

[image: A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine]
A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine





REVIEW

published: 16 September 2020

doi: 10.3389/fphar.2020.01067

[image: image2]


A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine


Longtai You 1†, Chunjing Yang 2†, Yuanyuan Du 1, Wenping Wang 1, Mingyi Sun 1, Jing Liu 1, Baorui Ma 1, Linnuo Pang 1, Yawen Zeng 1, Zhiqin Zhang 1, Xiaoxv Dong 1*, Xingbin Yin 1* and Jian Ni 3*


1 School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China, 2 Department of Pharmacy, Beijing Shijitan Hospital Affiliated to Capital University of Medical Sciences, Beijing, China, 3 Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China




Edited by: 
Banasri Hazra, Jadavpur University, India

Reviewed by: 
Haolong Liu, Peking University Health Science Centre, China

Sutapa Biswas Majee, NSHM Knowledge Campus, India

*Correspondence: 
Xiaoxv Dong
 dxiaoxv@163.com
 Xingbin Yin
 yxbtcm@163.com
 Jian Ni
 njtcm@263.net


†These authors have contributed equally to this work


Specialty section: 
 This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology


Received: 07 December 2019

Accepted: 30 June 2020

Published: 16 September 2020

Citation:
You L, Yang C, Du Y, Wang W, Sun M, Liu J, Ma B, Pang L, Zeng Y, Zhang Z, Dong X, Yin X and Ni J (2020) A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front. Pharmacol. 11:01067. doi: 10.3389/fphar.2020.01067



Matrine (MT) is a naturally occurring alkaloid and an bioactive component of Chinese herbs, such as Sophora flavescens and Radix Sophorae tonkinensis. Emerging evidence suggests that MT possesses anti-cancer, anti-inflammatory, anti-oxidant, antiviral, antimicrobial, anti-fibrotic, anti-allergic, antinociceptive, hepatoprotective, cardioprotective, and neuroprotective properties. These pharmacological properties form the foundation for its application in the treatment of various diseases, such as multiple types of cancers, hepatitis, skin diseases, allergic asthma, diabetic cardiomyopathy, pain, Alzheimer’s disease (AD), Parkinson’s disease (PD), and central nervous system (CNS) inflammation. However, an increasing number of published studies indicate that MT has serious adverse effects, the most obvious being liver toxicity and neurotoxicity, which are major factors limiting its clinical use. Pharmacokinetic studies have shown that MT has low oral bioavailability and short half-life in vivo. This review summarizes the latest advances in research on the pharmacology, toxicology, and pharmacokinetics of MT, with a focus on its biological properties and mechanism of action. The review provides insight into the future of research on traditional Chinese medicine.
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Introduction

Matrine (MT) (Figure 1) is a naturally occurring alkaloid and a bioactive component of Chinese herbs, including Sophora flavescens and Radix Sophorae tonkinensis (Gu et al., 2019; You et al., 2019). These herbs have a long medicinal history in China and many Eastern Asian countries. In recent years, in vitro and in vivo studies have demonstrated that MT exhibits linear pharmacokinetics between 5 and 2000 ng/mL (Zhang X. L. et al., 2009), and possesses a wide range of pharmacological eﬀects, including anti-cancer, anti-inflammatory, anti-bacterial, anti-parasitic, anti-virus, anti-fibrotic and, sedative properties (Table 1). These pharmacological eﬀects have been exploited for the treatment of hepatitis (Gong et al., 2015); cardiac diseases (Liu et al., 2017b); skin diseases (Liu J. Y. et al., 2007) and many cancers, such as hepatocellular carcinoma (Wang L. et al., 2013); gastric cancer (Luo et al., 2007); breast cancer (Zhou B. G. et al., 2017), and pancreatic cancer (Huang and Xin 2017). Previous reviews reported the chemical composition and anticancer properties of MT (Huang and Xu 2016). However, to date, there are no published comprehensive and systematic reviews on MT. In this review, studies on pharmacology, toxicity, and pharmacokinetics of MT are presented so as to provide comprehensive and updated information on research on MT in the past few decades, and to investigate the therapeutic potential and safety of its components in clinical application.




Figure 1 | Chemical structure of matrine.




Table 1 | Pharmacology of matrine.







Pharmacology


Anticancer Effects of MT


Induction of Apoptosis

Apoptosis is a physiological process of autonomous, programmed cell death that is used to remove malignant cells such as cancer cells without causing damage to normal cells or surrounding tissues. Apoptosis induced by MT has been reported in diverse human cancer cells. Treatment of human hepatocellular carcinoma HepG2 and Bel7402 cells with MT at doses of 0.2–3.2 mg/mL for 24, 48, and 72 h caused a dose- and time-dependent apoptosis (Wang L. et al., 2013). Moreover, MT inhibited cell growth and induced apoptosis in HT29 cells by regulating the expressions of apoptosis-related genes. Incubation with MT enhanced apoptosis in HT29 cells via the release of cytochrome c in cytoplasm and the up-regulation of apoptotic-related genes including caspase-3, caspase-9, and Bax/Bcl-2 ratio (Chang et al., 2013). In another study, MT treatment significantly inhibited cell proliferation and induced apoptosis in K562 cells (primary chronic myeloid leukemia cells) through regulation of genes related to the JAK2/STAT3 signaling pathway (Ma et al., 2015). In that study, inhibition of the expression of IL-6 expression subsequently decreased the protein expressions of downstream JAK2 and STAT3 (Ma et al., 2015).

MT effectively induced programmed cell death in HepG2 cells through caspase-dependent and caspase-independent apoptotic pathways involving the loss of mitochondrial membrane potential, reactive oxygen species (ROS) generation, Bid-mediated AIF nuclear translocation, and cytochrome c release from the mitochondria. Moreover, MT treatment up-regulated the expression of apoptosis-related proteins Fas/Fas-L and cleaved caspase-3, while down-regulating the expressions of procaspase-3, procaspase-8, and procaspase-9 (Zhou et al., 2014). It has been reported that MT inhibited the proliferation of SO-RB50 cells and initiated apoptosis by activating the caspase family of proteins, resulting in disruption of mitochondrial permeability transition pores (Shao et al., 2014). Moreover, MT treatment triggered apoptosis in human pancreatic cancer cells (BxPC-3 and PANC-1) via decreases in the expressions of PCNA and a caspase-dependent pathway (Liu et al., 2010).

The AKT signaling pathway is an important cell signaling pathway upstream of many genes that regulate cell survival, proliferation, angiogenesis, and metabolism (Manning and Cantley, 2007). Previous studies have shown that MT exerts anti-cancer effects in human breast cancer cells (MCF-7) by inhibiting Bcl-2 protein associated with the AKT signaling pathway (Li et al., 2015). A similar study indicated that MT inhibited the growth of breast cancer MCF-7 cells by modulating the miR-21/PTEN/AKT pathway (Li L. Q. et al., 2012). Interestingly, MT also inhibited human colon cancer LoVo cell proliferation through inactivation of the AKT pathway (Zhang et al., 2014). Furthermore, Guo et al., demonstrated that MT effectively inhibited the proliferation of human ovarian cancer cells (SKOV3), and its potential mechanism might be to decrease the expression of survivin and activate caspase-dependent apoptosis (Guo et al., 2010).

The X- chromosome-linked inhibitor of apoptosis protein (XIAP), an anti-apoptotic factor from the IAP family, suppresses caspase activity (Wrzesień et al., 2004). Recent studies have demonstrated that MT treatment induced apoptosis in human gastric cancer cells (MKN45) by increasing the XIAP protein expression level, modulating NF-κB, phosphorylated extracellular signal-regulated kinase (p-ERK) and CIAP (Luo et al., 2012). Interestingly, Zhang B. et al. (2018) reported that MT could induce macropinocytosis in human colon adenocarcinoma cells (DLD-1) and down-regulate ATP level in the cells, leading to non-apoptotic cell death. This provides a new strategy for the development of MT as an anticancer drug.



Anti-Metastatic Effect of MT

Tumor metastasis is a complex process that entails decreased tumor cell adhesion and degradation and remodeling of the extracellular matrix (ECM) (Hsieh et al., 2014). Studies have shown that MT significantly inhibited A549 cell growth and migration through the down-regulation of vascular endothelial growth factor A (VEGF-A) and changes in the ratio of Bcl-2/Bax proteins (Zhang Y. et al., 2009). In another study, MT at doses of 12.5, 25, 50, 100, and 200 µg/mL, inhibited the migration and invasion of nasopharyngeal carcinoma cells (NPC-039 and CNE-2Z) through suppression of the expression of NF-κB and down-regulation of downstream matrix metalloproteinase-2 and metalloproteinase-9 (MMP-2 and MMP-9) proteins (Sun and Min, 2015). It has been demonstrated that MT effectively inhibited the invasion of highly-metastatic human breast cancer MDA-MB-231 cell in vitro by reducing the activation of MMP-9/MMP-2, enhancing the phosphorylation of AKT, and decreasing the activities of p-65, VEGFR1, and epidermal growth factor (EGF) (Yu P., et al., 2009). In addition, Yang et al. reported that MT dose-dependently inhibited the growth and invasion of bladder cancer T24 cells via the PI3K/AKT pathway, and regulation of invasion-related genes (Yang Y. et al., 2017).

It has been demonstrated that MT significantly inhibited cell proliferation and invasion in colorectal cancer cells (HT29 and DLD1) via reduction in the activation of the p38 signaling pathway (Ren, 2014). Another study demonstrated that MT significantly down-regulated the expression and phosphorylation of vasodilator-stimulated phosphoprotein (VASP), which is up-regulated in gastric cancer cells (BCG823), thereby suppressing tumor cell migration and adhesion (Zhang J. et al., 2013).



Effect of MT on Cell Cycle

Impairment of cell cycle regulation is an important process in malignant transformation. Cyclins, cyclin-dependent kinases, and their inhibitors are involved in the regulation of cell cycle progression (Shi et al., 2003). Previous studies showed that MT dose-dependently inhibited the proliferation of human retinoblastoma cells (Y79, WERI-RB1, and SO-RB50), and induced cell cycle arrest at the G0/G1 phase in a time-dependent manner. The intracellular mechanisms involved are related to increased levels of the CDK inhibitors p21 and p27, and the decreased levels of the cyclin D1 protein (Zhao et al., 2012). Melanoma M21 cells also showed similar effects (Jin et al., 2013). Moreover, studies have revealed that MT caused cell cycle arrest in S phase in gastric cancer SGC-7901 cells (Song et al., 2013; Peng et al., 2016). In addition, MT has been reported to up-regulate the expressions of p53 and p21, and down-regulate the expressions of CDK2, CDK4, cyclin D1, cyclin E, and phosphorylated Rb, leading to the arrest of vascular smooth muscle cells (VSMCs) at the G0/G1 phase (Zhu et al., 2010).



Reversion of Multidrug Resistance

Chemotherapy is the major treatment for various cancers. However, excessive expression of multi-drug resistance (MDR) in tumor cells has seriously affected the success of chemotherapy. The regulation of MDR gene expression is a complex process that is primarily associated with increases in a variety of adenosine triphosphate (ATP)-binding cassette transporters, including P-glycoprotein (P-gp), and multidrug resistance-related protein (MRP) (Hien et al., 2010; Kanagasabai et al., 2011). Previous studies have demonstrated that MT (0-2.5 mg/mL) increased the intracellular accumulation of adriamycin (ADR) and triggered its apoptotic effects in the resistant MCF-7/ADR cell line through decreased expressions of P-gp, MRP1, p-AKT, and Bcl-2 (Zhou B. G. et al., 2017). Another study also found that MT up-regulated the intracellular accumulation of doxorubicin (DOX), and induced apoptosis of K562/DOX cells through a reduction in the expression of P-gp (Chai et al., 2010). Moreover, recent studies have shown that excessive expression of survivin is closely associated with MDR (Wang Q. P. et al., 2013). Decreased mRNA and protein expressions of survivin, Oct-4, and Sox-2 may be the molecular mechanism involved in the MT-mediated reversal of paclitaxel (TAX) resistance in NCI-H520/TAX25 cells (Luo et al., 2013).



Induction of Autophagy

Autophagy is an important process of cell death through which cells degrade and circulate their own components, including rapid caspase-independent self-digestion, nuclear condensation, organelle swelling, and lysosomal degradation (Yang et al., 2011; Kondratskyi et al., 2017). In addition, apoptosis and autophagy are regulated by subtle crosstalk, and their signaling pathways are interrelated in various diseases (Wu et al., 2014). Previous studies have reported that MT inhibited the growth of HepG2 cells via induction of apoptosis and autophagy. Following MT treatment, HepG2 hepatoma cells showed obvious morphological changes, including the occurrence of a large number of autophagic vacuoles (AVs) of different sizes, and the up-regulated expression of Beclin 1, which was the first identified autophagy-inducing mammalian gene (Zhang et al., 2010). Moreover, Wang et al. showed that the inhibition of autophagy promoted apoptosis of human hepatoma cells induced by MT (Wang L. et al., 2013). In acute myeloid leukemia cell lines (HL-60, THP-1 and C1498), treatment with MT at doses of 0.25-3 g/L for 12-48 h resulted in cytotoxicity via induction of Akt/mTOR signaling inhibition-mediated apoptosis and autophagy, which is involved in increased expression of LC3-II and decreased SQSTM1/p62 ratio (Wu J. et al., 2017). Therefore, MT seems to affect both autophagy and apoptosis through crosstalk.

These findings indicate that MT inhibits the growth of various cancer cells and regulates the expressions of genes and proteins associated with apoptosis, autophagy, cell invasion, metastasis, and cell cycle arrest.




Anti-Inflammatory Effect of MT

The anti-inflammatory effect of MT been well confirmed. This effect is exerted via regulation of the expressions of inflammatory cytokines and chemokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1, IL-2, IL-4, IL-5, and IL-10; pro-inflammatory transcription factors, i.e., nuclear factor kappa-B (NF-κB), and inflammatory mediators, i.e., nitric oxide and matrix metalloproteinases (NO and MMPs). MT has been used for the treatment of rheumatoid arthritis, hepatitis, atopic dermatitis, endometritis, and enteritis (Zhang B. et al., 2011; Zhang L. et al., 2015; Jiang K. et al., 2019).

The potential mechanisms of the anti-inflammatory effects of MT may involve the following:

	Down-regulation of the expressions of inflammatory cytokines by inhibiting NF-κB.MT exerts its anti-cancer activity, partly at least, through the inhibition of NF-κB. It also plays an extensive role in regulating the inflammatory response through the NF-κB signaling pathway. In a type II collagen-induced arthritis rat model, MT exerted its anti-arthritis effects via down-regulation of pro-inflammatory cytokines and proteins (IL-6, IL-8, IL-1β, IL-17A, and TNF-α) and down-regulation of NF-κB (Pu et al., 2016). In addition, MT inhibited lipopolysaccharide (LPS)-induced increases in macrophage inflammatory protein-2 (MIP-2), TNF-α, soluble intercellular adhesion molecule-1 (ICAM-1), and NO through inhibition of the activity of NF-κB (Zhang F. et al., 2011). It has been reported that MT inhibited ovalbumin (OVA)-induced airway hyperresponsiveness (AHR) in mice by decreasing the production of IL-4 and IL-13, and increasing the expression of interferon (IFN)-γ. Furthermore, the study showed that MT suppressed the expression levels of SOCS3 in asthmatic mice and TNF-α-stimulated epithelial cells (BEAS-2B and MLE-12) by inhibiting the NF-κB signaling pathway (Sun et al., 2016). Estrogen withdrawal results in up-regulation of pro-inflammatory cytokines, thereby inducing overactivation of osteoclasts inflammation. Recent studies have shown that MT significantly prevented ovariectomy-induced osteoporosis and osteoclastogenesis in vivo, while reducing serum levels of IL-6, TNF-α, and tartrate-resistant acid phosphatase 5B (TRACP5B). Moreover, MT significantly inhibited osteoclast differentiation of RAW264.7 and bone marrow monocytes cells though the inhibition of NF-κB ligand (RANKL)-induced activation of MAPK/AKT/NF-κB pathways (Chen et al., 2017). Another study showed that MT has a protective effect on Staphylococcus aureus lipoic acid (LTA) induced endometritis by inhibiting the TLR2-mediated NF-κB pathway (Jiang K. et al., 2019).


