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Cystic fibrosis (CF) is the most common genetic disorder among Caucasians, estimated
to affect more than 70,000 people in the world. Severe and persistent bronchial
inflammation and chronic bacterial infection, along with airway mucus obstruction,
are hallmarks of CF lung disease and participate in its progression. Anti-inflammatory
therapies are, therefore, of particular interest for CF lung disease. Furthermore, a better
understanding of the molecular mechanisms involved in airway infection and
inflammation in CF has led to the development of new therapeutic approaches that
are currently under evaluation by clinical trials. These new strategies dedicated to CF
inflammation are designed to treat different dysregulated aspects such as oxidative
stress, cytokine secretion, and the targeting of dysregulated pathways. In this review,
we summarize the current understanding of the cellular and molecular mechanisms that
contribute to abnormal lung inflammation in CF, as well as the new anti-inflammatory
strategies proposed to CF patients by exploring novel molecular targets and novel
drug approaches.
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INTRODUCTION

Cystic fibrosis (CF) is the most common lethal monogenic disorder in Caucasians estimated to affect
one out of 2.500-4.000 newborns. It is caused by a Cystic Fibrosis Transmembrane conductance
Regulator (CFTR) gene mutation, which encodes a chloride channel expressed at the apical
membrane of the epithelial cells (Riordan et al., 1989).

CF is a multi-system disease that affects the respiratory tract, intestines, pancreas, genital tract,
the hepatobiliary system, and exocrine glands, leading to diverse pathology ranges and clinical
problems (Elborn, 2016). While most patients have multiple organ alterations, the leading causes
of both morbidity and mortality in more than 90% of patients remain chronic progressive
pulmonary disease and respiratory failure (Elborn, 2016). In CF patients, the lack of CFTR
chloride channel activity leads to progressive pulmonary obstruction associated with critical and
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constant neutrophil-dominated endobronchial inflammation and
overwhelming bacterial infection (Figure 1). On a pulmonary level,
scientists developed many new symptomatic therapies with either
anti-inflammatory properties, antibiotics, or molecules improving
mucociliary clearance (mucolytics) in order to treat inflammation,
infection, or mucus abnormalities (Figure 2A). The discovery of
these new drugs was made possible by the accumulation of
knowledge in these three areas. After the discovery of CFTR,
researchers aimed for the development of therapies that can
correct the disease’s origin. Their work mainly focused on
infection, rather than on anti-inflammatory drugs or mucus
abnormalities. The proportion of published articles on infection is
more than 70% compared to those published on inflammation or
mucus. This proportion reaches more than 80% when focusing
on publications on antibiotics compared to those on anti-
inflammatory drugs and mucolytics (Figures 2B, D).
In the allocation of priorities, the anti-inflammatory drugs have
Frontiers in Pharmacology | www.frontiersin.org 2
been, for long, the “poor relatives” in basic research compared to the
modulators of CFTR activity.

These drug modulators targeting CFTR are designed to
reestablish, at least partially, the CFTR expression, and improve
its activity. So far, many of these treatments got through to the
market, and these therapies are upgrading patients’ life quality
through short- and long-term improvements in clinical outcomes
(Lopes-Pacheco, 2019). Despite this, the main treatments remain
symptomatic, focusing on different dysregulated clinical
manifestations observed in CF patients (pancreatic insufficiency,
intestinal malabsorption, and lung deterioration). However, their
use is limited by insufficient basic scientific knowledge (Figure 2C),
which has reduced the number of medicinal products currently on
the market (Lopes-Pacheco, 2019). A deeper understanding of the
natural evolution of CF pathology brought about new treatment
tactics in order to improve pulmonary functions and increase life
expectancy. CFTR chloride channel is also involved in the
FIGURE 1 | Progression of CF pathophysiology in bronchial epithelial cells. In healthy airways, sodium (Na+) absorption and chloride (Cl−) secretion control hydration
of the airway surface layer (ASL). In CF airways, impaired Cl− secretion due to the CFTR absence or loss of function leads to unregulated Na+ absorption and result
in inadequate hydration of ASL, causing mucociliary clearance and bacterial killing impairment. As a result, mucus obstructs the lung airways and provides a nidus for
bacterial infection and inflammation. The bacteria adhere to the surface and continue to grow, ultimately forming a biofilm. The inflammation of the CF lung is
characterized by exaggerated secretion of pro-inflammatory cytokines by the airway epithelial cells, leading to the infiltration of polymorphonuclear neutrophils that
release reactive oxygen species (ROS) and proteases. Neutrophil released elastase in the CF airway secretions correlates with lung function deterioration and
respiratory exacerbations. The acidification of the ASL and the increase of its salt concentration, along with the increase of proteases levels, have been shown to
impair the bactericidal activity of numbers of anti-microbial peptides (AMPs).
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regulation of other channels such as the epithelial sodium
channel (ENaC).

