumatoid arthritis, and type 1 diabetes (Chandy et al., 2004;
Beeton et al., 2006; Feske et al., 2012). Second, this protein is a
crucial participant in a number of cancers because it is necessary
for cell proliferation, malignant angiogenesis, and metastasis
(Pardo and Stühmer, 2014; Chandy and Norton, 2016;
Teisseyre et al., 2019). For both of these directions selective
and effective inhibitors of KV1.3 are desirable. Novel ligands and
their derivatives are considered as promising molecular
instruments in KV1.3 research and are exploited as templates
in drug design (Wulff and Zhorov, 2008; Chandy and Norton,
2017; Prosdocimi et al., 2019). Active compounds affecting KV1.3
can be obtained from different natural sources, such as plant
extracts and animal venoms (King, 2011; Norton and Chandy,
2017), as well as synthesized de novo (Schmitz et al., 2005;
Hendrickx et al., 2020).

Scorpion venom serves as an abundant source of toxins acting
as K+ channel ligands (KTx), which have evolved and been
selected for a highly efficient interaction with their molecular
targets, including KVs (Kuzmenkov et al., 2015a). According to
Kalium database (https://kaliumdb.org/), these compounds are
polypeptides containing 23 to 78 amino acid residues and cross-
linked by two to four intramolecular disulfide bonds
(Kuzmenkov et al., 2016a; Tabakmakher et al., 2019). A
dominating number of known KTx adopts the CSa/b
(cysteine-stabilized a-helix and b-sheet) fold, but some of
them present other types of fold (Mouhat et al., 2004;
Kuzmenkov et al., 2015a). A number of structural and
pharmacological findings pinpointed important determinants
in the interfaces of KVs and KTx contact that contribute to
toxin selectivity (Aiyar et al., 1995; Hidalgo and MacKinnon,
1995; Gross and MacKinnon, 1996; Giangiacomo et al., 2004).
Perhaps most importantly, obtaining the crystal structure of the
KV1.2/KV2.1 paddle chimera in complex with charybdotoxin
(ChTx) (Banerjee et al., 2013) highlighted the key amino acids
involved in the interaction and opened new opportunities for
scaffold engineering of more selective KTx (Han et al., 2008;
Kuzmenkov et al., 2018).

Earlier, we identified and purified MeKTx13-3 toxin (Kalium
ID: a-KTx 3.19, UniProt ID: C0HJQ6, 37 residues, three disulfide
bonds) from the venom of the lesser Asian scorpion Mesobuthus
eupeus (Kuzmenkov et al., 2015b). We performed pharmacological
profiling of this KTx on several isoforms of KVs and found that it is
active on KV1.1–1.3 and 1.6 with half-maximal inhibitory
concentration (IC50) values of ~2, 100, 10, and 60 nM,
respectively. The toxin preferably blocked KV1.1, however, cross-
reactivity with KV1.3 was also observed (Kuzmenkov et al., 2019).
Since a large number of KTx inhibits both KV1.1 and 1.3 in a similar
manner (Mouhat et al., 2005; Takacs et al., 2009; Gao et al., 2010),
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the goal of our present work is to identify molecular determinants
responsible for the interaction with different channel isoforms and
switch the selectivity of MeKTx13-3 from KV1.1 to KV1.3.
MATERIALS AND METHODS

Ethics Statement
This study strictly complied with theWorld Health Organization’s
International Guiding Principles for Biomedical Research
Involving Animals. The research was carried out in AAALAC
accredited organization according to the standards of the Guide
for Care and Use of Laboratory Animals (8th edition, Institute for
Laboratory Research of Animals). All experiments were approved
by the Institutional Policy on the Use of Laboratory Animals of the
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
Russian Academy of Sciences (Protocol Number 267/2018; date
of approval: 28 February 2019).

Homology Modeling of Toxins and Their
Complexes With KVs
Since the amino acid sequence of MeKTx13-3 is identical to that
of BmKTX (Romi-Lebrun et al., 1997), the known 3D structure
of the latter (PDB ID: 1BKT) (Renisio et al., 2000) was used in
our work. KV1.1 model was generated in MODELLER 9.19
(Webb and Sali, 2016) using the KV1.2 structure (PDB ID:
3LUT) (Chen et al., 2010) as a template. KV1.3 model has been
generated previously (Kuzmenkov et al., 2017; Kuzmenkov et al.,
2018; Berkut et al., 2019) using an analogous procedure.