	Decreases in the expressions of endothelial cell adhesion molecules (ECAMs). Decreased expressions of ECAMs have been shown to reduce the vascular complications induced by inflammation (Hu et al., 2013). The transcription and expression of intercellular adhesion molecule-1 (ICAM-1) could be decreased via treatment with MT in LPS-stimulated human lung epithelial A549 cells via inhibition of the activation of NF-κB and MAPK pathways (Liou et al., 2016). Moreover, MT decreased LPS-induced increases in IL-6, IL-8, and soluble intercellular adhesion molecule-1 (sICAM-1) in rat intestine microvascular endothelial cells (RIMECs) (Suo et al., 2009). In addition, it has been found that MT treatment inhibited TNF-α-induced up-regulation of vascular cell adhesion molecule-1 (VCAM−1) and ICAM−1 in human aortic smooth muscle cells through the activation of MAPK/NF-κB pathway (Liu et al., 2016).


	Reduction of the expressions of MMPs. Matrix metalloproteinases (MMPs) are involved in tumorigenesis, tumor invasion and inflammation-related diseases, e.g., osteoarthritis. It is known that MMP-3 and MMP-13 are responsible for the degradation of extracellular matrix and are associated with cartilage degradation. Studies demonstrated that MT effectively suppressed IL-1β-induced expressions of MMP-3 and MMP-13 in human articular cartilage chondrocytes via inhibition of the activation of the NF-κB and MAPK signaling pathways (Lu et al., 2015). Moreover, MT significantly inhibited the mRNA and protein expressions of MMP-1 induced by phorbol myristate acetate (PMA) through suppression of the activation of the AP-1 signaling pathway (Jung et al., 2008).


	Suppression of the production of cyclooxygenase-2 (COX-2). COX-2 induces inflammation and enhances capillary permeability through multiple stimuli, including injury, tumorigenesis, migration, and control of prostaglandin production (Flower, 2003). Studies have shown that MT possesses significant COX-1 and COX-2 inhibitory activity (Ao et al., 2009). Moreover, MT treatment alleviated the LPS-induced inflammatory response and inhibited the gene expression of COX-2 in LPS-stimulated A549 cells through regulation of the activation of MAPK/NF-κB (Liou et al., 2016).


	Other mechanisms. Besides the above-mentioned mechanisms, MT also moderates inflammation in other ways. In mice and Caco-2 cell models, MT alleviated LPS-induced inflammation and oxidative stress through reduction in the production of IL-1β, IL-17, and malondialdehyde (MDA), while increasing the expressions of chemokine receptor 7 (CCR7) (Wu G. J. et al., 2017). Furthermore, MT exhibited anti-fibrotic eﬀects, as demonstrated via suppression of hepatic infiltration of Gr1hi monocytes and inhibition of the activity of monocyte chemoattractant protein-1 (MCP-1) (Shi et al., 2013). Moreover, MT effectively reduced the mRNA expressions and cytokines (IL-17 and IFN-γ) in interleukin-10-deficient mice, and down-regulated the proportion of CD4+ T cells of mesenteric lymph node cells (Wu et al., 2016). It was also found that MT inhibited the oxidized low-density lipoprotein (ox-LDL)-induced inflammatory injury of macrophages by inhibiting the MAP kinase kinases (MKKs)/p38 MAPK signaling pathway (Zhou et al., 2019). It is worth noting that MT effectively alleviated colonic injury and intestinal inflammation by improving gut microbiota communities (i.e., Bacilli and Mollicutes), down-regulating the expression of pro-inflammatory cytokines (IL-1 and TNF-α), and increasing serum immunoglobulin G (IgG) (Li P. et al., 2019). This provides a new direction and reference for the development of MT targeting intestinal flora.






Antioxidant Property of MT

Excessive generation of ROS is involved in various pathophysiological processes such as cancer, aging, chronic inflammation, neurodegenerative diseases, and degenerative rheumatic diseases. It has been reported that MT suppressed advanced glycation end products (AGEs)-induced ROS production in human aortic endothelial cells (HAEC) (Zhang et al., 2018b). In the middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia-reperfusion (I/R) injury model, MT pretreatment for 7 consecutive days effectively decreased Bax and, caspase-3 expressions, and reduced MDA levels, while it up-regulated Bcl-2, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC), thereby attenuating MCAO-induced cerebral I/R injury (Zhao et al., 2015). In addition, MT markedly increased the expression levels of antioxidant enzymes such as NADPH quinone oxidoreductase-1(NQO-1) and heme oxygenase-1(HO-1), and decreased AGEs-induced ROS production through activation of the p38 mitogen-activated protein kinase/nuclear factor E2-related factor-2/antioxidant response elements (MAPK/Nrf2/ARE) antioxidant signaling pathway (Liu et al., 2017a). In a D-galactose- (D-gal-) induced aging mouse model, Sun et al. found that MT inhibited oxidative stress damage in the liver, plasma, and brain of mice by increasing T-AOC, T-SOD, CAT, and decreasing MDA levels. Meanwhile, MT suppressed the activation of p19/p21 and p16 pathways in the liver and hippocampus of D-gal-induced mice. These results suggest that MT plays an anti-aging role by inhibiting oxidative stress and cell senescence (Sun et al., 2018).



Antiviral Property of MT

Porcine reproductive and respiratory syndrome (PRRS) is a devastating swine disease caused by a genetically diverse RNA virus that directly affects the economics of the swine industry. Previous studies have shown that MT suppressed porcine reproductive and respiratory syndrome virus (PRRSV) infection in Marc-145 cells through direct inactivation of PRRSV, and interference with its cellular replication (Zhao et al., 2013). Subsequent studies found that MT significantly blocked the expression of N protein in Marc-145 cells and inhibited PRRSV-induced apoptosis through the suppression of caspase-3 activation (Sun et al., 2014). Moreover, Sun et al. reported that the exposure of porcine kidney cell line (PK-15) to MT resulted in a dose-dependent inhibition of DNA replication of porcine circoviruses 2 (PCV2) (Sun et al., 2015). The anti-PCV2 mechanism of MT may be related to interference with PCV2 Rep protein expression and/or interference with host cell p38/MAPK and JNK/SAPK signaling pathways (Cheung, 2003; Wei et al., 2009). Another study showed that MT exerted anti-PRRSV/PCV2 co-infection activity in vitro via the inhibition of the activation of TLR3 and 4/NF-κB/TNF-α pathways (Na et al., 2016). These results indicate that MT may be considered a major potential therapeutic drug for PRRS.

Previous studies found that MT inhibited wild-type and entecavir-resistant hepatitis B virus (HBV) in vitro, and effectively inhibited HBV replication in vivo (Liu et al., 2018). Moreover, MT interfered with infection of coxsackievirus group B 3 (CVB3) (Liu et al., 2003). Similarly, it has been found that MT inhibited CVB3 virus-induced neonatal rat cardiomyopathy, reduced the rate of apoptosis, and up-regulated the expression of phosphorylated protein kinase Bser-743 protein. The results showed that MT repaired CVB3 virus-induced cell damage through up-regulation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway (Sun et al., 2010). The in vitro inhibitory effect of MT in a model of human laryngeal carcinoma epithelial cells (Hep-2 cells) infected with respiratory syncytial virus, has been reported (Ma et al., 2002). Furthermore, MT exerted antiviral effects by inhibiting the viral RNA copy number on rhabdomyosarcoma cells, and disrupting the replication of enterovirus 71 in the mouse model (Yang et al., 2012). These results indicate that MT has a broad-spectrum antiviral potential that merits further investigation.



Antimicrobial Effect of MT

MT showed a remarkable bacteriostatic effect on Candida albicans SC5314. The bioactive minimum inhibitory concentration (MIC80) and effective concentration (EC50) values of MT were 1 and 2 mg/mL, respectively. In addition, MT reversed fluconazole -resistance of Candida albicans 215, either in the biofilm phenotype or in the free-floating form. The MIC80 and EC50 of MT were 3 and 6 mg/mL, respectively. These results indicated that MT suppressed Candida-related infections by controlling yeast-to-hypha conversion (Shao et al., 2015). Similarly, it has been reported that MT exerted strong inhibitory effects on E. coli, Bacillus subtilis, and S. aureus with MICs of 12.5, 12.5, and 25 μg/mL, respectively (Liu et al., 2011). Zhao et al. investigated the antibacterial effects of MT on drug-resistant E. coli and methicillin-resistant Staphylococcus aureus (MRSA) isolated from the uterus of dairy cows. The results showed that MT significantly inhibited the growth of drug-resistant E. coli (MIC = 12.5 mg/mL) and MRSA strains (MIC = 25 mg/mL) (Zhao and Yu, 2017). AcrAB-TolC is a three-component pump that includes cytoplasmic membrane proteins (AcrB), periplasmic proteins (AcrA), and outer membrane protein channels (TolC); over-activation of this pump resulted in multidrug-resistant (MDR) strains.

MT modulated sigB, agr, and fbe virulence genes of Staphylococcus epidermidis isolated from milk samples of clinical mastitis, down-regulated sigB and fbe genes, up-regulated the agr gene, and promoted the atlE expression of gene and synthesis of phenol-soluble peptide (PSMs), resulting in rapid shedding of bacteria from the biofilm (Zhu, 2014). In recent years, it has been reported that the Panton-Valentine leukocidin (PVL) toxin of Staphylococcus aureus may be related to the pathogenic mechanism of bovine mastitis. Jia et al. found that MT inhibited PVL-induced apoptosis of bovine mammary epithelial cells (BMEC) by down-regulating the expression of cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9 proteins (Jia et al., 2020). Furthermore, a subinhibitory concentration of MT inhibited the Staphylococcus aureus secretion of α-hemolysin in a none dose-dependent manner, thus reducing the inflammatory damage of α-hemolysin-induced BMEC cells (Feng et al., 2018). These results suggest that MT may be developed into a novel drug for the prevention and treatment of bovine mastitis. Generally speaking, MT may be considered a potential antibacterial drug for further research and development.



Anti-Nociceptive Activity

Studies have demonstrated that subcutaneous injections of MT at doses of 1-10 mg/kg reduced the number of acetic acid-induced writhing responses induced, with ED50 of 4.7 mg/kg (Kamei et al., 1997). Other studies have reported that subcutaneous injections of MT at dose of 10-100 mg/kg dose-dependently inhibited hot water induced tail-flick response in mice, with pick analgesic effect after 30 min (Xiao et al., 1999). These results imply that MT produced anti-nociceptive effects mainly through the kappa-opioid receptor, and partially through the μ-opioid receptors. However, after an intravenous injection of MT at doses of 10, 20, and 40 mg/kg, the percentage inhibition values of acetic acid-induced writhing responses in mice were 15, 25, and 55, respectively, indicating that the anti-nociceptive effect was not significant, but it had obvious anti-inflammatory effects (Qian et al., 2012). Moreover, another study showed that MT reduced neuropathic pain in a dose-dependent manner by inhibiting the expression of tumor necrosis factor-α in dorsal root ganglion (Tao et al., 2013). Studies have shown that MT (15-60 mg/kg, i.p.) had an anti-nociceptive effect on mechanical stimulation and cold stimulation of vincristine induced neuropathic pain in model mice (Dun L. L. et al., 2014). In addition, it has been shown that MT reduced vincristine-induced neuropathic pain in mice through mechanisms associated with down-regulation of expression of spinal cord Ras, phosphorylated c-Raf, p-ERK 1/2, TNF-α, and IL – 6, and up-regulation of the expression of IL-10 (Gong et al., 2016). Overall, MT has potent analgesic effects which should be exploited in drug research and development for the benefit patients suffering from pain.



Hepatoprotective Effect of MT

It has been demonstrated that MT at doses of 40, 80, and 160 mg/kg/day for 28 days mitigated high-fructose diet (HFD)-induced hepatic steatosis, and reduced the expression of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), while reducing malondialdehyde and increasing reduced glutathione. Moreover, MT significantly promoted Nrf2 translocation to the nucleus, and subsequently increased the protein expressions of the antioxidative enzymes, CAT, SOD, and GSH-Px (Zhang H. F. et al., 2013). Furthermore, Zhang et al. have shown that MT exerted antioxidant capacity not only by reducing MDA levels and increasing liver GSH production, but also via stimulating Nrf2 translocation and the expressions of its downstream antioxidant enzymes GSH-Px, SOD, CAT, HO-1, and NQO-1, suggesting that the hepatoprotective effects of MT on the liver may be related to its restoration of liver redox balance (Zhang H. F. et al., 2013).

In a high-fat-fed mouse model, MT at a dose of 100 mg/kg/day for 28 days, reduced glucose intolerance and plasma insulin levels, hepatic triglyceride levels, and obesity, without affecting caloric intake. Moreover, MT increased the mRNA and protein levels of heat shock protein-72 (HSP72) in liver tissues (Zeng et al., 2015). Furthermore, it has been reported that MT (100 mg/kg/day for 4 weeks) effectively reduced glucose intolerance and plasma insulin levels in high-fructose-fed mice by inhibiting endoplasmic reticulum (ER) stress-associated de novo lipogenesis (DNL) and increasing HSP72 protein expression in the liver (Mahzari et al., 2018). These results suggest that the hepatoprotective drug MT may be a promising novel anti-type 2 diabetes drug, and the liver is its important target organ.

In another experiment, MT at a dose of 100 mg/kg/day for 7 days, was shown to attenuate endotoxin-induced acute liver injury after hepatic ischemia/reperfusion (HIR) in rats by suppressing myeloperoxidase, nuclear factor κB activity, and macrophage-inflammatory protein-2 expression in a dose-dependent manner (Zhang F. et al., 2011). This indicates that MT might be used for the treatment of HIR-induced liver injury. It has been demonstrated that various doses of MT (50 or 100 mg/kg/day for 5 days; 20, 40, or 80 mg/kg/day for 10 days attenuated LPS-induced liver injury through modulation inflammation (Lin et al., 1997; Yu S. X. et al., 2009). Furthermore, MT at a dose of 10 mg/kg (i.p.) exhibited hepatoprotective effect against α-naphthyl isothiocyanate (ANIT)-induced liver damage via the inhibition of the ANIT-induced increase in serum ALT, alkaline phosphatase (ALP), total bilirubin (Tbil), and γ-GT (Zhai et al., 2007).

Fibrosis is one of the common causes of chronic organ failure. It is characterized by the accumulation of extracellular matrix and the destruction of normal tissue structures (Wynn, 2007). Recent evidence indicates that MT has been used as an anti-fibrotic agent to treat hepatic disorders. The anti-fibrotic eﬀects of MT (10 or 30 mg/kg/day, given 5 times twice in a week for 3 weeks) has been attributed in part to the inhibition of Gr1hi monocytes to injured liver, and the inhibition of production/activity of monocyte chemo attractant protein-1 (MCP-1) (Shi et al., 2013). Moreover, administration of MT salvianolic acid B salt at a dose of 25, 50, or 100 mg/kg/day for 56 days led to significant amelioration of fibrotic changes and decreased expressions of HA, LN, AST, ALT, hydroxyproline (Hyp), transforming growth factor beta 1 (TGF-β1), and alpha-smooth muscle actin (α-SMA). The depletion of reduced glutathione (GSH), and SOD accumulation in liver tissues were inhibited by MT salvianolic acid B salt. These results indicate that treatment with MT salvianolic acid B salt mitigated carbon tetrachloride-induced fibrosis, implying that MT is a potential anti-fibrotic agent (Gao et al., 2012). In addition, MT (100 mg/day for 90 days) was found to be effective in improving the clinical symptoms and signs of patients with chronic hepatitis B, restoring liver function and transforming serum from the hepatitis Be antigen to the HBe antibody and serum HBV DNA from positive to negative. The total effective rate of the MT group was 86.7%, and no serious side effects were observed except for a few patients with mild pain at the intramuscular injection site of MT (Long et al., 2004).