Other channels are directly or indirectly linked to CFTR, such
as the calcium-activated chloride channels ANO1 (also called
TMEM16a) (Benedetto et al., 2017) (Figure 3). Therefore a
deregulated CFTR activity leads to an abnormal mucus
composition and alteration of the airway surface liquid (ASL)
hydration that could participate in the inflammatory process in
CF airways (Puthia et al., 2020). Recent publications have also
highlighted that a loss of CFTR-mediated bicarbonate secretion
and pH acidification impairs airways host defense by increasing
mucus viscosity and reducing bacteria-killing (Shah et al., 2016).
Current studies have established that the CFTR function is not
restricted to ion transport regulation. Results have suggested a
significant role of CFTR as a surface receptor for the
internalization of Pseudomonas aeruginosa (P. aeruginosa) via
endocytosis and consequent bacteria removal from the airway
(Pier, 2000). In the CF airways, the permanent presence of
bacteria might participate in the inflammatory process
contributing to a vicious cycle between airway mucus
obstruction, chronic infection, and exaggerated inflammation
Frontiers in Pharmacology | www.frontiersin.org 3
(Figure 4). Nowadays, it remains unclear how and why this
vicious cycle is initiated, even though different elements suggest
that different inflammatory pathways are deregulated in CF
airways independently from infection (Bardin et al., 2019).
However, mucus alterations could be one of the triggers of this
process. Mucins tethering to the apical bronchial surfaces lead to
acidification of ASL, thus reducing the anti-bacterial properties of
CF airways (Song et al., 2006; Quinton, 2008; Adam et al., 2015).

Finally, it is essential to bear in mind that mucus alteration,
infection, and inflammation are elements that are very carefully
intertwined and difficult to separate in the process of an
inflammatory response (Figure 4). Multiple hypotheses explain
the early events leading to the CF lung pathophysiology
progression (Jacquot et al., 2008a; Esther et al., 2019).
PATHOPHYSIOLOGY IN CF AIRWAYS

Inflammation
Although inflammation is a natural and protective process
resulting from aggression, it plays a major role in CF lung
A B