Complexes of MeKTx13-3 with KVs were modeled
considering that the toxin interacts with the channels similarly
to ChTx, one of the most thoroughly studied KTx (Goldstein
et al., 1994). The model of the complex of MeKTx13-3 with
KV1.2 was built on the basis of the KV1.2/2.1–ChTx complex
crystal structure (Banerjee et al., 2013): the structure of
MeKTx13-3 was spatially aligned with the structure of
channel-bound ChTx, which was subsequently replaced by the
aligned toxin. Complexes with KV1.1 and 1.3 were generated
similarly, but the first step was spatial alignment of the channel
models with the KV1.2/2.1 chimera (Kuzmenkov et al., 2017;
Kuzmenkov et al., 2018; Berkut et al., 2019).

Molecular Dynamics Simulations
The resulting complexes of MeKTx13-3 with KVs were placed
inside a lipid bilayer mimicking a neuronal membrane. We used
a pre-equilibrated fragment of bilayer (7.0 × 7.0 × 13.5 nm3; 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphoethanolamine/cholesterol, POPC :
POPE : Chl; 100:50:50 molecules, respectively, solvated with
14172 water molecules) that has been described in detail in our
previous works (Berkut et al., 2019); some phospholipid and Chl
molecules were removed to provide room for the protein. The
TIP3P water model (Jorgensen et al., 1983) and the required
number of Na+ ions (to maintain electroneutrality) were used for
resolvation. All systems were equilibrated (heated up to 37°C)
during 100 ps of molecular dynamics (MD) simulation. Positions
July 2020 | Volume 11 | Article 1010
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of the channel Ca atoms of residues not involved in the channel
pore vestibule, as well as the Nϵ atom of Lys26 in MeKTx13-3
were restrained during the equilibration to prevent
destabilization of the initial complex. Systems were then
subjected to 500 ns of MD. All simulations were performed
with the GROMACS software (Abraham et al., 2015) (version
2018) using the AMBER99SB-ILDN parameters set (Klepeis
et al., 2010). Simulations were carried out with a time step of 2
fs, imposing 3D periodic boundary conditions, in the isothermal-
isobaric (NPT) ensemble with a semi-isotropic pressure of 1 bar
using the Berendsen pressure coupling algorithm (Berendsen
et al., 1984), and at a constant temperature of 37°C using the V-
rescale thermostat (Bussi et al., 2007). Van der Waals
interactions were truncated using a 1.5-nm spherical cut-off
function. Electrostatic interactions were treated with the PME
algorithm. During the simulation, the position of the Nϵ atom of
Lys26 in each complex was restrained inside the channel pore.

Determination of Interaction Energy and
Intermolecular Contacts
We determined the intermolecular contacts during MD and
estimated residual contributions to intermolecular interaction
energy based on MD trajectory using our in-house software
package IMPULSE (Krylov et al., in preparation) analogously to
the procedures described in our previous study (Berkut et al.,
2019). Briefly, H-bonds were assigned using the parameters set
from the hbond utility of GROMACS software (Abraham et al.,
2015) (the distance D—A ≤ 0.35 nm and the angle D—H—A ≥
150° for the hydrogen bond D—H···A, where D and A are the
hydrogen bond donor and acceptor, respectively); salt bridges,
cation-p, stacking, and hydrophobic contacts were calculated
using algorithms described in our previous works (Pyrkov and
Efremov, 2007; Pyrkov et al., 2009). The AMBER99SB-ILDN
parameters set (Klepeis et al., 2010) and 1.5 nm cutoff distance
for Lennard-Jones and electrostatic interactions were used
during the intermolecular short-range non-bonded interaction
energy estimation, the latter being the sum of the Lennard-Jones
and electrostatic terms. All drawings of 3D structures were
prepared with the PyMOL Molecular Graphics System, version
1.8 (Schrödinger, LLC). Graphical representation of interaction
energy profiles was performed using Python built-in libraries and
the NumPy package.

Toxin Isolation From Scorpion Venom
Natural MeKTx13-3 (a-KTx 1.19) was isolated from the same
stock of M. eupeus venom and following the same procedure as
described previously (Kuzmenkov et al., 2015b; Kuzmenkov
et al., 2019).