Cardioprotective Effect of MT

Previous studies showed that the JAK2/STAT3 signaling pathway is involved in the prevention of myocardial ischemia/reperfusion (I/R) injury (Boengler et al., 2008). Indeed, MT activates the JAK2/STAT3 pathway. Studies have shown that MT inhibited hypoxia/reoxygenation (H/R)-induced apoptosis of cardiac microvascular endothelial cells (CMECs) in rats, through increases in the phosphorylation of the JAK2/STAT3 signaling pathway-related proteins (Zhao et al., 2018). A similar study suggested that MT effectively up-regulated the expression of heat shock protein 70 (HSP70) and reduced lactate dehydrogenase (LDH) release, decreased activity of creatine kinase-myocardial band (CK-MB), and mitigated cardiomyocytes apoptosis via activation of the JAK2/STAT3 signaling pathway (Guo Q. P. et al., 2018). These data indicate that MT can be used as a potential JAK2/STAT3 signaling pathway activator in studies of its cardioprotective effects. Furthermore, another study confirmed that MT possesses a protective effect on rat heart failure via blocking myocardial apoptosis and β3−adrenoreceptor/endothelial nitric oxide synthase pathways (Yu et al., 2014). Moreover, results have shown that MT plays an important role in cardiovascular protection in isoproterenol-induced acute myocardial injury via its antioxidant properties. The protective effect of MT on isoproterenol-induced acute myocardial ischemia in rats was associated with the regulation of asymmetric dimethylarginine (ADMA) and endothelial nitric oxide synthase (eNOS) (Li X. et al., 2010; Li X. et al., 2012). Moreover, MT up-regulated the expressions of transforming growth factor-β1 (TGF-β1) and insulin-like growth factor-1 (IGF-1), while inhibiting the release of cardiac troponin (cTn-I) and suppressing activation of inflammatory mediator RhoA/ROCK1, thereby exerting a protective effect on isoproterenol-induced acute myocardial ischemia (Zhou et al., 2016).

Diabetic cardiomyopathy (DCM) is one of the causes of disability or death in diabetic patients, and it is often accompanied by persistent hyperglycemia, metabolic disorders, and cardiac fibrosis (Cai and Kang, 2003; Cai, 2007). Administration of MT (200 mg/kg/day for 10 days, po) improved cardiac dysfunction in DCM rats, most likely via suppression of the activation of the ROS/TLR-4 signaling pathway and reduction of the expression of myocyte apoptosis-related proteins such as caspase-8 and caspase-3 (Liu et al., 2015). It was reported that MT significantly improved cardiac function and compliance by inhibiting the ATF6 signaling pathway in DCM rats (Liu et al., 2017b). In addition, MT inactivated the TGF-β1/Smad signaling pathway by inhibiting the expression of TGF-β1 and phosphorylation of Smad2/3 in a dose-dependent manner, thereby exerting anti-fibrotic effects in DCM rats (Zhang et al., 2018a).

These results indicate that MT ameliorates the symptoms of diabetic cardiomyopathy through inhibition of the ROS/TLR-4, ATF6, or TGF-β1/Smad signaling pathways. Therefore, MT may be considered a potential therapeutic agent for diabetic cardiomyopathy and its complications.



Neuroprotective Effect of MT

Deposition of the amyloid-β protein (Aβ) in the tight structure between neurons is closely linked to the pathogenesis of AD, and its accumulation in the hippocampus and neocortex may lead to neuronal death and eventually irreversible cognitive impairment and behavioral changes (Dong et al., 2018). Studies have shown that MT, at doses of 100 and 200 mg/kg/day reduced cognitive dysfunction in AD rats through a dose-dependent reversal of imbalance in Th17/Treg cytokines ratio induced by a Aβ1-42 injection, while up-regulating Foxp3 mRNA expression and decreasing RORγt expression (Zhang Y. et al., 2015). In a similar study, it was also shown that MT repaired cognitive deficits in AD transgenic mice by blocking the Aβ/RAGE signaling pathway (Cui et al., 2016). Ni et al. also reported that MT injection reduced ibotenic acid (IBO)-induced increases in IL-1β content in AD rats, thereby protecting mitochondrial structure, improving energy metabolism, delaying neuronal apoptosis, and suppressing AD (Ni et al., 2006). Li et al. (2018) reported that the administration of MT effectively alleviated the learning and memory impairment and neuroinflammation of the LPS-induced AD mice model, with a potential mechanism involved in the inhibition of NADPH oxidase subunits GP91phox and P47phox protein expression. Yang et al. reported that MT could maintain and even strengthen the cellular nutrition of Aβ42 monomers by inhibiting the aggregation of Aβ42 monomers and synergizing with Aβ42 monomers. In addition, MT promotes the dissociation of immature Aβ42 oligomers to protect the morphological integrity of human neuroblastoma cell lines (SH-SY5Y). The underlying mechanism may be that the presence of MT-like metabolites in the human brain negatively regulates the formation of toxic Aβ42 oligomers (Yang et al., 2020). These results confirm that MT can be considered an effective multi-target compound for the prevention and treatment of AD. Furthermore, MT exerted a protective effect against PD induced in rats with 1−methyl−4−phenyl−1,2,3,6−tetrahydropyridine (MPTP), through blockage of the MPTP-induced overexpression of Nrf2 (Meng et al., 2017).

In an animal model of multiple sclerosis (MS), MT treatment (200 mg/kg/day) effectively improved the clinical symptoms of experimental autoimmune encephalomyelitis (EAE). Zhang M. L. et al. (2017) reported that MT enhanced local production of neurotrophin 3 (NT3) in microglia, astrocytes, and oligodendrocyte precursor cells, thereby protecting neural cells from tissue damage caused by CNS inflammation. It was shown for the first time that MT treatment promoted the differentiation and myelination oligodendrocytes during EAE via the activation of the PI3K/Akt/mTOR signaling pathway (Liu S. Q. et al., 2017). By directly activating the cAMP/PKA signaling pathway in astrocytes, MT up-regulated the production of the brain-derived neurotrophic factor (BDNF) and effectively protected nerve axons from CNS inflammation-induced damage. Furthermore, it was found that MT reduced the expression of NogoA, its receptor complex NgR/p75NTR/LINGO-1, and its downstream RhoA/ROCK signaling pathway, thereby promoting neuro-regeneration in damaged CNS during EAE (Kan et al., 2015; Kan et al., 2016). Studies have demonstrated that MT increased LPS-stimulated BV-2 cell viability and prevented microglial activation by suppressing the expression of heat shock protein 60 (HSP60) and toll-like receptor 4 (TLR-4), indicating that MT can be used to treat neurodegenerative diseases involving microglial activation (Zhang R. et al., 2017). It was demonstrated that MT alleviated anxiety and depression symptoms in a mouse model of burn injury by inhibiting JNK-mediated apoptosis/inflammatory signaling, oxidative stress, and reversing the burn-induced down-regulation of BDNF/VEGF in the hippocampus (Khan et al., 2020). Furthermore, Wu et al. (2018) demonstrated that MT possessed antidepressant-like effect on mice by activating the PI3K/Akt/mTOR signaling pathway in the hippocampus.

Based on these studies, MT may be used as an effective neuroprotective drug for the treatment of AD, PD, and CNS inflammation, neurobehavioral disorders, and it prevents LPS-induced neuronal injury.



Anti-Allergic Effect of MT

Asthma is an allergic lung inflammatory disease whose occurrence is related to the expression levels of IL, IgE, and eosinophil. The Th2 type cytokines, including interleukin IL-4, IL-5, and IL-13, are essential factors for the initiation and transmission of inflammatory and allergic reactions (Agrawal and Shao, 2010; Bosnjak et al., 2011). To assess the anti-allergic activity of matrine, the potential mechanism of its action was studied by using an in vivo OVA-sensitized mice model and in vitro human bronchial epithelial cells (BEAS-2B). The results demonstrated that matrine alleviated eosinophil infiltration, airway hyperresponsiveness (AHR), and airway inflammation by inhibiting Th2 cytokines or the IL-4/IL-13/STAT-6 pathway in asthmatic mice. In addition, MT pretreatment significantly reduced the production of pro-inflammatory cytokines and eosinophil chemokines in activated beas-2b cells, and inhibited the expression of ICAM-1, thereby suppressing the adhesion of eosinophil to inflammatory BEAS-2B cells (Fu et al., 2014; Huang et al., 2014). These findings suggest that MT could be developed into a drug for the treatment of allergic asthma.




Toxicology

Through in vivo experiments, the toxicity and target organs of Radix Sophorae tonkinensis extracts in ICR mice were studied, and the toxicities of its major bioactive components were compared. In these studies, administration of MT at doses of 118 and 154 mg/kg/day for 21 days produced major toxicity in the liver (Wang L. et al., 2017). In human normal liver HL-7702 cells, MT at doses of 2.5-5 mg/mL for 24 h, increased the contents of ALT, AST, ALP, LDH, and MDA, promoted the induction of cell apoptosis, and decreased the level of GSH (Zhang Q. et al., 2011). Furthermore, another study showed that MT at doses of 0.4 and 0.63 mM for 96 h induced a significant increase in zebrafish hepatocyte apoptosis, and down-regulated the oxidative stress-related gene zgc: 136383 and anti-apoptotic gene EIF4BP3 (Guo S. et al., 2018). Previous studies confirmed that MT at doses of 1-4 mg/mL for 48h inhibited cell viability and induced cell cycle arrest and apoptosis in HepaRG and HL-7702 cells, most probably through a mechanism involving inhibition of the Nrf2 pathway and activation of the ROS-mediated mitochondrial apoptotic pathway (You et al., 2018; You et al., 2019).

MT has been reported to exert neurotoxic effects. Wang et al. reported that the half-lethal dose (LD50) of MT administered by intraperitoneal injection in Kunming mice was 157.13 mg/kg. In addition, histopathological observation showed that small softening foci were formed in the brain tissue of mice, and part of the nerve nuclei were necrotic or even broken, indicating that one of the main toxic target organs of MT is the nervous system (Wang et al., 2010). A study showed that when given at doses of 10 and 40 mg/kg/day for 60 days, MT inhibited the central nervous system of ICR mice, and impaired their balance and coordination (Liang et al., 2015). Investigation of the relationship between MT-induced neurotoxicity and oxidative stress in PC12 cells indicated that MT induced high level of oxidative stress after treatment with graded concentrations of MT (2-8 mM) for 48 h, resulting in a reduction of SOD and an increase in ROS and MDA, as well as activation of the mitochondria-dependent apoptotic pathway (Shen et al., 2017). In terms of reproductive toxicity, Luo et al. (2015) was the first to show that MT (100-200 µM) suppressed mouse sperm function by reducing sperm [Ca2+]i and inhibiting the phosphorylation of ERK1/2. Moreover, further studies indicated that MT (10 ang50 mg/kg/day for 30 days) inhibited mouse sperm function through the [Ca2+]i-related mechanism via the CatSper channel, which is the main channel for controlling extracellular Ca2+ influx in mouse sperm (Luo et al., 2015; Luo et al., 2016). Moreover, it was found that the vinegar-processing method reduces the oral toxicity of Sophora alopecuroides L. containing MT and other MT-type alkaloids mainly due to a sharp decrease of cytisine (Zhang C. X. et al., 2018). These results indicated that the toxicity of Sophora alopecuroides L. might be related to dose and/or drug-drug interactions. In summary, the toxic effects of MT in clinical use remains unclear. These findings highlight the need to assess the risk of human exposure to MT.



Pharmacokinetics

The absorption, distribution, metabolism, and excretion (ADME) processes of drugs in vivo are regulated by a variety of factors (dose, administration, and drug interaction). Wang and Huang (1992) was the first to report that intravenous administration of MT to rabbits at a dose of 40 mg/kg resulted in plasma concentration-time profiles consistent with the two-compartment open model, and the relationship between its effect and the effect of compartment concentration was consistent with the sigmoid Emax model (Wang and Huang, 1992). After oral administration of MT at doses of 300 mg/kg in beagle dogs, the drug was rapidly distributed and was eliminated from plasma with a terminal half-life (t1/2β) of 4.45 ± 0.83 h (Li Z. W. et al., 2010). Moreover, Zhao et al. (2010a) studied the pharmacokinetics of intramuscularly administered MT (30 mg/kg) in rats. The results showed that intramuscular administration of MT resulted in better absorption than oral administration, and the distribution from the central compartment to the peripheral compartment was faster. Moreover, its absolute bioavailability was higher than that of oral administration, and its t1/2β and areas under concentration time curve (AUC) were 3.509 h and 90.984 mg/L h, respectively. It has been speculated that the pharmacological action was stronger with intramuscular administration than oral administration, and the maintenance time was also longer (Zhao et al., 2010a). It has also been shown that after an intravenous bolus injection of MT (2 mg/kg) to rats, the blood concentration of MT reached a maximum of 2412 ± 362 ng/ml, and subsequently quickly decreased. When the same dose of MT was orally administered to rats, it was easily absorbed and reached Cmax of 94.6 ± 38.6 ng/ml after approximately 105 min (Yang et al., 2010). These results show that the Cmax and Tmax values of MT after oral administration were not significantly different from those reported by Wu et al., 2003; Zhang et al., 2008. Zhang et al. showed that the pharmacokinetics of MT in rats after oral administration of flave Sophora scens Ait. extracts (0.56 g/kg) was consistent with the two-compartment model, with Cmax and Tmax of 2529 ng/ml and 2.08 h, respectively (Zhang et al., 2010). In addition, Wu et al. performed pharmacokinetic studies on rats after oral administration of MT at a dose of 40 mg/kg, and reported Cmax and Tmax of approximately 3900 ng/ml and 50 min, respectively (Wu et al., 2003). In the Caco-2 cell model, the absorption permeability of MT was regulated by pH, while in the rat intestinal perfusion model, the absorption of MT was significantly different in the four intestinal segments (ileum, colon, duodenum, and jejunum) of the rat. In addition, Zhao et al. used in vitro rat liver microsomal model studies to reveal that MT could not be metabolized by CYP450 and UGT enzymes, indicating that MT may not undergo extensive first-pass metabolism after oral administration (Zhao et al., 2010a).

It has been suggested that the tissue distribution characteristics of MT solution (MS), MT liposome (ML), and MT stealth liposome (LML) were significantly different after intravenous administration of MT in rats at a single dose of 15 mg/kg. After administration of MT, it can be rapidly distributed to various tissues and organs, such as liver, spleen, and kidney. However, compared with the MS group, the LML group significantly reduced the uptake of MT by the liver and spleen, and improved the bioavailability of MT in rats (Wu et al., 2009). Tang et al. used an ultra-performance liquid chromatography–tandem mass spectrometry method to systematically study the pharmacokinetic behaviors of radix Sophorae tonkinensis extracts. The results indicated that oral administration of radix S. tonkinensis extracts exhibited different pharmacokinetic behavioral changes, when compared with pure oxymatrine (OMT). It was speculated that the potential mechanism was that other complex components in the extracts affected the transformation of OMT to MT (Tang et al., 2013). Moreover, after oral administration of kushen-gancao decoction, the concentrations of MT in the serum of rats was much lower than that of glycyrrhetinic acid (GA), suggesting that the binding of MT to organs was higher, while the absorption and blood distribution were lower (Wang et al., 2014).