DC

FIGURE 2 | (A) The proportion of publications published in Pubmed (https://www.ncbi.nlm.nih.gov/pubmed) by years about “anti-inflammatory,” “mucolytic,” and
“antibiotic” in combination with “cystic fibrosis” compared to the total number of publications in CF. (B) The proportion of publications published in Pubmed by years
about “anti-inflammatory,” “mucolytic,” and “antibiotic” in CF. (C) The proportion of publications published in Pubmed by years about “mucus,” “infection,” and
“inflammation” in combination with “cystic fibrosis” compared to the total number of publications in CF. (D) The proportion of publications published in Pubmed by
years about “mucus,” “infection,” and “inflammation” in CF.
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pathology and progression. Inflammation was initially recorded
by the Roman encyclopedist Aulus Cornelius Celsus in the
1st century A.D. by some typical characteristic signs of
inflammation as heat (calor), pain (dolor), redness (rubor), and
swelling (tumor). Chronic and exaggerated inflammation in
people with CF causes damages to lung tissues that can
eventually lead to respiratory failure (Cantin et al., 2015).
Many recent results show that bronchial epithelial cells play a
significant role in the progression of the disease. In addition
to being a physical barrier, epithelial cells secrete many
inflammatory factors such as cytokines, eicosanoids, enzymes,
and adhesion molecules (Roesch et al., 2018). This CF airway
inflammation is characterized by an excessive production of
Frontiers in Pharmacology | www.frontiersin.org 4
interleukin (IL)-8 secreted by airway epithelial cells, and the
presence of large numbers of neutrophils and macrophages
among other inflammatory cells (Hubeau et al., 2001).
However, it is not the only pro-inflammatory cytokine
enhanced. In the airways of CF patients, TNF-a, IL-1b, IL-6,
IL-8, IL-33, GM-CSF, and G-CSF are increased, also other
molecules also play a major role such as the pro-inflammatory
metabolites of arachidonic acid metabolism. Very recent results
have highlighted the central role of other cytokines such as IL-17
(Roesch et al., 2018). In CF, the infiltration of inflammatory cells
across the epithelium into the lumen can be very deleterious to
epithelia and, as a consequence, requires robust regulation.
Numerous works have tried to identify targets and strategies to
reduce the exaggerated immune response that causes chronic
inflammation without affecting the natural defenses against
infection (Muhlebach and Noah, 2002). It is unclear whether
the inflammation is a direct consequence of the cftr mutation or
whether it is a consequence of infection and mucus
accumulation. We do not know the contribution of infection
to airway inflammation, but it must act as a catalyst and becomes
self-perpetuating. Different studies have demonstrated the direct
implication of the CFTR protein in this process mainly in the
lung but also in extra-pulmonary tissues as the intestine or
pancreas (Raia et al., 2000; Cohen and Prince, 2012; Stoltz
et al., 2015; Bardin et al., 2019). Even before symptom onset,
pulmonary inflammation and infection are often present in CF
patients (Muhlebach and Noah, 2002). Although which comes
first has been uncertain, this aspect is well reviewed in the article
from Stoltz (Armstrong et al., 1995; Khan et al., 1995; Nixon
et al., 2002; Stoltz et al., 2015). Moreover, new models lacking
CFTR, including pigs, ferrets, and rat manifest inflammatory
features typically observed with CF even in absence of infection
(Rogers et al., 2008; Sun et al., 2010; Tuggle et al., 2014). For
example, airways of CF piglets show no evidence of
inflammation during the first hours after birth (Stoltz et al.,
2010). Evidence has also demonstrated that non-infected human
FIGURE 4 | Interrelation between the main dysregulated aspects in the
airway of Cystic Fibrosis patients. CFTR mutations affect inflammation, mucus
properties, and infection. These different aspects are very intertwined, and
treating one of these elements will have consequences on the other two.
A B

FIGURE 3 | Schematic representation of ion transports in the cystic fibrosis airway. (A) In healthy airways, Na+ absorption, and CFTR and ANO1 Cl− secretion
regulate the hydration of the airway surface layer (ASL). Wild-type CFTR downregulates ENaC and participates in the activity of the ANO1 channel. (B) In CF airways
epithelial cells, the lack of a functional CFTR channel reduces Cl− secretion and causes Na+ hyperabsorption leading to ASL dehydration, which favors mucostasis.
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CF airway graft is in a pro-inflammatory state (Tirouvanziam
et al., 2000; Tirouvanziam et al., 2002; Perez et al., 2007; Cantin
et al., 2015). These data are reinforced by in vitro experiments
using specific CFTR inhibitor. For example, Perez et al. have
shown that Inh-172 treatment conducted in significant increase
in IL-8 secretion in basal but also in response to P. aeruginosa
infection (Perez et al., 2007). All these data support the
hypothesis that mutations in cftr gene make epithelial cells
intrinsically more pro-inflammatory compared with healthy
cells (Perez et al., 2007; Cantin et al., 2015), which, once
infection is introduced, sets the stage for mucosal damage and
chronic airway infection (Tirouvanziam et al., 2000).

Although the link between CFTR deficiency and host
inflammatory response remains unclear, this aspect has long
been recognized as a central pathological feature, and
consequently, an important therapeutic target. Some have
hypothesized that in CF, the unfolded proteins accumulation
on the endoplasmic reticulum induced a proteinopathy
responsible for inflammation, impaired trafficking, altered
metabolism, cholesterol, and lipids accumulation, and impaired
autophagy at the cellular level. Some have speculated that
chloride dysregulation participated in a stress-inducing ionic
imbalance in the airway, with the implication of calcium
activation, which could induce an inflammatory state (Ribeiro
et al., 2005; Tabary et al., 2006a). New hypotheses have emerged
with the direct activation of NOD-, LRR-, and pyrin domain-
containing protein 3 (NLRP3) inflammasome and can be a key
regulator of CF inflammation and a promising target
(McElvaney et al., 2019; Jarosz-Griffiths et al., 2020).