Recombinant Peptide Production
Recombinant MeKTx13-3 and its derivative were produced using
an approach elaborated previously (Pluzhnikov et al., 2007).
Briefly, the peptides were produced in a bacterial expression
system as fusions with the carrier protein thioredoxin (Trx)
(McCoy and LaVallie, 1994) and recombinant human
enteropeptidase light chain (Gasparian et al., 2011) was used to
cleave the fusions.
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DNA sequences encoding MeKTx13-3 and its derivative were
constructed from synthetic oligonucleotides by PCR in two steps
(see Supplemental Figure S1). On the first step the target PCR
fragments were amplified in 5 cycles using two forward primers
and two reverse primers (F1, F2, R1, and R2). The four primers
altogether constitute a full gene sequence. For the second step,
PCR mixtures from the first step were diluted 100 times, and 1 µl
of the dilution was used as a matrix; only the terminal primers
(F1 and R1) were used for the amplification (Supplemental
Table S1). The resulting PCR fragments were cloned into the
expression vector pET-32b (Novagen) using KpnI and BamHI
restriction enzymes to produce the vectors coding for the
target polypeptides.

Escherichia coli SHuffle T7 Express cells (New England Biolabs)
were transformed using the corresponding expression vectors
and cultured at 30°C in LB medium to the mid-log phase.
Expression was then induced by 0.2 mM Isopropyl b-d-1-
thiogalactopyranoside. Cells were cultured at room temperature
(24°C) overnight (16 h) and harvested by centrifugation. The cell
pellet was resuspended in 300 mM NaCl, 50 mM Tris-HCl buffer
(pH 8.0) and ultrasonicated. The lysate was applied to a HisPur
Cobalt Resin (ThermoFisher Scientific); and the Trx-fusion proteins
were purified according to the manufacturer’s protocol.

Fusion proteins were dissolved in 50 mM Tris-HCl (pH 8.0)
to a concentration of 1 mg/ml. Protein cleavage with human
enteropeptidase light chain (1 U of enzyme per 1 mg of substrate)
was performed overnight (16 h) at 37°C. Recombinant peptides
were purified by reversed-phase HPLC on a Jupiter C5 column
(4.6 × 250 mm; Phenomenex) in a linear gradient of acetonitrile
concentration (0–60% in 60 min) in the presence of 0.1%
trifluoroacetic acid. The purity of the target peptides was
checked by MALDI MS and analytical chromatography on a
Vydac C18 column (4.6 × 250 mm; Separations Group) in the
same acetonitrile gradient.

Mass Spectrometry
Molecular mass measurements for natural and recombinant
peptides were performed using MALDI on an Ultraflex TOF-
TOF (Bruker Daltonik) spectrometer as described earlier
(Kuzmenkov et al., 2016b). 2,5-Dihydroxybenzoic acid (Sigma-
Aldrich) was used as a matrix. Measurements were carried out in
both linear and reflector modes. Mass spectra were analyzed with
the Data Analysis 4.3 and Data Analysis Viewer 4.3
software (Bruker).

Ion Channel Expression in
Xenopus Oocytes
All procedures were performed in agreement with the guidelines
of ARRIVE (Animal Research: Reporting of In Vivo
Experiments) and the “European convention for the protection
of vertebrate animals used for experimental and other scientific
purposes” (Strasbourg, 18.III.1986).

The major pipeline of ion channel expression in oocytes was
described previously (Peigneur et al., 2011). Briefly, for the
expression of KV genes (rat (r)KV1.1, rKV1.2, human (h)KV1.3,
rKV1.4, rKV1.5, and rKV1.6) in Xenopus laevis oocytes, linearized
July 2020 | Volume 11 | Article 1010
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plasmids containing the respective gene sequences were
transcribed using the T7 mMESSAGE-mMACHINE
transcription kit (Ambion). 50 nl of cRNA solution (1 ng/nl)
were injected into oocytes using a micro-injector (Drummond
Scientific). The oocytes were incubated in ND96 solution: 96 mM
NaCl, 2 mM KCl, 1.8 mM CaCl2, 2 mM MgCl2 and 5 mM
HEPES, pH 7.4, supplemented with 50 mg/l gentamycin sulfate.