Drug-Drug Interactions of MT

Recently, enhancement of efficacy and/or toxicity due to drug-drug interactions has been a key consideration in the development of new drugs in pre-clinical and clinical investigations (Pai et al., 2018). Pu et al. showed that MT combined with cisplatin, 5-fluorouracil, and paclitaxel, respectively, effectively inhibited the proliferation of A549 cells and showed dose-dependent anticancer effects (Pu et al., 2018). It has been reported that a combination of MT and cisplatin synergistically inhibited proliferation, and induced apoptosis of rhabdomyosarcoma (RMS) RD cells, through a mechanism involving inhibition of mRNA expression of XIAP mRNA (Li et al., 2016). Another study found that MT and cisplatin synergistically suppressed the growth of urothelial bladder cancer cells (EJ, T24, BIU and 5637 cells) by inhibiting the VEGF/PI3K/Akt signaling pathway (Liao et al., 2017). Moreover, the protein expression levels of topoisomerase (TOPO) I, Bax, and caspase-3 were up-regulated in HT29 cells treated with a combination of MT and irinotecan (Duan et al., 2017). Rong et al. reported that MT combined with platinum-based doublet chemotherapy (PBDC) had a lower adverse reaction rate, higher response rate (RR), disease control rate (DCR) and mean survival time (MST), and better quality of life (QOL) than PBDC alone (Rong et al., 2015). It has been reported that the co-administration of MT and oxymatrine synergistically inhibits ATP production and cell proliferation of human umbilical vein endothelial cells (ECV304), thereby achieving indirect antitumor effects against tumor angiogenesis (Wang S. J. et al., 2017). All of these studies showed that MT could strengthen the efficacy of many anticancer drugs through drug-drug interactions.

In a rat hepatic stellate cell line (HSC-T6), it was reported that a combination of MT and glycyrrhizin (100 µM MT+glycyrrhizin) inhibited proliferation of activated HSCs and reduced levels of collagen I and hexadecenoic acid (HA). It was also found that combination of MT and glycyrrhizin, 1 mg/mL MT and 1 mg/mL glycyrrhizin, given at a dose of 0.1 mL/100g body weight significantly reduced serum laminin (LN), HA and procollagen type-III (PC-III) levels in a rat model of CCl4-induced liver fibrosis, when compared with MT or glycyrrhizin alone (Zhao et al., 2012). Administration of a mixture of 1 mg/mL glycyrrhizin and 1 mg/mL MT to mice at a dose of 0.5 mL/20g body weight decreased mortality of acetaminophen-overdosed mice, reduced acetaminophen-induced hepatotoxicity, and decreased the area and number of glutamyl transpeptidase (-GT)+positive foci, thereby restoring liver function and preventing liver cancer (Wan et al., 2009). Furthermore, in vitro experiments showed that a combination of MT with lamivudine dose-dependently inhibited HBV-DNA replication and secretions of hepatitis Be antigen (HBeAg) and hepatitis B surface antigen (HBsAg) in HepG2 2.2.15 cell (Ma et al., 2013). Another study showed that combination of sub-MIC MT and erythromycin had a synergistic inhibitory effect on plankton and adhesion of Staphylococcus epidermidis (Guan et al., 2013). It has been reported that a combination of MT and ciprofloxacin significantly decreased the expression level of AcrA, resulting in the inhibition of multidrug-resistant phenotypes in Gram-negative bacteria (Pourahmad and Mohammadi, 2018). In a non-tumorigenic human skin keratinocytes (HaCaT) model, MT combined with acitretin negatively regulates the phosphorylation of PI3K/Akt/mTOR signaling pathway, and plays a synergistic role in inducing autophagy and cell cycle G0/G1 phase arrest (Jiang W. W. et al., 2019). Studies have shown that the combination of MT and lycopene possessed a synergistic protective effect on a LPS-induced acute lung injury (ALI) mouse model through the inhibition of the NF-κB pathway (Li W.W. et al., 2019). Rong et al. reported that MT combined with other drugs (such as Cisplatin, interleukin-11, and bleomycin) has a synergistic effect, which can effectively improve the control of malignant pleural effusion and reduce the incidence of adverse reactions (Rong et al., 2015). Taken together, these results indicated that MT combined therapy showed excellent efficacy.

Qi et al. (2012) studied the effect of glycyrrhizin on MT pharmacokinetics in rats. Compared with the MT alone administration group, the Cmax of MT in the MT and glycyrrhizin combination group decreased from 6.861 ± 0.635 mg/L to 4.122 ± 0.965 mg/L, and the AUC of MT from 47.105 ± 7.062 mg/L h decreased to 35.508 ± 5.024 mg/L h (Qi et al., 2012). Another similar study also suggested that the Cmax and AUC of MT reduced by 32.8% and 34.9% after the combination of Sophorae flavescentis radix (Kushen) and Glycyrrhizae radix et rhizoma (Gancao) (Shi et al., 2015). Furthermore, Zhao et al. (2010a) reported that the AUC and Cmax of MT were significantly decreased when MT was administered in combination with ceftiofur hydrochloride (Zhao et al., 2010b). These results indicated that the combination of MT and other drugs (such as glycyrrhizin and ceftiofur hydrochloride) results in a serious decrease in the plasma concentration and bioavailability of MT, which may adversely affect the pharmacological effects of MT. Therefore, in the clinical combination, we should fully evaluate the pharmacological effects, toxicity, and pharmacokinetic characteristics of MT to obtain better efficacy and drug safety.



Conclusions and Future Perspectives

MT is a quinolizidine alkaloid with potential pharmacological benefits, including anti-cancer, anti-inflammatory, anti-oxidant, antiviral, antimicrobial, anti-fibrosis, anti-allergic, antinociceptive, hepatoprotective, cardioprotective, and neuroprotective effects (Figure 2). Previous studies have shown that MT may be one of the valuable options for the prevention and therapy of cancers, hepatitis, skin diseases, allergic asthma, diabetic cardiomyopathy, analgesic, AD, PD, and CNS inflammation. In addition, MT exerts significant anti-cancer effects, through a mechanism involving the regulation of gene and protein expressions of pathways involved in apoptosis, autophagy, cell invasion, and metastasis, as well as cell cycle arrest. Furthermore, studies have suggested that MT should be used in combination with a variety of chemotherapy drugs and alternative therapies to treat cancer more effectively. Therefore, in the clinical combination of MT, it is necessary to assess the effect of MT on the metabolism of other drugs.




Figure 2 | Pharmacological activities of Matrine.



Detailed studies of MT with respect to the underlying mechanisms of its effects have shown that its anti-tumor effects are associated with the inhibition of various proteins and genes that are overexpressed in cancer such as IL-6, JAK2, STAT3, PCNA, VEGF-A, NF-κB, MMP-9/MMP-2, phosphorylated AKT, p-65, VEGFR1, epidermal growth factor (EGF), VASP, and SQSTM1/p62. However, the expression levels of Bax, Fas, XIAP, mitochondrial membrane potential, p-ERK, CIAP, p53, p21, p27, P-gp, MRP, caspase-3, caspase-9, and LC3-II are up-regulated. The effect is primarily mediated by signaling pathways involving JAK2/STAT3, AKT, miR-21/PTEN/AKT, Akt/mTOR, and NF-κB. Consistently, these data have strongly established that MT has the capacity to influence various events involved in cell apoptosis, autophagy, cell metastasis, invasion, and cell cycle arrest. These data clearly support its traditional use in cancer therapy. In this paper, a wide range of pharmacological effects and molecular mechanisms of MT have been systematically summarized to further support the viewpoint that MT possesses a broad application prospect (Table 1).

Unfortunately, MT has been reported to have serious side effects, including hepatotoxicity, neurotoxicity, and reproductive and developmental toxicity, thereby limiting its clinical use (Table 2). The potential toxic mechanisms involve the activation of receptor-mediated and mitochondrial-dependent apoptotic pathways, as well as the inhibition of the Nrf2 and ERK pathways (Figure 3). It is worth noting that MT salvianolic acid B salt treatment at doses of 25, 50, or 100 mg/kg/day for 56 days ameliorated fibrosis induced by carbon tetrachloride injection, but without significant hepatotoxicity (Gao et al., 2012). The mechanism involved might be that MT and salvianolic acid B combined to form a salt which enhanced the efficacy of the treatment and reduced the risk of toxicity. Further studies are needed on the mechanism involved. In addition, as summarized in Tables 1 and 2, the toxic doses of MT significantly affected the mitochondrial apoptotic pathway, Nrf2 pathway and ERK1/2 pathway. These findings indicate that MT-induced toxicity has an underlying mechanism similar to that of the pharmacological effects of MT. Therefore, further studies are needed for a closer investigation of the relationship between the efficacy and toxicology of MT. Moreover, the appropriate clinical dose range and exposure mechanism for different dosing times and patient disease conditions need to be determined. Taken together, while pursuing greater efficacy, attention should be paid to reducing the toxicity of MT. Future studies should focus on the combination with other drugs, determination of a single dose range, structural optimization, formulation, and establishment of a toxicity warning system.


Table 2 | Toxicity of matrine.






Figure 3 | Toxicity and mechanism of Matrine.



In this study, we summarize and discuss the factors affecting MT ADME based on the latest understanding of MT pharmacokinetics (Table 3). At present, oral and injection routes are widely used in clinical applications of MT. The oral administration is relatively simple and convenient, and can meet the treatment of some specific diseases. After intravenous administration of MT, it is quickly absorbed, and it reaches the site of action through blood circulation, with high bioavailability, no first-pass effect, and accurate dose. However, in future drug development and application, attention should be paid to the emergence of other toxicity problems caused by increase in the content of MT.


Table 3 | Pharmacokinetics of matrine.



This paper reviewed the progress of research on MT in recent years, highlighting its preponderant pharmacological activity and inevitable side effects. MT possesses a variety of pharmacological effects, including antioxidant, anti-inflammatory, antiviral, antinociceptive, neuroprotective, and cardioprotective properties. Although the pharmacological mechanism of MT has been widely investigated, the mechanism of its anti-tumor action and its synergistic treatment with other drugs needs to be further studied. In general, future drug development of MT needs to focus on ameliorating its oral bioavailability, reducing toxicity, and improving efficacy.



Author Contributions

LY and CY wrote the manuscript. YD, WW, MS, JL, and BM analyzed the data, while LP, YZ, and ZZ made the pictures and tables. XD, XY, and JN designed the research and revised the primary manuscript. All authors contributed to the article and approved the submitted version.



Funding

This work was financially supported by the National Natural Science Foundation of China (81703715).



References

 Agrawal, D. K., and Shao, Z. (2010). Pathogenesis of allergic airway inflammation. Curr. Allergy Asthma Rep. 2010 (10), 39–48. doi: 10.1007/s11882-009-0081-7

 Ao, C., Araki, N., and Tawata, S. (2009). Cyclooxygenase Inhibitory Compounds with Antioxidant Activities from Sophora subprostrata. Asian. J. Chem. 21, 745–754.

 Boengler, K., Hilfiker-Kleiner, D., Drexler, H., Heusch, G., and Schulz, R. (2008). The myocardial JAK/STAT pathway: from protection to failure. Pharmacol. Ther. 120, 172–185. doi: 10.1016/j.pharmthera.2008.08.002

 Bosnjak, B., Stelzmueller, B., Erb, K. J., and Epstein, M. M. (2011). Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir. Res. 2011, 12, 114. doi: 10.1186/1465-9921-12-114

 Cai, L., and Kang, Y. J. (2003). Cell death and diabetic cardiomyopathy. Cardiovasc. Toxicol. 3, 219. doi: 10.1385/CT:3:3:219

 Cai, L. (2007). Diabetic cardiomyopathy and its prevention by metallothionein: experimental evidence, possible mechanisms and clinical implications. Curr. Med. Chem. 14, 2193–2203. doi: 10.2174/092986707781389646

 Chai, S., To, K. K., and Ge, L. (2010). Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines. Chin. Med. UK. 5, 26. doi: 10.1002/jcb.26502

 Chang, C., Liu, S. P., Fang, C. H., He, R. S., Wang, Z., Zhu, Y. Q., et al. (2013). Effects of MT on the proliferation of HT29 human colon cancer cells and its antitumor mechanism. Oncol. Lett. 6, 699–704. doi: 10.3892/ol.2013.1449

 Chen, X., Zhi, X., Pan, P., Cui, J., Cao, L. H., Weng, W. Z., et al. (2017). Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis. J. Off. Publ.  Fed. Am. Soc. Exp. Biol. 31, 4855–4865. doi: 10.1096/fj.201700316R

 Chenguang, Z., Zuo, H., Liao, D., He, X., and Li, Z. (2010).

 Cheung, A. K. (2003). Transcriptional analysis of porcine circovirus type 2. J. Virol. 305, 168–180. doi: 10.1006/viro.2002.1733

 Cui, L., Cai, Y., Cheng, W., Liu, G., Zhao, J. H., Cao, H., et al. (2016). A Novel, Multi-Target Natural Drug Candidate, Matrine, Improves Cognitive Deficits in Alzheimer’s Disease Transgenic Mice by Inhibiting Aβ Aggregation and Blocking the RAGE/Aβ Axis. Mol. Neurobiol. 54, 1939–1952. doi: 10.1007/s12035-016-9783-8

 Dong, K. K., Park, J., Han, D., Yang, G., Kim, A., Woo, J., et al. (2018). Molecular and functional signatures in a novel Alzheimer’s disease mouse model assessed by quantitative proteomics. Mol. Neurodegener. 13, 2. doi: 10.1186/s13024-017-0234-4

 Duan, L., Deng, L. J., Wang, D. B., Ma, S. C., Li, C. M., Zhao, D., et al. (2017). Treatment mechanism of matrine in combination with irinotecan for colon cancer. Oncol. Lett. 14, 2300–2304. doi: 10.3892/ol.2017.6407

 Dun, L. L., Li, Y. X., Xu, Y. Q., Zhou, R., and Yu, J. Q. (2014). Antinociceptive effect of matrine on vincristine-induced neuropathic pain model in mice. Neurol. Sci. 35. doi: 10.1007/s10072-013-1603-6

 Feng, F., Ma, W. W., Luo, H. X., Guan, C. P., and Zhou, X. Z. (2018). Effect of matrine on reducing damage to bovine mammary epithelial cells induced by Staphylococcus aureus alpha-hemolysin. Pol. J. Vet. Sci. 21, 409–413. doi: 10.24425/122610

 Flower, R. J. (2003). The development of COX2 inhibitors. Nat. Rev. Drug Dscov. 2, 179. doi: 10.1038/nrd1034

 Fu, Q., Wang, J., Ma, Z. Q., and Ma, S. P. (2014). Anti-asthmatic effects of matrine in a mouse model of allergic asthma. Fitoterapia 94, 183–189. doi: 10.1016/j.fitote.2013.12.014

 Gao, H. Y., Li, G. Y., Lou, M. M., Li, X. U., Wei, X. Y., and Wang, J. H. (2012). Hepatoprotective effect of Matrine salvianolic acid B salt on Carbon Tetrachloride-Induced Hepatic Fibrosis. J. Inflamm. (Lond) 9, 16. doi: 10.1186/1476-9255-9-16

 Gong, X. B., Yuan, G., Guo, Q., Vondran, F. W. R., Schwartlander, R., Efimova, E., et al. (2015). Effect of MT on primary human hepatocytes in vitro. Cytotechnology 67, 255–265. doi: 10.1007/s10616-013-9680-1