However, since the appearance of high throughput sequencing,
many studies have attempted to study the deregulatedmechanisms,
but the heterogeneity of samples anddatamakes analysis difficult. A
meta-analysis of the different studies has summarized all this data
(Ideozu et al., 2019). To summarize, many proteins are
dysregulated, including gene from signal transduction (PI3K/Akt/
mTOR signaling pathway) and immune system (NFkB and MAP
kinase pathways), but this method is more relevant to highlight the
consequence than the cause of the inflammatory dysregulation. A
very recent article has confirmed the implication of NLRP3
inflammation activation due to the alteration of electrolyte
homeostasis induced by the over-activation of b-ENac channel in
CF (Scambler et al., 2019).

Furthermore, different authors showed more than 15 years ago
that there is a deregulation of lipid metabolism in CF with an
imbalance between pro-inflammatory metabolites of arachidonic
acid metabolism and pro-resolving mediators form eicosanoid
pathway (Freedman et al., 2004; Karp et al., 2004; Serhan, 2017;
Roesch et al., 2018). Ceramide (CER) is an airway component
composed of fatty acid and sphingosine that may alter the CF
inflammatory response. CER is present in the cells membrane and
when in contact with a specific stimulus, like a bacterial infection,
CER in transmembrane signaling processes to help regulate cellular
responses to infection by activating the inflammation processes. This
could be an interesting alternative to treat CF inflammatory
dysregulation by inhibiting CER synthesis (Mingione et al., 2020).
Frontiers in Pharmacology | www.frontiersin.org 5
Although there is no consensus regarding the regulation of CER in
CF cells currently, even if more recent data have demonstrated their
implication on the progression of CF lung disease (Horati et al., 2020;
Mingione et al., 2020). Consequently, these results have led to the
proposal that upregulated inflammation is related to the molecular
defect of CF with a strong implication of nuclear factor kappa B
(NFkB) or mitogen-activated protein (MAP) kinase pathways with
other transcription factors including NFAT, NF-IL6, AP1 and AP2
(Tabary et al., 1999; Tabary et al., 2003; Muselet-Charlier et al., 2007).

More recently, different articles have also associated
microRNA (miRNA) dysregulation to CF inflammation
(Fabbri et al., 2014; Bardin et al., 2018a; Bardin et al., 2019).
How the lack of CFTR expression in ionocytes, ciliated, and
submucosal gland epithelial cells of the respiratory tract, boosts
pulmonary inflammation is still partially comprehended.
Different authors have also highlighted the central role of
neutrophil in CF airway inflammation, and many believed that
bronchiectasis results from the proteolytic and oxidative damage
induced by these cells. Longitudinal data from the Australian
Respiratory Early Surveillance Team for Cystic Fibrosis
demonstrated that neutrophil elastase activity at 3 months of
age was a predictor of bronchiectasis at 12 months and 3 years
(Wijker et al., 2020). The central role of neutrophils and its
genesis has been extensively review by Nichols et al. and Perrem
et al. (Nichols and Chmiel, 2015; Perrem and Ratjen, 2019).

Understanding the initial host defense defects in CF airways
could suggest new prevention strategies and treatments, the
means to assess disease status and efficacy of therapeutics
(Stoltz et al., 2015). Several mechanisms are suggested to
explain in what way CF basal inflammation promotes
subsequent bacterial infection. One possible explanation is that
serine protease, released by activated neutrophils, degrades
innate immune mechanisms, including anti-microbial peptides
(AMP), participates in secondary infection, and to this vicious
cycle. The molecular mechanisms relating to abnormal CFTR
chloride function in airway epithelial cells to excessive lung
neutrophilic inflammation have not yet been fully clarified
even if extensive works have already been published (Taggart
et al., 2000; Tabary et al., 2006b). Decreased neutrophil apoptosis
and the high secretion of IL-8 by epithelial cells are contributing
factors. In 2016, researchers discovered the leukocyte adhesion
deficiency IV (LAD-IV), which is a defect in monocyte integrin
activation in CF patients. The study showed that CFTR
mutations could lead to a monocyte-specific adhesion
deficiency (~80%) and impairment in transmigration into the
alveolar space, which could explain the extreme infiltration of
neutrophil since monocytes play a crucial part in inflammation
and its resolution. Thus, failing to recruit monocytes in CF
patients’ lungs may explain the excessive production of
cytokines, the impaired inflammation resolution, and pathogen
capture impairment (Sorio et al., 2016). The continuous driven
recruitment of neutrophils and other immune cells and their
implication in non-resolving inflammation have been already
discussed in different reviews (Cantin et al., 2015; Nichols and
Chmiel, 2015; Roesch et al., 2018).
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Whether CFTR dysfunction causes directly or indirectly, a
more important predisposition to infection and whether the
inflammation occurs separately from the infection has yet to
be determined. The development of new anti-inflammatory
strategies in CF remains limited due to the limited researches
in this area compared to infection (Figure 2D).