Electrophysiological Recordings
Two-electrode voltage-clamp recordings were performed at
room temperature (18–22°C) using a Geneclamp 500 amplifier
(Molecular Devices) controlled by a pClamp data acquisition
system (Axon Instruments) as described (Peigneur et al., 2011).
Bath solution composition was ND96. KV currents were evoked
by 250-ms depolarization to 0 mV from a holding potential of
−90 mV, followed by 250-ms pulses to −50 mV. For current–
voltage relationship studies, currents were evoked by 10-mV
depolarization steps. Concentration–response curves were
constructed, in which the percentage of current inhibition was
plotted as a function of toxin concentration. Data were fitted
with the Hill equation: y = 100/[1 + (IC50/[toxin])

h], where y is
the amplitude of the toxin-induced effect, [toxin] is toxin
concentration, and h is the Hill coefficient. Comparison of two
sample means was performed using a paired Student’s t-test (p-
value of 0.05 was used as a threshold of significance). All data
were obtained in at least three independent experiments (n ≥ 3)
and are presented as mean ± standard error of the mean.
RESULTS

Computational Study
Amino acid sequence of MeKTx13-3 is identical to BmKTX that
was isolated from Mesobuthus martensii, a close relative of M.
eupeus (Romi-Lebrun et al., 1997). Since the 3D structure of
BmKTX is known (PDB ID: 1BKT) (Renisio et al., 2000), we used
it to generate models of MeKTx13-3 in complex with KV1.1–1.3.
The models were then subjected to MD simulations (Figures
1A–C).

To shed light on the molecular differences in MeKTx13-3
interaction with KV isoforms, we analyzed intermolecular
contacts and residual contributions to interaction energy
during the MD simulations using our in-house software
package IMPULSE (Krylov et al., in preparation). It was
observed that in complex with KV1.2 the toxin does not form
any cation-p or stacking contacts, unlike in complex with
KV1.1 or 1.3 (see Supplemental Table S2). This observation
is in good agreement with electrophysiological measurements
that displayed the preferred activity of MeKTx13-3 against
KV1.1 and 1.3 (Kuzmenkov et al., 2019). We noted the
following specific contacts between the toxin and particular
channel isoforms.

(1) MeKTx13-3 residue Lys15 forms an H-bond and a salt
bridge with KV1.1 residue Glu353 (Figure 1B). Analogous
contact with Asp351 (Figure 1D) is not observed in complex
with KV1.2, apparently due to the fact that the neighboring
Frontiers in Pharmacology | www.frontiersin.org 4
residue Arg350 repulses Lys15 and prevents this contact
formation. No contact with Thr375 was found in complex with
KV1.3 either, presumably due to the small size of the threonine
side chain and the lack of electrostatic attraction to reach Lys15.

(2) MeKTx13-3 residue Lys18 forms an H-bond with KV1.1
residue Ser354 and a cation-p contact with His355; in complex
with KV1.2 it forms an H-bond with Gln353 (Figures 1B, C). In
the complex of MeKTx13-3 with KV1.3 the conformation of the
loop containing channel-specific residues Thr375 and Gly377
(Figure 1D) during MD is such that it does not reach Lys18, so
no specific contacts are observed.

(3) MeKTx13-3 residue Gln12 forms an H-bond with KV1.2
residue Asp351 (Figure 1C). Analogous contact with Thr375
(Figure 1D) is not observed in complex with KV1.3 because the
short threonine side chain does not reach Gln12. No contact with
Glu353 is found in complex with KV1.1 because the
conformation of the loop containing channel-specific residues
during MD prevents reaching Gln12.

In addition to the observed channel-specific contacts,
MeKTx13-3 residue Asp33 makes a significant positive
contribution to the binding energy (negatively affects the
affinity) (see Supplemental Figure S2) due to electrostatic
repulsion with a conserved negatively charged residue in the
channel vestibule (Asp377/375/399 in KV1.1/1.2/1.3, see
Figure 1D).

Pharmacological profiling and detailed complex structure
analysis allow us to propose several point substitutions in
MeKTx13-3 for switching toxin selectivity. Since Gln12,
Lys15, and Lys18 form hydrogen bonds, salt bridges, and
cation-p interactions in complexes with KV1.1 and 1.2, the
general idea of the modifications was to abolish the formation
of these polar contacts. Moreover, since these toxin residues do
not form specific contacts with KV1.3, it is reasonable to
assume that such modifications will not affect the affinity to
this channel isoform significantly. Therefore, we suggested a
derivative of MeKTx13-3 in which Gln12, Lys15, and Lys18 are
replaced by Ala to reduce toxin affinity to KV1.1 and 1.2, and
Asp33 is replaced by Arg to increase its affinity to KVs
(Figure 2A).