 Gong, S. S., Li, Y. X., Zhang, M. T., Du, J., Ma, P. S., Yao, W. X., et al. (2016). Neuroprotective effect of matrine in mouse model of vincristine-induced neuropathic pain. Neurochem. Res. 41, 3147–3159. doi: 10.1007/s11064-016-2040-8

 Gu, Y. M., Lu, J. Y., Sun, W., Jin, R. M., Ohira, T., Zhang, Z., et al. (2019). Oxymatrine and its metabolite matrine contribute to the hepatotoxicity induced by radix Sophorae tonkinensis in mice. Exp. Ther. Med. 17, 2519–2528. doi: 10.3892/etm.2019.7237

 Guan, Y., Zhou, H. N., Shi, J. J., Liu, L., and Wang, C. Z. (2013). Preliminary study on inhibitory effects of sub-MIC matrine alone or in combination with erythromycin On Staphylococcus epidermidis biofilm. Chin. J. Microbiol. Immunol. 33, 86–90. doi: 10.3760/cma.j.issn.0254-5101.2013.02.003

 Guo, Q. S., Huang, X., Li, S. L., et al. (2010). Effects of matrine on apoptosis of human ovarian cancer cell line SKOV 3 and its mechanism. Chin. Pharmacol. Bull. 26, 1104–1107. doi: 10.1007/s00343-010-9055-9

 Guo, Q. P., Chen, G. Y., Zhou, Q., and Jin, R. M. (2018). Comparison of hepatotoxicity and toxic mechanisms of matrine and oxymatrine using in vivo and in vitro models. Chin. J. Comp. Med. 28, 44–50. doi: 10.3969/j.issn.1671-7856.2018.01.008

 Guo, S., Gao, C., Xiao, W., Zhang, J., Qu, Y. S., Li, J., et al. (2018). Matrine Protects Cardiomyocytes from Ischemia/Reperfusion Injury by Regulating HSP70 Expression Via Activation of the JAK2/STAT3 Pathway. Shock 50, 664–670. doi: 10.1097/SHK.0000000000001108

 Hien, T. T., Kim, H. G., Han, E. H., Kang, K. W., and Jeong, H. G. (2010). Molecular mechanism of suppression of MDR1 by puerarin from Pueraria lobata via NF-kappaB pathway and cAMP-responsive element transcriptional activity-dependent up-regulation of AMP-activated protein kinase in breast cancer MCF-7/adr cells. Mol. Nutr. Food. Res. 54, 918. doi: 10.1002/mnfr.200900146

 Hsieh, S. C., Tsai, J. P., Yang, S. F., Tang, M. G., and Hsieh, Y. H. (2014). Metformin inhibits the invasion of human hepatocellular carcinoma cells and enhances the chemosensitivity to sorafenib through a down-regulation of the ERK/JNK-mediated NF-κB-dependent pathway that reduces uPA and MMP-9 expression. Amino. Acids 46, 2809–2822. doi: 10.1007/s00726-014-1838-4

 Hu, G., Liu, J., Zhen, Y. Z., Wei, J., and Tu, P (2013). Rhein inhibits the expression of vascular cell adhesion molecule 1 in human umbilical vein endothelial cells with or without lipopolysaccharide stimulation. Am. J. Chin. Med. 41, 473–485. doi: 10.1142/S0192415X13500341

 Huang, M., and Xin, W. (2017). Matrine inhibiting pancreatic cells epithelial-mesenchymal transition and invasion through ROS/NF-κB/MMPs pathway. Life Sci. 192, 55–61. doi: 10.1016/j.lfs.2017.11.024

 Huang, J., and Xu, H. (2016). Matrine: Bioactivities and Structural Modifications. Curr. Top. Med. Chem. 16, 3365–3378. doi: 10.2174/1568026616666160506131012

 Huang, W. C., Chan, C. C., Wu, S. J., Chen, L. C., Shen, J. J., Kuo, M. L., et al. (2014). Matrine attenuates allergic airway inflammation and eosinophil infiltration by suppressing eotaxin and Th2 cytokine production in asthmatic mice. J. Ethnopharmacol. 151, 470–477. doi: 10.1016/j.jep.2013.10.065

 Jia, F., Ma, W. W., Zhang, X. J., Wang, D., and Zhou, X (2020). Matrine and baicalin inhibit apoptosis induced by Panton-Valentine leukocidin of Staphylococcus aureus in bovine mammary epithelial cells. J. Dairy Sci. 103. doi: 10.3168/jds.2019-17619

 Jiang, K., Guo, S., Yang, J., Liu, J. F., Shaukat, A., Zhao, G., et al. (2019). Matrine alleviates Staphylococcus aureus lipoteichoic acid-induced endometritis via suppression of TLR2-mediated NF-κB activation. Int. Immunopharmacol. 70, 201–207. doi: 10.1016/j.intimp.2019.02.033

 Jiang, W. W., Wang, Y. M., Zhu, S. M., and Zhang, C. L. (2019). Role and mechanism of matrine alone and combined with acitretin for HaCaT cells and psoriasis-like murine models. Chin. Med. J. 132, 2079–2088. doi: 10.1097/CM9.0000000000000412

 Jin, H., Sun, Y., Wang, S., and Cheng, X. (2013). MT Activates PTEN to Induce Growth Inhibition and Apoptosis inV600EBRAF Harboring Melanoma Cells. Int. J. Mol. Sci. 14, 16040. doi: 10.3390/ijms140816040

 Jung, E., Lee, J., Huh, S., Lee, J., Hwang, H., Kim, Y., et al. (2008). Matrine inhibits PMA-induced MMP-1 expression in human dermal fibroblasts. Biofactors 33, 121–128. doi: 10.1002/biof.5520330204

 Kamei, J., Xiao, P., Ohsawa, M., Kubo, H., and Ohmiya, S. (1997). Antinociceptive effects of (+)-matrine in mice. Eur. J. Pharmacol. 337, 223–226. doi: 10.1016/S0014-2999(97)01273-9

 Kan, Q. C., Lv, P., Zhang, X. J., Xu, Y. M., Zhang, G. X., and Zhu, L. (2015). Matrine protects neuro-axon from CNS inflammation-induced injury. Exp. Mol. Pathol. 98, 124–130. doi: 10.1016/j.yexmp.2015.01.001

 Kan, Q. C., Zhang, H. J., Zhang, Y., Li, X., Xu, Y. M., Thome, R., et al. (2016). Matrine Treatment Blocks NogoA-Induced Neural Inhibitory Signaling Pathway in Ongoing Experimental Autoimmune Encephalomyelitis. Mol. Neurobiol. 54, 1–15. doi: 10.1007/s12035-016-0333-1

 Kanagasabai, R., Krishnamurthy, K., Druhan, L. J., and Ilangovan, G. (2011). Forced Expression of Heat Shock Protein 27 (Hsp27) Reverses P-Glycoprotein (ABCB1)-mediated Drug Efflux and MDR1 Gene Expression in Adriamycin-resistant Human Breast Cancer Cells. J. Biol. Chem. 286, 289–300. doi: 10.1074/jbc.m111.249102

 Khan, A., Shal, B., Naveed, M., Nasir, B., Irshad, B., Ali, H., et al. (2020). Matrine alleviates neurobehavioral alterations via modulation of JNK-mediated caspase-3 and BDNF/VEGF signaling in a mouse model of burn injury. Psychopharmacology 237, 2327–2343. doi: 10.1007/s00213-020-05537-5

 Kondratskyi, A., Kondratska, K., Skryma, R., Klionsky, D. J., and Prevarskaya, N. (2017). Ion channels in the regulation of autophagy. Autophagy 14, 2–21. doi: 10.1080/15548627.2017.1384887

 Li, X., Zhou, R., Zheng, P., Yan, L., Wu, Y., Xiao, X., et al. (2010). Cardioprotective effect of matrine on isoproterenol-induced cardiotoxicity in rats. J. Pharm. Pharmacol. 62, 514–520. doi: 10.1211/jpp.62.04.0015

 Li, Z. W., Li, G. F., and Zhang, J. H. (2010). Pharmacokinetics and Bioavailability of Sustained-release Tablets of Matrine in Dogs. J. Chin. Med. Mater. 33, 99–102. doi: 10.13863/j.issn1001-4454.2010.08.038

 Li, L. Q., Li, X. L., Wang, L., Du, W. J., Guo, R., Liang, H. H., et al. (2012). MT inhibits breast cancer growth via miR-21/PTEN/Akt pathway in MCF-7 cells. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 30, 631–641. doi: 10.1159/000341444

 Li, X., Wang, X., Guo, Y., Deng, N., Zheng, P., Xu, Q. B., et al. (2012). Regulation of endothelial nitric oxide synthase and asymmetric dimethylarginine by matrine attenuates isoproterenol-induced acute myocardial injury in rats. J. Pharm. Pharmacol. 64, 1107–1118. doi: 10.1111/j.2042-7158.2012.01502.x

 Li, H., Li, X., Bai, M., Suo, Y., and Caoet, X. Y. (2015). MT inhibited proliferation and increased apoptosis in human breast cancer MCF-7 cells via up-regulation of Bax and down-regulation of Bcl-2. Int. J. Clin. Exp. Pathol. 8, 14793.

 Li, L., Xue, T., Xu, W., and Zhou, B. (2016). Effect of matrine combined with cisplatin on the expression of XIAP in human rhabdomyosarcoma RD cells. Oncol. Lett. 12, 3793–3798. doi: 10.3892/ol.2016.5150

 Li, J., Yao, Y., Han, H. Q., Li, W. Q., Li, N., Miao, Z. H., et al. (2018). Effect of Matrine on Learning and Memory Function and Neuroinflammation in LPS-induced Alzheimer’s Disease Mice Mode. Chin. J. Exp. Tradit. Med. Formul. 24, 134–139. doi: 10.13422/j.cnki.syfjx.20182430

 Li, P., Lei, J., Hu, G., Chen, X. M., Liu, Z. F., and Yang, J. (2019). Matrine Mediates Inflammatory Response via Gut Microbiota in TNBS-Induced Murine Colitis. Front. Physiol. 10, 28. doi: 10.3389/fphys.2019.00028

 Li, W. W., Wang, T. Y., Cao, B., Bin, L., and Liu, X. Y (2019). Synergistic protection of matrine and lycopene against lipopolysaccharide−induced acute lung injury in mice. Mol. Med. Rep. 20, 1–8. doi: 10.3892/mmr.2019.10278

 Liang, P., Yuan, T. J., Gu, L. L., and Lu, H (2015). Study of Hepatotoxicity and Neural Behavioral Changes of Sophora Flavescens and Matrine in Mice. Chin. J. Modern Appl. Pharmacy. 32, 1444–1448. doi: 10.13748/j.cnki.issn1007-7693.2015.12.008

 Liao, X. Z., Tao, L. T., Liu, J. H., Gu, Y. Y., Xie, J., Chen, Y. L., et al. (2017). Matrine combined with cisplatin synergistically inhibited urothelial bladder cancer cells via down-regulating VEGF/PI3K/Akt signaling pathway. Cancer Cell Int. 17, 124. doi: 10.1186/s12935-017-0495-6

 Lin, W., Zhang, J. P., Hu, Z. L., and Qian, D. H. (1997). Inhibitory effect of matrine on lipopolysacchride-induced tumor necrosis factor and interleukin-6 production from rat Kupffer cells. Acta Pharm. Sinica. 32, 93.

 Liou, C. J., Lai, Y. R., Chen, Y. L., Chang, Y. H., Li, Z. Y., Huang, W. C., et al. (2016). Matrine Attenuates COX-2 and ICAM-1 Expressions in Human Lung Epithelial Cells and Prevents Acute Lung Injury in LPS-Induced Mice. Mediat. Inflamm. 2016, 3630485. doi: 10.1155/2016/3630485

 Liu, M., Liu, X. Y., and Cheng, J. F. (2003). Advance in the pharmacological research on matrine. China J. Chin. Mater. Med. 28, 801–804.

 Liu, J. Y., Hu, J. H., Zhu, Q. G., Li, F. Q., Wang, J., and Sun, H. J. (2007). Effect of MT on the expression of substance P receptor and inflammatory cytokines production in human skin keratinocytes and fibroblasts. Int. Immunopharmacol. 7, 816. doi: 10.1016/j.intimp.2007.02.003

 Liu, T., Song, Y., Chen, H., Pan, S. H., and Sun, X. Y. (2010). MT inhibits proliferation and induces apoptosis of pancreatic cancer cells in vitro and in vivo. Biol. Pharm. Bull. 33, 1740. doi: 10.1248/bpb.33.1740

 Liu, F., Ding, Z., O-Yang, Y., Wang, F., and Deng, L. (2011). Determination of Antibacterial Activity of Sophora alopecuroides. J. Beijing Univ. Chem. Technol. (Natural Sci. Ed) 38, 84–88. doi: 10.13543/j.cnki.bhxbzr.2011.02.003

 Liu, Z. W., Wang, J. K., Qiu, C., Guan, G. C., and Deng, Z. R. (2015). Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway. Acta Pharmacol. Sinica. 36, 323–333. doi: 10.1038/aps.2014.127

 Liu, J., Zhang, L., Ren, Y., Gao, Y. L., Kang, L., and Lu, S. P. (2016). Matrine inhibits the expression of adhesion molecules in activated vascular smooth muscle cells. Mol. Med. Rep. 13, 2313. doi: 10.3892/mmr.2016.4767

 Liu, S. Q., Zhang, M. L., Zhang, H. J., Liu, F. Z., Chu, R. G., Guang, X., et al. (2017). Matrine promotes oligodendrocyte development in CNS autoimmunity through the PI3K/Akt signaling pathway. Life Sci. 180, 36–41. doi: 10.1016/j.lfs.2017.05.010

 Liu, Z., Lv, Y., Zhang, Y., Liu, F. Q., Zhu, L., Pan, S., et al. (2017a). Matrine-Type Alkaloids Inhibit Advanced Glycation End Products Induced Reactive Oxygen Species-Mediated Apoptosis of Aortic Endothelial Cells In Vivo and In Vitro by Targeting MKK3 and p38MAPK Signaling. J. Am. Heart Assoc. 6, e007441. doi: 10.1161/JAHA.117.007441

 Liu, Z., Zhang, Y., Tang, Z., Xu, J., Ma, M. J., Pan, S., et al. (2017b). Matrine attenuates cardiac fibrosis by affecting ATF6 signaling pathway in diabetic cardiomyopathy. Eur. J. Pharmacol. 804, 21–30. doi: 10.1016/j.ejphar.2017.03.061

 Liu, Y., Yao, W., Si, L., Hou, J., Wang, J. B., Xu, Z. H., et al. (2018). Chinese herbal extract Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant hepatitis B virus (HBV) in vitro and effectively suppressed HBV replication in mouse model. Antiviral Res. 155, 39–47. doi: 10.1016/j.antiviral.2018.04.017

 Long, Y., Lin, X. T., and Zeng, K. L. (2004). Efficacy of matrine in the treatment of chronic hepatitis B. Chin. J. Nat. Med. 3, 148–150. doi: 10.3969/j.issn.1006-3110.2005.04.041

 Lu, S., Xiao, X., and Cheng, M. (2015). Matrine inhibits IL-1β-induced expression of matrix metalloproteinases by suppressing the activation of MAPK and NF-κB in human chondrocytes in vitro. Int. J. Clin. Exp. Pathol. 8, 4764–4772. doi:10.1016/S1359-6349(09)71986-X