Bacterial Infection
Respiratory infections in CF occur from childhood. In
progressive lung diseases like CF, typical pathogens (P.
aeruginosa, Streptococcus aureus, Burkholderia cepacia,
Achromobacter xylosoxidans) colonize the airways (Palser et al.,
2019). More than 50% of children diagnosed at birth have shown
positive P. aeruginosa cultures by five years of age (Palser et al.,
2019). If P. aeruginosa is neither spontaneously cleared nor
eradicated with antibiotic therapy, the CF lung environment
facilitates the infection.

The presence of pathogens triggers inflammatory processes
in the airways contributing to the destruction of the cell barrier.
Since inflammation is a natural process of defense and the
eradication of pathogens, limiting it too much or for a long
term could be counterproductive. For this reason, antibiotics
are more frequently recommended than anti-inflammatory
drugs in CF lung disease treatment and could indirectly serve
to diminish airway inflammation (Oermann et al., 1999). The
anti-inflammatory drugs that could alter the natural defense
of the lung are only prescribed during exacerbations. Constant
development and ideal usage of new anti-microbial compounds
are vital for improving the CF patients survival chance and
quality of life (Waters and Smyth, 2015). As a result of long-term
antibiotic treatment, the decrease in infection and inflammation
is associated with lung function improvements and pulmonary
exacerbations reduction (Waters, 2018).

In a normal situation, the airways can defend themselves by
forming a physical barrier between the outside and the inside.
Also, the lung is capable of secreting cytokines that will allow the
recruitment of inflammatory cells, but it is also capable of
secreting anti-bacterial molecules. Thus, many natural AMPs,
contained in the airways, are part of the innate immune response
to the airway defense (Hancock et al., 2016). AMPs exhibit
microbicidal activities on a broad spectrum of microbes, but
bacteria appear to be the most targeted pathogens (Scott and
Hancock, 2000; Zasloff, 2002). AMPs can kill bacteria rapidly in a
few minutes. If most of the AMPs kill targeted pathogens via an
electrostatic action on their membranes, some of them kill by
more sophisticated mechanisms such as the IIA secretory
phospholipase A2 (sPLA2-IIA) which kills bacteria through
selective hydrolysis of their membrane phospholipids (Van
Hensbergen et al., 2020), or by interfering with intracellular
targets in bacteria (Geitani et al., 2019; Wang et al., 2019). Except
for very few examples, little is known about the specificity of
AMPs toward Gram-positive vs. Gram-negative bacteria. The
sPLA2-IIA is one of the rare AMPs that target Gram-positive
bacteria that exerts its bactericidal effect at much lower
concentrations than other molecules [For details, see the
review (Van Hensbergen et al., 2020)].
Frontiers in Pharmacology | www.frontiersin.org 6
AMPs represent an essential part of the host defenses against
infections and also as a potential therapeutic tool, as has been
shown in infections animal models (Morrison et al., 2002; Piris-
Gimenez et al., 2005). This effect was also supported by studies in
patients with infectious diseases showing that altered AMP
expression and/or gene polymorphisms were associated with
increased infections (Rivas-Santiago et al., 2009). On the other
hand, unfavorable circumstances for AMPs actions as abnormal
salt concentration or acidification, and inactivation by proteases,
in ASL of CF patients (Figure 1), have been shown to inactivate
AMPs bactericidal functions which may explain increased airway
infections (Bals et al., 2001; Lecaille et al., 2016; Simonin et al.,
2019). Normalizing ASL pH by inhibition of the persistent
proton secretion, mediated by ATPase H+/K+ transporting
non-gastric alpha2 subunit (ATP12A), might enhance innate
airway defense in CF newborns during the onset of S. aureus
infection. A recent study showed that the hydrophobic N-
terminal domain of Cg-BigDef1 (a big defensin from oysters)
exhibits salt-stable interactions with bacterial membranes
opening the doors to eventual drug developments when
physiological salt concentrations inhibit the anti-microbial
activity of b-defensins such as in CF disease (Loth et al., 2019).