Recombinant Toxin Production
The natural toxin was purified from crude venom as we
described previously (Kuzmenkov et al., 2015b; Kuzmenkov
et al., 2019). Recombinant MeKTx13-3 and its derivative
MeKTx13-3_AAAR (MeKTx13-3 with the following
replacements: Gln12Ala, Lys15Ala, Lys18Ala, and Asp33Arg)
were obtained according to our common protocol (Pluzhnikov
et al., 2007) using E. coli SHuffle B strain as an expression system.
Synthetic genes encoding the peptides were cloned into the pET-
32b expression vector, and Trx was used as a fusion partner to
ensure a high yield of the disulfide-containing peptides with
native conformation. The target peptides were produced as a
result of fusion protein cleavage by enteropeptidase followed by
separation using reversed-phase HPLC and identification by
MALDI MS (Figures 2B, C). The measured molecular masses
of the purified peptides were equal to the calculated values. The
final yield of the peptides was ~5 mg per 1 l of bacterial culture.
July 2020 | Volume 11 | Article 1010
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Note that the natural toxin is C-terminally amidated
(Kuzmenkov et al., 2015b), whereas this modification is
missing from the recombinant peptides.

Electrophysiology
We first compared the activity of the natural and recombinant
MeKTx13-3 (Supplemental Figure S3 and Supplemental Table
S3) on KV1.1. Recombinant peptide was less active than the
native toxin (IC50 values of 6.7 ± 2.7 and 1.9 ± 0.2 nM,
Frontiers in Pharmacology | www.frontiersin.org 5
respectively), which is probably due to the lack of C-terminal
amidation in the former.

We then estimated the activit ies of the obtained
recombinant peptides MeKTx13-3 and MeKTx13-3_AAAR
at a concentration of 10 nM against six isoforms of KVs
(KV1.1–1.6) expressed in X. laevis oocytes (Figure 3A).
Recombinant MeKTx13-3 as well as the natural toxin
inhibited almost completely (by >95%) potassium currents
through KV1.1; ~25%, ~50%, and ~15% of current through
A

B C

D

FIGURE 1 | (A–C) Modeled structure of MeKTx13-3 in complex with KV1.1–1.3. (A) Overall structure of the KV1.3–MeKTx13-3 complex after 100-ns MD simulation
inside a hydrated lipid bilayer membrane. Four channel a-subunits with identical sequences are color-coded. The pore domain helices of the channel subunit in the
foreground and voltage-sensing domain (VSD) of the adjacent subunit, as well as extended extracellular loops of the VSDs are omitted for clarity. Lipids are shown in
a semi-transparent space-filling representation; atoms are colored: oxygen, red; phosphorus, orange; nitrogen, blue; hydrogen of amino group, white; carbon of
POPC, light-yellow; carbon of POPE, yellow; and carbon of cholesterol, beige. Some lipids are omitted for clarity. MeKTx13-3 is presented in pink; residue Lys26
(plugs the channel pore) is shown as sticks. (B, C) Close-up view on the channel pore vestibule area in complexes KV1.1–MeKTx13-3 and KV1.2–MeKTx13-3,
respectively. Channels are shown in a semi-transparent representation. Lys26 and residues involved in the intermolecular contacts not present in the KV1.3–
MeKTx13-3 complex are shown as sticks. Hydrogen bonds and salt bridges are shown as dashed yellow lines. Lipids are omitted for clarity. (D) Amino acid
sequence alignment of the extracellular pore region of KV1.1–1.3 channels. Residue numbering is above each sequence; different residues are shaded gray;
sequences of S5-P loops containing channel-specific residues are underlined.
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KV1.2, 1.3, and 1.6 was blocked. At the same concentration
of 10 nM MeKTx13-3_AAAR blocked KV1.3 by ~50%,
whereas only ~15%, ~5% and ~10% was blocked in KV1.1,
1.2 and 1.6. Neither KV1.4 nor KV1.5 were affected by any of
the peptides.
Frontiers in Pharmacology | www.frontiersin.org 6
Finally, we constructed dose–response curves for the
susceptible channels (Figure 3B; see Table 1 for IC50 values
and Hill coefficients). MeKTx13-3_AAAR demonstrated a
comparable activity with native MeKTx13-3 on KV1.3 (IC50 =
8.9 ± 0.9 nM for the natural toxin and 9.1 ± 0.4 nM for the
A