 Luo, C., Zhong, H. J., Zhu, L. M., Wu, X. G., Ying, J. E., Wang, X. H., et al. (2012). Inhibition of MT against gastric cancer cell line MNK45 growth and its anti-tumor mechanism. Mol. Biol. Rep. 39, 5459–5464. doi: 10.1007/s11033-011-1346-5

 Luo, C., Zhu, Y. T., Jiang, T. J., Lu, X. Y., Zhang, W., Jing, Q. F., et al. (2007). MT induced gastric cancer MKN45 cells apoptosis via increasing pro-apoptotic molecules of Bcl-2 family. Toxicology 229, 245. doi: 10.1016/j.tox.2006.10.020

 Luo, S. X., Deng, W. Y., Wang, X. F., Han, H. F., Chen, L. L., Chen, B. B., et al. (2013). Molecular mechanism of indirubin-3’-monoxime and MT in the reversal of paclitaxel resistance in NCI-H520/TAX25 cell line. Chin. Med. J. Peking. 126, 925. doi: 10.3760/cma.j.issn.0366-6999.20123583

 Luo, T., Zou, Q. X., He, Y. Q., Wang, H. F., and Zeng, X. H (2015). Matrine Inhibits Mouse Sperm Function by Reducing Sperm [Ca2+]i and Phospho-ERK1/2. Cell. Physiol. Biochem. 35, 374–385. doi: 10.1159/000369703

 Luo, T., Zou, Q. X., He, Y. Q., Wang, H. F., Wang, T., Liu, M., et al. (2016). Matrine compromises mouse sperm functions by a [Ca2+]i-related mechanism. Reprod. Toxicol. 60, 69–75. doi: 10.1016/j.reprotox.2016.02.003

 Ma, S. C., Du, J., But, P. P., Sun, X., Lu, X. Z., Zhou, M., et al. (2002). Antiviral Chinese medicinal herbs against respiratory syncytial virus. J. Ethnopharmacol. 79, 205–211. doi: 10.1016/s0378-8741(01)00389-0

 Ma, Z. J., Li, Q., Wang, J. B., Zhao, Y. L., and Xiao, X. H. (2013). Combining Oxymatrine or Matrine with Lamivudine Increased Its Antireplication Effect against the Hepatitis B Virus In Vitro. Evidence-Based Complement. Altern. Med. 186573. doi: 10.1155/2013/186573

 Ma, L., Zhu, Z., Jiang, L., et al. (2015). MT suppresses cell growth of human chronic myeloid leukemia cells via its inhibition of the interleukin-6/Janus activated kinase/signal transducer and activator of transcription 3 signaling cohort. Leukemia Lymphoma. 56, 2923. doi: 10.3109/10428194.2015.1007507

 Mahzari, A., Zeng, X. Y., Zhou, X., Sun, X., Lu, X. Z., Zhou, M., et al. (2018). Repurposing matrine for the treatment of hepatosteatosis and associated disorders in glucose homeostasis in mice. Acta Pharmacol. Sin. 39, 1–7. doi: 10.1038/s41401-018-0016-8

 Manning, B. D., and Cantley, L. C. (2007). AKT/PKB signaling: navigating downstream. Cell 129, 1261. doi: 10.1016/j.cell.2007.06.009

 Meng, F., Wang, J., Ding, F., Xie, Y. L., Zhang, Y. J., Zhu, J., et al. (2017). Neuroprotective effect of matrine on MPTP-induced Parkinson’s disease and on Nrf2 expression. Oncol. Lett. 13, 296–300. doi: 10.3892/ol.2016.5383

 Na, S., Sun, P., Lv, H., Sun, Y. G., Guo, J. H., Wang, Z. R., et al. (2016). Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Sci. Rep. 6, 24401. doi: 10.1038/srep24401

 Ni, J. J., Wu, Z. M., Ling, S. C., Zhu, X., and Lu, P. B. (2006). Effect of matrine injection IL-1β level and ultrastructural changes of hippocampal neuron in Alzheimer’s disease rat. Chin. J. Anat. 29, 608–611.

 Pai, M. P., Kiser, J. J., Gubbins, P. O., and Rodvold, K. A. (2018). Introduction to Drug-Drug Interactions. Drug Interact. Infect. Dis.: Mech. Models Drug Interact. 1–13. doi: 10.1007/978-3-319-72422-5_1

 Peng, X., Zhou, D., Wang, X., Hu, Z. F., Yan, Y., Huang, J. R., et al. (2016). Matrine Suppresses Proliferation and Invasion of SGC7901 Cells through Inactivation of PI3K/Akt/uPA Pathway. Ann. Clin. Lab. Sci. 46, 457–462.

 Pourahmad, R. J., and Mohammadi, P. (2018). The effect of total alkaloid extract of local Sophora alopecuroides on MIC and intracellular accumulation of ciprofloxacin, and acrA expression in ciprofloxacin high resistance Escherichia coli clones. J. Glob. Antimicrob. Resist. 12, 55–60. doi: 10.1016/j.jgar.2017.09.005

 Pu, J., Fang, F. F., Li, X. Q., Shu, Z. H., and Jiang, Y. P (2016). Matrine Exerts a Strong Anti-Arthritic Effect on Type II Collagen-Induced Arthritis in Rats by Inhibiting Inflammatory Responses. Int. J. Mol. Sci. 17, 1410. doi: 10.3390/ijms17091410

 Pu, J., Tang, X., Zhuang, X., Hu, Z., He, K. M., Wu, Y. F., et al. (2018). Matrine induces apoptosis via targeting CCR7 and enhances the effect of anticancer drugs in non-small cell lung cancer in vitro. Innate Immun. 24, 395–399. doi: 10.1177/1753425918800555

 Qi, L. Y., Huang, L., Yang, B. C., Pan, D. Y., Lu, W. F., Chen, Z. L., et al. (2012). Effects of glycyrrhizin on the pharmacokinetics of matrine in rats. China Pharmacy. 23, 985–986. doi: 10.6039/j.issn.1001-0408.2012.11.10

 Qian, L. W., Dai, W. H., Zhou, G. Q., Wang, L. L., and Wang, H. S. (2012). Analgesic and Anti-inflammatory Effects of Sophora flavescens and Sophora radiata. Chin. Tradit. Patent Med. 34, 1593–1596.

 Ren, H. T., Zhang, S. Q., Ma, H. B., Wang, Y. L., Liu, D., Wang, X. J., et al. (2014). Matrine reduces the proliferation and invasion of colorectal cancer cells via reducing the activity of p38 signaling pathway. Acta Biochim. Biophys. Sin. 46, 1049–1055. doi: 10.1093/abbs/gmu101

 Rong, B., Zhao, C., Gao, W., and Yang, S. (2015). Matrine promotes the efficacy and safety of platinum-based doublet chemotherapy for advanced non-small cell lung cancer. Int. J. Clin. Exp. Med. 8, 14701–14717.

 Shao, Q., Zhao, X., and Yao, L. (2014). MT inhibits the growth of retinoblastoma cells (SO-Rb50) by decreasing proliferation and inducing apoptosis in a mitochondrial pathway. Mol. Biol. Rep. 41, 3475–3480. doi: 10.1007/s11033-014-3209-3

 Shao, J., Wang, T., Yan, Y., Shi, G., Cheng, H., Wu, D., et al. (2015). Matrine reduces yeast-to-hypha transition and resistance of a fluconazole-resistant strain of Candida albicans. J. Appl. Microbiol. 117, 618–626. doi: 10.1111/jam.12555

 Shen, F., Liang, P., and Lu, H. (2017). Cytotoxicity and mitochondrial injury mechanism of matrine on PC12 cells. Chin. J. Pharmacol. Toxicol. 31, 873–879.

 Shi, C., Yu, L., Yang, F., Yan, J., and Zeng, H. H. (2003). A novel organoselenium compound induces cell cycle arrest and apoptosis in prostate cancer cell lines. Biochem. Bioph. Res. Co. 309, 578–583. doi: 10.1016/j.bbrc.2003.08.032

 Shi, D., Zhang, J., Qiu, L., Li, J. Z., and Zhang, J. P. (2013). Matrine Inhibits Infiltration of the Inflammatory Gr1(hi) Monocyte Subset in Injured Mouse Liver through Inhibition of Monocyte Chemoattractant Protein-1. Evid. Based. Complement. Alternat. Med. 2013, 580673–580673. doi: 10.1155/2013/580673

 Shi, L., Tang, X., Dang, X., Wang, Q. H., Wang, X. R., He, P., et al. (2015). Investigating herb–herb interactions: The potential attenuated toxicity mechanism of the combined use of Glycyrrhizae radix et rhizoma (Gancao) and Sophorae flavescentis radix (Kushen). J. Ethnopharmacol. 165, 243–250. doi: 10.1016/j.jep.2015.02.022

 Song, S., Zhu, S., Zhang, Z., Mo, Z. Y., and Luo, Z. G. (2013). A Study on the Inhibitory Effect of MT on Gastric Cancer SGC-7901 Cells. Afr. J. Tradit. Complem. 10, 435–438. doi: 10.4314/ajtcam.v10i6.5

 Sun, B., and Min, X. U. (2015). MT inhibits the migratory and invasive properties of nasopharyngeal carcinoma cells. Mol. Med. Rep. 11, 4158. doi: 10.3892/mmr.2015.3276

 Sun, Y. M., Chu, G. L., Chen, X., et al. (2010). Protective Effect of Matrine on Cardiomyocytes Infected with Coxsackie Virus B3 and Its Relationship with Phosphatidylinositol 3-Kinase/Protein Kinase B Singnal Pathway. J. Appl. Clin. Pediatr. 25, 1428–1431.

 Sun, N., Wang, Z. W., Wu, C. H., Li, E., He, J. P., Wang, S. Y., et al. (2014). Antiviral activity and underlying molecular mechanisms of Matrine against porcine reproductive and respiratory syndrome virus in vitro. Res. Vet. Sci. 96, 323–327. doi: 10.1016/j.rvsc.2013.12.009

 Sun, N., Yu, T., Zhao, J. X., Sun, Y. G., Jiang, J. B., Duan, Z. B., et al. (2015). Antiviral activities of natural compounds derived from traditional chinese medicines against porcine circovirus type 2 (PCV2). Biotechnol. Bioprocess Engineer. 20, 180–187. doi: 10.1007/s12257-014-0520-8

 Sun, D., Jing, W., Yang, N., and Ma, H. X. (2016). Matrine suppresses airway inflammation by down-regulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. Biochem. Biophys. Res. Commun. 477, 83–90. doi: 10.1016/j.bbrc.2016.06.024

 Sun, K., Yang, P., Zhao, R., Bai, Y. T., and Guo, Z. J. (2018). Matrine Attenuates D-Galactose-Induced Aging-Related Behavior in Mice via Inhibition of Cellular Senescence and Oxidative Stress. Oxid. Med. Cell Longev., 7108604. doi: 10.1155/2018/7108604

 Suo, Z., Liu, Y., Ferreri, M., Zhang, T., Liu, Z. J., Mu, X., et al. (2009). Impact of matrine on inflammation related factors in rat intestinal microvascular endothelial cells. J. Ethenopharmacol. 125, 404. doi: 10.1016/j.jep.2009.07.023

 Tang, L., Dong, L. N., Peng, X. J., Li, Y., Shi, J., Zhou, F. Y., et al. (2013). Pharmacokinetic characterization of oxymatrine and matrine in rats after oral administration of radix Sophorae tonkinensis extract and oxymatrine by sensitive and robust UPLC–MS/MS method. J. Pharmaceut. Biomed. 83, 179–185. doi: 10.1016/j.jpba.2013.05.003

 Tao, R., Wang, J., Xia, L. J., Wei, X. H., and Li, H. Q. (2013). Matrine Inhibits the Expression Of TNF-α in the Dorsal Root Ganglion in Rats. Chin. J. Pain Med. 19, 414–419.

 Wan, X. Y., Luo, M., Li, X. D., and He, P. (2009). Hepatoprotective and anti-hepatocarcinogenic effects of glycyrrhizin and matrine. Chem. Biol. Interact. 181, 15–19. doi: 10.1016/j.cbi.2009.04.013

 Wang, X. H., and Huang, S. K. (1992). Pharmacokinetics and pharmacodynamics of matrine and oxymatrine. Acta Pharmaceut. Sinica. 27, 572–576. doi: 10.16438/j.0513-4870.1992.08.003

 Wang, X. Y., Liang, L., Chang, J. L., Yang, M. H., and Li, Z. G. (2010). Toxicity of matrine in Kunming mice. J. South Med. Univ. 30, 2154–2155.

 Wang, L., Gao, C., Yao, S., and Xie, B. S. (2013). Blocking Autophagic Flux Enhances Matrine-Induced Apoptosis in Human Hepatoma Cells. Int. J. Mol. Sci. 14, 23212–23230. doi: 10.3390/ijms141223212

 Wang, Q. P., Wang, Y., Wang, X. D., Mo, X. M., Gu, J., Lu, Z. Y., et al. (2013). Survivin up-regulates the expression of breast cancer resistance protein (BCRP) through attenuating the suppression of p53 on NF-κB expression in MCF-7/5-FU cells. Int. J. Biochem. Cell. B. 45, 2036. doi: 10.1016/j.biocel.2013.06.026

 Wang, Q., Shi, L., Tang, X., Dang, X. L., and Zhang, Y. (2014). Pharmacokinetic study of multiple active constituents from Kushen–Gancao Decoction after oral administration in rat by HPLC–MS/M. J. Chromatogr. B. 965, 19–26. doi: 10.1016/j.jchromb.2014.05.038

 Wang, L., Lu, J., Sun, W., Gu, Y. M., Zhang, C. C., Jin, R. M., et al. (2017). Hepatotoxicity induced by radix, Sophorae tonkinensis, in mice and increased serum cholinesterase as a potential supplemental biomarker for liver injury. Exp. Toxicol. Pathol. 69, 193–202. doi: 10.1016/j.etp.2017.01.003

 Wang, S. J., Sun, W. W., Zhang, J. N., Zhao, J. K., Ren, S., Zhang, W. J., et al. (2017). Effect of Matrine and Oxymatrine on Proliferation and Energy Metabolism of ECV304. Nat. Prod. Res. Dev. 29, 741–746. doi: 10.16333/j.1001-6880.2017.5.004

 Wei, L., Zhu, Z., Wang, J., and Liu, J. (2009). JNK and p38 mitogen-activated protein kinase pathways contribute to porcine circovirus type 2 infection. J. Virol. 83, 6039–6047. doi: 10.1128/JVI.00135-09

 Wrzesień, K. A., Smolewski, P., Sobczak-Pluta, A., Wierzbowska, A., and Robak, T. (2004). The inhibitor of apoptosis protein family and its antagonists in acute leukemias. Apoptosis 9, 705–715. doi: 10.1023/b:appt.0000045788.61012.b2

 Wu, X., Yamashita, F., Hashida, M., Chen, X. G., and Hu, Z. D. (2003). Determination of matrine in rat plasma by high-performance liquid chromatography and its application to pharmacokinetic studie. Talanta 59, 0–971. doi: 10.1016/s0039-9140(03)00009-2

 Wu, W. Y., Huang, J., Liu, S., Li, X. H., and Cai, Y. (2009). Study on pharmacokinetics and tissue distribution of stealth matrine liposomes in rats. China J. Chin. Mater. Med. 34, 751–755.

 Wu, H., Che, X., Zheng, Q., Wu, A., Pan, K., Shao, A. W., et al. (2014). Caspases: A Molecular Switch Node in the Crosstalk between Autophagy and Apoptosis. Int. J. Biol. Sci. 10, 1072–1083. doi: 10.7150/ijbs.9719

 Wu, C., Xu, Z., Gai, R., and Huang, K. H. (2016). Matrine ameliorates spontaneously developed colitis in interleukin-10-deficient mice. Int. Immunopharmacol. 36, 256–262. doi: 10.1016/j.intimp.2016.04.038

 Wu, J., Hu, G., Dong, Y., Ma, R. Y., Yu, Z. J., Jiang, S. F., et al. (2017). MT induces Akt/mTOR signalling inhibition-mediated autophagy and apoptosis in acute myeloid leukaemia cells. J. Cell. Mol. Med. 21, 1171. doi: 10.1111/jcmm.13049

 Wu, G. J., Zhou, W., Zhao, J., Pan, X., Sun, Y. J., Xu, H., et al. (2017). Matrine alleviates lipopolysaccharide-induced intestinal inflammation and oxidative stress via CCR7 signal. Oncotarget. 8, 11621. doi: 10.18632/oncotarget.14598

 Wu, Z. H., You, Z. C., Chen, P., Chen, C., Chen, F., Shen, J. H., et al. (2018). Matrine exerts antidepressant-like effects on mice: Role of the Hippocampal PI3K/Akt/mTOR Signaling. Int. J. Neuropsychopharmacol. 21, 764–776. doi: 10.1093/ijnp/pyy028

 Wynn, T. A. (2007). Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest. 117, 524–529. doi: 10.1172/JCI31487

 Xiao, P., Kubo, H., Ohsawa, M., Higashiyama, K., Nagase, H., Yan, Y. N., et al. (1999). kappa-Opioid receptor-mediated antinociceptive effects of stereoisomers and derivatives of (+)-matrine in mice. Planta Med. 65, 230–233. doi: 10.1055/s-1999-14080

 Yang, Z., Gao, S., Yin, T., Kulkarni, K. H., Teng, Y., You, M., et al. (2010). Biopharmaceutical and pharmacokinetic characterization of matrine as determined by a sensitive and robust UPLC–MS/MS method. J. Pharm. Biomed. Anal. 51, 1120–1127. doi: 10.1016/j.jpba.2009.11.020

 Yang, Z. J., Cheng, E. C., Huang, S., and Sinicrope, F. A. (2011). The Role of Autophagy in Cancer: Therapeutic Implications. Mol. Cancer Ther. 10, 1533. doi: 10.1158/1535-7163.MCT-11-0047

 Yang, Y., Xiu, J., Zhang, X., Zhang, L., Yan, K., Qin, C., et al. (2012). Antiviral effect of matrine against human enterovirus 71. Molecules 17, 10370–10376. doi: 10.3390/molecules170910370

 Yang, Y., Guo, J. X., Shao, Z. Q., and Gao, J. P. (2017). MT inhibits bladder cancer cell growth and invasion in vitro through PI3K/AKT signaling pathway: An experimental study. Asian. Pac. J. Trop. Med. 10, 489–492. doi: 10.1016/j.apjtm.2017.05.009

 Yang, B., Li, H. L., Zhang, T. Y., Wang, Z. X., Li, H., Zhang, Y. J., et al. (2020). Nonlinear and mixed inhibitory effect of matrine on the cytotoxicity of oligomeric amyloid-β protein. Neurochem. Int. 137, 104746. doi: 10.1016/j.neuint.2020.104746

 You, L. T., Yang, C. J., Leng, X., Dong, X. X., Liu, Y., Sai, N., et al. (2018). Study on the toxicity of matrine on HepaRG cell line. Global Tradit. Chin. Med. 11, 1867–1874.

 You, L. T., Yang, C. J., Du, Y. Y., Liu, Y., Chen, G. S., Sai, N., et al. (2019). Matrine Exerts Hepatotoxic Effects via the ROS-Dependent Mitochondrial Apoptosis Pathway and Inhibition of Nrf2-Mediated Antioxidant Response, Oxid. Med. Cell. Longev. 2019, 1045345. doi: 10.1155/2019/1045345

 Yu, P., Qian, L., Liu, K., Yagasaki, K., Wu, E., and Zhang, G. Y. (2009). MT suppresses breast cancer cell proliferation and invasion via VEGF-Akt-NF-κB signaling. Cytotechnology 59, 219–229. doi: 10.1007/s10616-009-9225-9

 Yu, S. X., Wu, J., and Yang, W. D. (2009). Protective Effects of Matrine on Immunological Liver Injury Model in BALB/c Mice. J. Ningxia Med. Univ. 31, 11–15. doi: 10.16050/j.cnki.issn1674-6309.2009.01.012

 Yu, J., Yang, S., Wang, X., and Gan, R. T. (2014). Matrine improved the function of heart failure in rats via inhibiting apoptosis and blocking β3-adrenoreceptor/endothelial nitric oxide synthase pathway. Mol. Med. Rep. 2014. 10, 3199–3204. doi: 10.3892/mmr.2014.2642

 Zeng, X. Y., Wang, H., Bai, F., Zhou, X., Li, S. P., Ren, L. P., et al. (2015). Identification of matrine as a promising novel drug for hepatic steatosis and glucose intolerance with HSP72 as an upstream target. Br. J. Pharmacol. 172, 4303. doi: 10.1111/bph.13209

 Zhai, D., Zhao, Y., Chen, X., Guo, J. Q., He, H., Yu, Q. L., et al. (2007). Protective effect of glycyrrhizin, glycyrrhetic acid and matrine on acute cholestasis induced by alpha-naphthyl isothiocyanate in rats. Planta Med. 73, 128–133. doi: 10.1055/s-2006-957067

 Zhang, L., Liu, W., Zhang, R., Wang, Z., Shen, Z., Chen, X., et al. (2008). Pharmacokinetic study of matrine, oxymatrine and oxysophocarpine in rat plasma after oral administration of Sophora flavescens Ait. extract by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 47, 892–898. doi: 10.1016/j.jpba.2008.03.019

 Zhang, X. L., Xu, H. R., Chen, W. L., Chu, N. N., Li, X. N., Liu, G. Y., et al. (2009). MT determination and pharmacokinetics in human plasma using LC/MS/MS. J. Chromatogr. B. Analyt. Technol.  Biomed. Life Sci. 877, 3253–3256. doi: 10.1016/j.jchromb.2009.08.026

 Zhang, Y., Zhang, H., Yu, P., Liu, Q., Liu, K., Duan, H. Y., et al. (2009). Effects of MT against the growth of human lung cancer and hepatoma cells as well as lung cancer cell migration. Cytotechnology 59, 191–200. doi: 10.1007/s10616-009-9211-2

 Zhang, J. Q., Li, Y. M., Liu, T., He, W. T., Chen, Y. T., Chen, X. H., et al. (2010). Antitumor effect of MT in human hepatoma G2 cells by inducing apoptosis and autophagy. World J. Gastroentero. 16, 4281. doi: 10.3748/wjg.v16.i34.4281

 Zhang, B., Liu, Z. Y., Li, Y. Y., Luo, Y., Liu, M. L., Dong, H. Y., et al. (2011). Anti-inflammatory effects of matrine in LPS-induced acute lung injury in mice. Eur. J. Pharm. Sci. 44, 573–579. doi: 10.1016/j.ejps.2011.09.020

 Zhang, F., Wang, X., Tong, L., Qiao, H. Q., Li, X., You, L. G., et al. (2011). Matrine attenuates endotoxin-induced acute liver injury after hepatic ischemia/reperfusion in rats. Surg. Today 41, 1075–1084. doi: 10.1007/s00595-010-4423-9

 Zhang, Q., Li, F. J., Jin, R. M., and Song, Z. P. (2011). Study on the Hepatotoxicity Induced by Matrine and Oxymatrine. Chin. Arch. Tradit. Chin. Med. 29, 1222–1225.

 Zhang, H. F., Shi, L. J., Song, G. Y., Cai, Z. G., Wang, C., and An, R. J. (2013). Protective effects of matrine against progression of high-fructose diet-induced steatohepatitis by enhancing antioxidant and anti-inflammatory defences involving Nrf2 translocation. Food Chem. Toxicol. 55, 70–77. doi: 10.1016/j.fct.2012.12.043

 Zhang, J., Su, K., Shi, W., Wang, Y., Hu, P. C., Wang, Y., et al. (2013). MT inhibits the adhesion and migration of BCG823 gastric cancer cells by affecting the structure and function of the vasodilator-stimulated phosphoprotein (VASP). Chin. Pharmacol. Bull. 34, 1084. doi: 10.1038/aps.2013.15

 Zhang, S., Cheng, B., Li, H., Xu, W., Zhai, B., Pan, S., et al. (2014). MT inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway. Mol. Biol. Rep. 41, 2101–2108. doi: 10.1007/s11033-014-3059-z

 Zhang, L., Zhang, H., Zhu, Z., Jiang, L. J., Lu, X. Z., Zhou, M., et al. (2015). Matrine regulates immune functions to inhibit the proliferation of leukemic cells. Int. J. Clin. Exp. Med. 8, 5591.

 Zhang, M. L., Zhang, X. J., Kang, J., Zhang, H. J., Chen, X. L., Liu, N., et al. (2017). Matrine promotes NT3 expression in CNS cells in experimental autoimmune encephalomyelitis. Neurosci. Lett. 649, 100–106. doi: 10.1016/j.neulet.2017.04.005

 Zhang, R., Li, Y., Hou, X., Miao, Z. H., and Wang, Y. (2017). Neuroprotective effect of heat shock protein 60 on matrine-suppressed microglial activation. Exp. Ther. Med. 14, 1832. doi: 10.3892/etm.2017.4691

 Zhang, B., Wang, X., Li, Y., Wu, M., Wang, S. Y., and Li, S. (2018). Matrine Is Identified as a Novel Macropinocytosis Inducer by a Network Target Approach. Front. Pharmacol. 9, 10. doi: 10.3389/fphar.2018.00010

 Zhang, C. X., Chen, J., Zhang, J. H., Wei, S. J., Ji, H. Y., Wu, X. L., et al. (2018). Different processing methods change the oral toxicity induced by Sophora alopecuroides seeds and the contents of five main toxic alkaloids from the ethanol extracts determined by a validated UHPLC–MS/MS assay. Rev. Bras. Farmacogn. 28, 481–488. doi: 10.1016/j.bjp.2018.04.007

 Zhang, Y., Cui, L., Guan, G., Wang, J. K., Qiu, C., Yang, T. L., et al. (2018a). Matrine suppresses cardiac fibrosis by inhibiting the TGF-β/Smad pathway in experimental diabetic cardiomyopathy. Mol. Med. Rep. 17, 1775–1781. doi: 10.3892/mmr.2017.8054

 Zhang, Y., Yang, X., Qiu, C., Liu, F., Liu, P., and Liu, Z. (2018b). Matrine suppresses AGE-induced HAEC injury by inhibiting ROS-mediated NRLP3 inflammasome activation. Eur. J. Pharmacol. 822, 207–211. doi: 10.1016/j.ejphar.2018.01.029

 Zhang, Y., Liu, M., Sun, H., and Yin, K. M. (2015). Matrine improves cognitive impairment and modulates the balance of Th17/Treg cytokines in a rat model of Aβ1-42-induced Alzheimer’s disease. Cent. Eur. J. Immunol. 40, 411–419. doi: 10.5114/ceji.2015.56961

 >Zhao, C. G., Liao, D. D., He, X. Y., and Li, Z. B. (2010a). Study on pharmacokinetics of matrine by intramuscular administration in rat. China J. Chin. Mater. Med. 35, 1315–1318. doi: 10.4268/cjcmm20101021

 Zhao, C. G., Zuo, H., Liao, D. D., He, X. Y., and Li, Z. B. (2010b). Effect of ceftiofur hydrochloride on pharmacokinetics of matrine in rats. Zhongguo Zhong Yao Za Zhi. 35, 1859–1861. doi: 10.4268/cjcmm20101420

 Zhao, B., Li, B., Bai, S., Shen, L., Ren, R., Jonas, J. B., et al. (2012). Effects of MT on proliferation and apoptosis of cultured retinoblastoma cells. Graefes Arch. Clin. Exp. Ophthalmol. 250, 897–905. doi: 10.1007/s00417-011-1751-4

 Zhao, J., Wan, X. Y., Luo, M., Chen, T. S., and He, P. (2012). Antifibrotic effects of glycyrrhizin and matrine in vitro and in vivo. Biomed. Prevent. Nutrition. 2, 132–137. doi: 10.1016/j.bionut.2011.12.006

 Zhao, X., Sun, N., Bai, X. Y., Sun, Y. G., Jiang, J. B., and Li, H. Q. (2013). Inhibitory action of Matrine against porcine reproductive and respiratory syndrome virus in vitro and mechanism. Chin. J. Veterinary Sci. 33, 808–812. doi: 10.16303/j.cnki.1005-4545.2013.06.012

 Zhao, P., Zhou, R. U., Zhu, X., Hao, Y. J., Li, N., Wang, J., et al. (2015). Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice. Int. J. Mol. Med. 36, 633–644. doi: 10.3892/ijmm.2015.2260

 Zhao, Q. M., and Yu, Y. T. (2017). Antibacterial Activity of Matrine and Oxymatrine on Pathogenic Bacteria Causing Cow Endometritis in Vitro. Prog. Veterinary Med. 38, 65–68. doi: 10.16437/j.cnki.1007-5038.2017.01.013

 Zhao, X. B., Qin, Y., Niu, Y. L., and Yang, J. (2018). Matrine inhibits hypoxia/reoxygenation-induced apoptosis of cardiac microvascular endothelial cells in rats via the JAK2/STAT3 signaling pathway. Biomed. Pharmacother. 106, 117–124. doi: 10.1016/j.biopha.2018.06.003

 Zhou, H., Xu, M., Gao, Y., Deng, Z. G., Zhang, W. Q., Wang, Q., et al. (2014). MT induces caspase-independent program cell death in hepatocellular carcinoma through bid-mediated nuclear translocation of apoptosis inducing factor. Mol. Cancer. 13, 59. doi: 10.1186/1476-4598-13-59

 Zhou, J., Wei, S., Fu, Y., Guo, Z. L., Zhang, W. P., Dai, G. D., et al. (2016). Matrine ameliorates isoproterenol-induced acute myocardial ischemia through regulation of growth factors and RhoA/ROCK1 pathway. Int. J. Clin. Exp. Patho. 9, 21961–21969.

 Zhou, B. G., Wei, C. S., Zhang, S., Zhang, Z., and Gao, H. M. (2017). MT reversed multidrug resistance of breast cancer MCF-7/ADR cells through PI3K/AKT signal pathway. J. Cell. Biochem. 119, 3885–3891. doi: 10.1002/jcb.26502

 Zhou, J., Ma, W., Wang, X., Liu, H. B., Miao, Y. L., Wang, J. L., et al. (2019). Matrine Suppresses Reactive Oxygen Species (ROS)-Mediated MKKs/p38-Induced Inflammation in Oxidized Low-Density Lipoprotein (ox-LDL)-Stimulated Macrophages. Med. Sci. Monit. 25, 4130–4136. doi: 10.12659/MSM.917151

 Zhu, P., Chen, J. M., Chen, S. Z., Zhang, C., Zheng, S. Y., Long, G., et al. (2010). MT inhibits vascular smooth muscle cell proliferation by modulating the expression of cell cycle regulatory genes. Chin. Pharmacol. Bull. 31, 1329–1335. doi: 10.1038/aps.2010.145

 Zhu, J. L. (2014). Effect of Matrine on the Formation of Staphylococcus Epidermidis Biofilm. (China: Ning Xia University).



Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 You, Yang, Du, Wang, Sun, Liu, Ma, Pang, Zeng, Zhang, Dong, Yin and Ni. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.