B C

FIGURE 2 | Production of MeKTx13-3 and its derivative. (A) Amino acid sequence alignment of MeKTx13-3 and MeKTx13-3_AAAR. Gray shading indicates the
positions where replacements were introduced. Cysteine residues are in bold, and lines above the sequences indicate disulfide bonds. Take a note that recombinant
analogue of MeKTx13-3 does not bear the C-terminal amidation of the natural toxin. (B, C) Reversed-phase HPLC separation of recombinant MeKTx13-3 and
MeKTx13-3_AAAR after digestion by enteropeptidase. For target peptides the measured molecular masses are indicated.
A

B

FIGURE 3 | Electrophysiological profiling of MeKTx13-3 and MeKTx13-3_AAAR activities. (A) Representative traces of currents through KV1.1–1.6 in control (black)
and after application of 10 nM toxin (blue). (B) Concentration–response curves of MeKTx13-3 (left) and MeKTx13-3_AAAR (right) on KV1.1–1.3 and 1.6 obtained by
electrophysiological measurements. IC50 values are listed in Table 1.
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mutant), whereas its affinity to KV1.1 decreased dramatically
(IC50 = 541.5 ± 48.6 nM instead of 1.9 ± 0.2 nM for natural
MeKTx13-3). MeKTx13-3_AAAR also showed reduced activity
on KV1.2 (IC50 = 208.2 ± 15.2 nM compared to 105.9 ± 14.6 nM
for MeKTx13-3) and KV1.6 (IC50 = 1522.3 ± 183.4 nM instead of
63.4 ± 4.5 nM).
DISCUSSION

Animal venom serves a rich source of promising compounds
affecting ion channels, which can be utilized as potential drug
hits (Wulff et al., 2019). Detailed studies based on either toxin or
channel mutagenesis are essential for (i) the understanding of
fine molecular contacts between the toxins and very close
channel isoforms, and (ii) design and production of more
selective ligands. Hence prediction of critical amino acids
involved in toxin–channel complex formation in silico is a
convenient and powerful approach for following mutagenesis
studies (Kuyucak and Norton, 2014). For instance, such
computationally guided assay helped to design highly selective
peptide drug hits or leads, such as ShK-192 (Pennington et al.,
2009) and HsTX1[R14A] (Rashid et al., 2015).

Here, we have designed and produced a derivative of scorpion
toxin MeKTx13-3 with its selectivity switched from KV1.1 to
KV1.3. MeKTx13-3 is one of a limited number of known animal
toxins that possess selectivity to homotetrameric KV1.1
(Kuzmenkov et al., 2019). We introduced several substitutions
according to computer modeling experiments. To convert the
selectivity of MeKTx13-3 we replaced three amino acids by
alanine (Gln12Ala, Lys15Ala, and Lys18Ala) to abolish the
formation of H-bonds, salt bridges, or cation-p interactions in
the complexes with KV1.1 and 1.2. Moreover, to prevent the
electrostatic repulsion between the negatively charged Asp33 in
MeKTx13-3 and the conserved aspartic acid residue in the P-S6
loop of KVs we introduced the Asp33Arg replacement.

We produced not only MeKTx13-3_AAAR, but also
recombinant MeKTx13-3 to confirm that (i) the peptide folding
is correct, and (ii) lack of the C-terminal amidation does not
impact toxin activity dramatically. These points are of importance,
because misfolded toxins usually lose activity, whereas C-terminal
amidation can boost ligand potency (Lebrun et al., 1997; Coelho
et al., 2014). Voltage-clamp recordings in X. laevis oocytes showed
that recombinant MeKTx13-3 is ~3.5 times less potent than the
natural toxin. We attribute this decrease in activity to the
amidation. It is well known that this post-translational
modification can affect the activity of peptides. The effects may
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vary from dramatic to negligible, with most apparent cases found
in hormones (Merkler, 1994). As for potassium channel blockers,
the C-terminal amidation of ShK from the sea anemone
Stichodactyla helianthus resulted in ~4 times decreased potency
against KV1.3 (Pennington et al., 2012). Conversely, the amidation
of HsTX1 (a-KTx 6.3) from the scorpion Heterometrus spinifer
increases the activity against KV1.3 five-fold (Lebrun et al., 1997).
The effects in our case are subtle, and we decided to use the
recombinantly produced peptide MeKTx13-3 lacking the
amidation in further studies.