OEBPS/Images/fphar-11-01067-g002.jpg
g
prmrser Antnociceptve ] [Apopctesi
el i Tepatoprtectve

iy civiy // e

Aaticancer
activiy

=SNIF
7N

At metmtass

=
N

Caroprotectve
activiy

Combinstion vt
switumor mediine

“Aotinammatory Anialleric | [Newoprotectve
“Activity effects effects






OEBPS/Images/table1b.jpg
Aot actidty

Aot vy

actiy

Aai-ocicepiive

iy

actiy

iy

Intedeukin-10-deficient mice  Reduoes the MANA expression of IL-17 and IFN-y, down-regulates the 11 vivo.

LTA ncuces endometss in

High-fuctose detinduced
Steatohepatis mos
Merc-145 cals

PR cofs
Porcne iansy cels

Porcng avolar macrophages.
HepG2 22,15 ol

Rat primary caciomyocyles
Rnabdomyosarcoma cals
Gram-negative bactera

‘Staphyiocooeus epidermics
Kunring mice

somce
High-fuctose detinduced rat

Highatfoc mice
HR rat model

Rat Kuptler el and
immundlogca ve nkry.
‘mode i BALBIC Mo
HSCT6 cats

Patints with chvoric hapats
e

COLnccnd acte

e nkay rat.

CLinccnd rat v xoss
model

Rat cardac microvascisar
ondothetal cals

Rat cardomooytes

Isoproterenotinduced acute
myocardialischema i rat

oMt

Hoar faiuro mock inrats.
AB1-42inuced 4D rat

0 trnsgenic mice
MPTP -nduced PD rat

proporton of G+ T cls of mesantert hmph nodo cels
Ieniits the TLRZ-mediated NE-xB pathay

Iniits MKKS/p38 MAPK pattviay

Improres gut micobiota communies, dorreguiaes the expresson
of pro-nfammatory cokines

‘Suppressos ROS medatec NRLPG infammasomo acivation
Up-toguates the expression of 8012, SOD, GSH-P and T-AOC.
Actates the p38 MAPIINFZARE anticxidant sgnaing paay

Actates N2 pathay
Inacivatos PRRSV: bocks the expression of N proten

Inhititon of DNA reicaton o POV2)
Intefres POV2 Rep proten expression andio pIAMAPK and JNK/
SAPK pathways

Iehitits the actvaton of TRS, 4/NF-B/TNF-a pafvay

Inhiis HBV:DNA repication, HBeAg and HBshg

Actates PRIGAKT pattway and the expressicn of Bse-743 protein
Diswpts he repication of entercirs 71
Decreasss the expresson kevel of ActA

Moduates 595, agr and oe vience gencs
Reguites the kappa:opio receptor and the -opcKd recepiors

Iehiis the expression of TN« n dorsal root gangon and Ras/Rat/
ERK1/2 patrway
Actates N2 pathway

Increases the mANA and proton level o HSPT2 i e tisues:
‘Suppressos myeoparoase, NF-xB actviy and macrophage-
nflammatory proten2 exprosson

Iehiits the expression of eammatory factors

Ieitis cll proferation and reduces cotagen | and HAlovels.
Restores ver uncion and tansiorms serum from hepats Bo antigen
o HB antbody and serum HBV DA from posite to negative

Prevents Grihi monocyte nraton fand nhibits MOP-1 production

T sabianoic ac 8 sat docreases the exprassions of HA, LN, AST,
ALT, Hyp. TGFB1 and - SMA
‘Actates the JAKP/STAT3 sgnaing pathway

Roguiates HSPT0 Expression by the Actiaion of AK2/STATS.
pathvay

Reguites the expression of ADMA and eNOS; nhtits te rokase
of T and RROAROCKI pathviay

Iehititon of ROSITLR-4, ATF6 or TGF-B1/Smad pattvays
Blocks myocarcal apoptoss and i3-acrencreceptoriendotneal
nitic owide synihase painay

Reverses the imbalance of Th17/Treg cytokinos

Blocks the ABRAGE sgnalng pattay
Blocks the overexpression of Nrt2

Invio
Invio
Invio
Inviro
Invio
Invioand
viro
Invio
Inviro

Invito
Invito
Inviro
Invito
Inviro
Invito
Invito

Invito
Invio

Invio

Invio

Invio
Invio

Invioand

Invio

Invio

Invio

Invio

Invio

Invio

Invio

o

o

o

o
o

Wuetal, 2016,
Jang K., (2019)
Zrouetal, 2010
P et 2019)

Znang o al. (20180)
Zneo et a1, 2015
Weta. o173

Zneng . F. ot 2013)

Zneo ot 8, 2013: Sun
etal, 2014

Sunotdl, 2015;
Cheung A K. (2003 Wei
et 2009)

Nagtal, 2016

Maotal, 2013
Swetd, 2010
Yangotal, 2012
Poatmad and
Mobammad, 2018

2 @o14)

Qanetal, 2012

Tao etal. 2013; Gong
etal.2016)
Zrang H.F.etal, 2013

Zeng et 2015
Zrang . otal. 2011

Unetal (1997) Yo' X.
otal, 2009

Znaoeta, 2012
Long et a.(2004)

Setal, 2013
Gaoetal, 2012
Znao et 2018
G atal, 2018
LixX.etal, 2010; X,
ot ol 2012 Znou ot .
2016

Luetal, 2015: Zhou .
otal, 2016: Lot
20170

Yuotal, 2014
Znang.etal, 2015

Cuietal, 2016
Meng et a. 2017





OEBPS/Images/crossmark.jpg
©

2

i

|





OEBPS/Images/table2.jpg
Celllines/model

zebrafisn
R and CS7BUB
moo.

HL7702 cots
HepaRG cels
PO12 cots
C57BUB) mice

Dose

04 and 063 m. 960
1000 40 mgyay o
coays

T4 mgm_ dgn

T4 mgm_ den
28mM,48n
10205 50 Mgy for
30days.

Activityimechanismis) of action

Roguatos 06t stess and apoptossaated gone
Increases actity of AST and ALT

Inhiits the actation of N2 pathway.

Induces ROS-medated miochondiil apoptot patiay
Actiation of the mitochondia-dependent apoplot patay
"Reduces sperm [Cai by CatSper channel, suppresses the
‘phosphoryation of ERK1/2.

Invio
Invio

Inviro
Inviro
Inviro
Inviro

Reference

GuoP. et (2016)
Lang et al 015)

Youetal (2019)
Youetal 2018)
Snental. @2017)

(o etal. 2015 Luoet o
2016





OEBPS/Images/table3.jpg
Model

Rabbit

Beagle dog
Rat

Rat

Rat
Aat

Aat
Rat

Rat

Route of
administration

Intraverous

ol
Intramascuar

Intravenous
bous

Drugiose

M, 40 mghg

MT, 300 mgkg
T30 mghkg

T 2mg%g

T, 2mghg
avo Sophora scens A, oxtact, 0.56 gk

MT. 40 mghg
M, 16 mgg

120X . tonkinensis extacts equivlent 10 he
adminstration of 2 mg/kg OMT)

‘Characteristics of pharmacokinetics. Reference
Two-compatimont open model Wang and Huang,
1902

ti2gof 4.5 20831 LZ W.otdl, 2010
25 208 ALC wero 3509 1 and 90.984 mgL b, Zn00 ot . (20100)
respociicy.

Graco1 2412 £ 362 ng/m Yeng otal, 2010
Grac01946.2 388 ng/m Yang eta, 2010

TW0-COmpantinont modol Wi G ad T f 252009/ Zhang ot a, 2008
™1 and 2,08, respactioly

o 80 T Of a0pr0XMately 3900 ng/M 20 S0 i, W ot 8, 2003

respectiely

Rapidy distrbuted 0 various tissues and organs, suchas  Wuet f, 2009

er,sploon and kidney.

Other complex components i the extact may nfuencethe  Tang et a., 2013
transformaton from OMT to MT






OEBPS/Images/table1c.jpg
Ao g aciviy

encephalomyels i mice.

LPS stimatod Bv-2 cets
LPSinduced AD mca.
Bumed at

(Civonic unprecictable mid
Stess mouso modlof

OVA-sensizod o
BEAS2B cots

RENRG VA OV PIOUVIOR QI EY St (ON0: BRI TN
AKUMTOR pathviay: blocks NogoAinduoed necrd nhibtry
Signaing pathay

Suppresses the expression of HSPBO and TLR-4

onibits the proten expression of GP9Tphox and PATphox
Improves andety and dopression symploms by g JNK-
medated apoptosisinfammatory signaing, oxidative sress, and
increases of BONFNVEGF i hppocampus.

Actation of PISK/AKUMTOR signsig pathwiay i Hippocampus

oniits Th2 otokines or L-4/L-1&/STAT-6 patnway
Iohitis the expression of AV, pro-ifamematory cyiokines and
ecsinophl chemokines:

nwo

Inviro
Invio
Invio

Invio

Invio
Inviro

biccbikabort o i
Q.etal, 2017 Znang M.
Lata, 2017
Zneng B etal, 2017
Uetal, 2018
Knan ot a1, 2020

Woetal, 2018

Fuetal, 2014
Huang ot . (2014)






OEBPS/Images/fphar-11-01067-g001.jpg





OEBPS/Images/logo.jpg
’ frontiers
in Pharmacology





OEBPS/Images/fphar.2020.01067_cover.jpg
, frontiers
in Pharmacology

A Systematic Review of the
Pharmacology, Toxicology and
Pharmacokinetics of Matrine





OEBPS/Text/nav.xhtml


  

    Table of Contents



    

		Cover



      		

        A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine

      

        		

          Introduction

        



        		

          Pharmacology

        

          		

            Anticancer Effects of MT

          

            		

              Induction of Apoptosis

            



            		

              Anti-Metastatic Effect of MT

            



            		

              Effect of MT on Cell Cycle

            



            		

              Reversion of Multidrug Resistance

            



            		

              Induction of Autophagy

            



          



          



          		

            Anti-Inflammatory Effect of MT

          



          		

            Antioxidant Property of MT

          



          		

            Antiviral Property of MT

          



          		

            Antimicrobial Effect of MT

          



          		

            Anti-Nociceptive Activity

          



          		

            Hepatoprotective Effect of MT

          



          		

            Cardioprotective Effect of MT

          



          		

            Neuroprotective Effect of MT

          



          		

            Anti-Allergic Effect of MT

          



        



        



        		

          Toxicology

        



        		

          Pharmacokinetics

        



        		

          Drug-Drug Interactions of MT

        



        		

          Conclusions and Future Perspectives

        



        		

          Author Contributions

        



        		

          Funding

        



        		

          References

        



      



      



    



  



OEBPS/Images/fphar-11-01067-g003.jpg
Matrine

==

Mitochondrial

]| [ ] | [

]

Hepatotowicity __neurotoicity _ Reproductive and developmental toxicity






OEBPS/Images/table1.jpg
Pharmacological ol fines/model Activity/mechanismis) of action Application Reference
ofoct

pntcance actiiy  HT29 and DLDI cals Trggers mitochondeil apoptoic pahway, n¥biion of 38 sgnaing o and  Chang et o, 2013; Alen
pattiay vio eta @014)
K562 cals o primary chvonic.Inits 1L expression and JAKZISTATS pathay. o Maeta, 201
myBod lekemia cels.
HepG2 and e cefs  Caspase-dependent and caspase-ndependen apoplofc patways;  Iniro  Zhang et al, 2010; Wang
nnitiion of PG/AKTATITOR paifaay: v reguates expression of etdl, 2018; Zu tal,
Bein 1 2014;
SO-RBS0 csts Iduoss mitochondisl medated apoptoti pathay nviro Stavetal, 2014
BXPC3and PANG-1 cals  Suppresses the expression of PONA and a caspase-dependent v Luetal 2010)
pattviay
MOF7 cats Ionitits the 8012 rotei associated with AKT sgnaing; mR-ZUPTEN/ Invito et (2015 LL. Q.
AT Pattiay otd.@012)
Lovocels. AT Pattay im0 Zvang et 2014
MRNAS ool Increases XIAP expresson; moduates of NFA8, pERKad OAP Inwito Luetal, 2012
549 cals Down eguaton of VEGF-A and the rats of Bc-2/Bax protsns invivo  Znang Y. ot . 2009)
NPC.039 and CNE:2Z cols Inibits the oxpression of N8, MMP-2 and MMP-3 Invio Sunctdl, 2015
MDAMB.231 o Reduces the actiatin of MP-O/MMP-2, phosphoryated AKT. 66, inviro  Yuetal. 2000
VEGFR1 and EGF
24 oot PIK/AKT patway v Yamgetal. 2017
806823 cels. Down reguates the phosphorytion of VASP invivo Znang J. et (2013
Y79, WERLRB1,and SO Increases the expression of p21 and p27 nviro Zmocta, 2012
RBS0cols
21 cols et the PIGK/AK! patfvay;actvates p21 expression v Jnetal, 2013
SGC-7901 osls Blocks col cycl aest n § phase; nacthation of PRKAKAPA inviro Song et a. 2013; Peng
Pathway. atal (2016)
Resistant MCF-7/ADR celine - Decreases the expression of P-gp, MRP1, p-AKT and Bcl-2 Inviro ZhouB.G.etal, 2017
Resisant KS62/00X ools  Reduces the exprossion of P-gp Inviro Craictal, 2010
Rosisant NCHHS20/TAX2S  Reducss the proten and mANA expression of suniv, Octe4, and Sox- Inviro Luo 11, 2013
ool 2
HL60, THP-1and C1498  AKUMTOR signsing nniion-medited apoptosisand autophagy  Inviro Vi J. 181, 2017
ool pattway; decreases the xxession of SOSTM1/p62
SKova cets Decrease the expression o suvhin and actvate caspase-dependent  nviro Gun et 2010
apoptoss
o Induoss microphocytoss and down regubates ATP kel inviro Zrang B.stal (2018)
potiinfaenatory  NRSAS cals and LPS- ot th exprossion eves of TNF-g, IL:6 and HGBT Inviroand Znang B atal (2011
Actiy induced acute ung injay in vio
meo
Type l colagennchced  Inbits the NF-xB patway and the ncreases of L6, L8, IL1B, I Invio  Puetal, 2016
antits rat 1A TN«
‘Endotorin-inducod acuto ver  In¥bis the incroase of MIP-2, TNF-at and I0AM-1 v ZnngF.etal @o11)
njry afer hepaticschemi/
ropartusion nat
Asthmatc mice and TNF--  Suppresses the NF-+8 signang patay and the exgression of Inviroand Sunet . 2016
stimustod epihelalcats  SOCS3, (L4 and IL13 vio
Ovarictomized mie, Iohtits RANKL-uoed acthaton of MAPKIAKTINE 8 pathways Inviroand Chen et 2. 2017
RAW264.7 and bone mastow vio
monooytes s
Lps-stmatod AS49 el and Invbis the acthaton of NF-+8 and MAPK pathways. Inviroand Uouetal 2016)
mce vio
Rat ntostna microvasculr In¥bis SCAM-1 xpresson nvro Swetal, 200
ondotholal cals
Hueman sortc smooth muscle - MAPKINF v pathway achation v Luetal, 2016
ool
Humman chondrooytes Supfresses xpression of MMP-3.and MVP-13; tho ihbiion of NEx8 Inwiro  Luotal, 2015
200 MAPK pathuys.
Humman dermal fbroblasts  Suppresses AP-1 pathay ant MMP-1 expression v Jngetal, 2008
LPS stimuated A543 cels Invis COX-2 expression; requiates MAPKINF-+8 actvation inviro Uov, o1, 2016
(P stmdatodmooand  Reducss tho procucton of L1, IL-17 and NOA; ncreases the v WuG.J. @ 2017
Cacozcals expresson of CCAT
nured mouss ker Ioniis hepati nfiaion of GrIN monooytes and MCP-1 achity  Inviroand  Shietal, 2013