The designed derivative MeKTx13-3_AAAR was also tested
on six KV isoforms and as we expected the selectivity of this
analogue shifted towards KV1.3. A graphic approach to estimate
toxin specificity to a particular channel isoform (KV1.3 in our
case) is using the selectivity factor, i.e. the ratio of IC50 (or Kd)
values for two channels. MeKTx13-3 displays KV1.1/KV1.3
selectivity factor of approximately 0.2, while for MeKTx13-
3_AAAR this parameter has changed to 60 (Supplemental
Figure S4). There is a number of more KV1.3-specific toxins
and their derivatives, for instance, HsTX1, Vm24, or moka1,
demonstrating selectivity factors (KV1.1/KV1.3) of 500 or even
1000 (Romi-Lebrun et al., 1997; Takacs et al., 2009; Varga
et al., 2012).

We aligned the sequences of several dozen toxins from KTx
subfamilies a-KTx1–4, 11, 12, 15–18, and 21–24 with
comparable length and cysteine pattern to MeKTx13-3 and
found that two of the residues mutated in our study (Gln12,
the first amino acid before the second Cys residue; and Lys18, the
first amino acid after the third Cys) are quite conserved. In
numerous toxins Gln/Glu and Lys/Arg are located in these
positions, respectively. On the other hand, Lys15 between
second and third Cys and Asp33 between the fifth and sixth
Cys are variable. Within a-KTx 3 subfamily (to which
MeKTx13-3 belongs) these positions display a similar pattern
(see Supplemental Figure S4). All four residues seem to
contribute to the bioactive surface of the toxins, and at present,
there is no apparent explanation as to why two of them are more
conserved than the other two. Moreover, we cannot infer any
correlation between these residues and toxin potency
or selectivity.

One may argue that the same substitutions as we introduced
to MeKTx13-3 might bring about similar changes of selectivity in
other a-KTx 3 toxins. However, and quite unfortunately, our
current understanding of KV–KTx interactions does not allow to
predict the specificity of toxins from primary structure. It
appears that in each case molecular modeling experiments and
a detailed analysis of the contacts are required. This is because
TABLE 1 | IC50 Values (in nM) Calculated for MeKTx13-3 and Its Derivative against KV1.1–1.6.

Toxin KV1.1 KV1.2 KV1.3 KV1.4 KV1.5 KV1.6

MeKTx13-3 1.9 ± 0.2
(0.9 ± 0.1)

105.9 ± 14.6
(1.3 ± 0.3)

8.9 ± 0.9
(0.8 ± 0.2)

N/A N/A 63.4 ± 4.5
(1.0 ± 0.1)

MeKTx13-
3_AAAR

541.5 ± 48.6
(0.7 ± 0.1)

208.2 ± 15.2
(1.2 ± 0.1)

9.1 ± 0.4
(0.7 ± 0.2)

N/A N/A 1522.3 ± 183.4
(1.4 ± 0.3)
July 2020 | Volume
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one change in the sequence may actually affect how other
residues interact—due to sterical hindrances or packing effects,
electrostatic attraction or repulsion, H-bond reshuffling, or local
folding rearrangements, all of which are not easily discernible
from primary structures. For instance, in case of MeKTx13-3
Lys15 seems to make a salt bridge with Glu353 in KV1.1 (Figure
1B). Simple consideration of the primary structures would
predict the same salt bridge in KV1.2 since it has Asp351 in
the same position of the alignment (Figure 1D). This contact is
not established in molecular modeling however, due to the
neighboring Arg350, which repulses Lys15. Similarly,
MeKTx13-3 residues Lys18 and Gln12 make channel-specific
contacts due to the different folding of the channel extracellular
loops, not just the amino acid substitutions. In conclusion, we
hope to have demonstrated here the possibility of switching toxin
specificity between two very close channel isoforms based on
careful in silico design.
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