In parallel to their anti-microbial functions, several AMPs
have been shown to play immuno-modulatory roles, in
particular by interacting with the inflammatory reaction
produced by host cells. Several studies have shown that AMPs
can target host cells involved in innate immunity and modulated
their production of inflammatory mediators, including
cytokines. Although it is not always easy to dissociate these
actions as most AMPs exhibit both functions, depending on their
concentrations, the host cell targets, and the environments.
However, AMPs have been shown to impair the inflammatory
reaction induced by invading pathogens by different mechanisms
(Masera et al., 1996; Finlay and Hancock, 2004; McInturff
et al., 2005).

The anti-inflammatory potential of AMPs correlates with their
capability of attracting and recruiting neutrophils and other
inflammatory cells. They may also have direct or indirect effects
on their maturation, differentiation, degranulation, or apoptosis
(Lai and Gallo, 2009). AMPs also act by blocking neutrophils
apoptosis, therefore prolonging their lifetime, and ultimately their
phagocytic functions (Nagaoka et al., 2012). AMPs can also
potentiate the effects of inflammatory cells such as macrophages
while limiting other tissue damage (Brook et al., 2016).

Mucus Alteration
In healthy people, ASL is a thin liquid film covering the airways
and participating in mucociliary clearance and airways
desiccation (Figure 1). Historically, studies suggested that
different secretory cells (goblet cells, submucosal glands cells,
and serous cells) contribute to ASL production (Tarran et al.,
2001). The recent finding of the airway “ionocyte” could
similarly result in a revised understanding of ASL production
(Plasschaert et al., 2018). This group has identified by RNA
sequencing all the RNAs present inside airway cells and by a new
method, called pulse-seq, has discovered this scarce cell type.
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They created the term “ionocytes” due to the cell’s likeness to
ionocytes in charge of regulating ion transport and hydration in
the fish gills and frog skin. In the airway, ASL consists of two
main layers: 1) the apical layer consisting of a water-based
polymeric mucus, and 2) a periciliary layer (PCL) that bathes
the epithelium (Atanasova and Reznikov, 2019). Normal mucus
is made of 97% water and 3% proteins, lipids, and salt. The
mucus gel layer acts as a physical barrier to prevent most
pathogens from accessing the cells (Button et al., 2012). The
mucus hydration and the mucin concentration dramatically
affects its viscoelastic properties, which, in turn, determines
how effectively it is cleared from the distal airways toward the
trachea by ciliary action and cough (Fahy and Dickey, 2010).

The commonly accepted explanation for airway disease in CF is
the “low volume” hypothesis. A reduced volume of the
periciliary fluid layer (PCL) causes failure of mucociliary
clearance, the ‘lungs’ innate defense mechanism. In addition to
having altered physical properties, the mucus composition is
modified and will participate in the CF pathophysiology by
altering host defense proteins (Henderson et al., 2014). An
increase in mucin secretion and an abnormal composition of
mucus are implied by the formation of endobronchial mucus
plaques and plugs. Mucus present in bronchia becomes the
primary site of airflow obstruction, and subsequently for chronic
infection, and persistent inflammation leading to early small
airways disease succeeded by bronchiectasis development.
Increased mucus and airway obstruction are hallmark features of
multiple respiratory diseases and contribute, especially in CF, to a
complicated, inflammatory process (Puthia et al., 2020). A chronic
cycle of infection and inflammation could be initiated, resulting in
airways structural integrity damages and leading to bronchiectasis
development (Chalmers et al., 2017). More recent studies from
Esther et al. have shown that the increase of mucus burden and
inflammatory markers without infection suggest that mucolytic
therapies could serve as preventive therapy for CF lung pathology
(Esther et al., 2019). More, mucus composition and properties also
depend on the levels of mucin production by epithelial cells that
can be increased by bacteria suggesting a complex role of
inflammation, infection, and mucus, especially in CF pathology
(Mohamed et al., 2012). The up-regulation of airway mucin genes
by inflammatory/immune response mediators at the
transcriptional and/or posttranscriptional level is one of the
major contributors to mucin overproduction. The MUC5AC
gene is transcriptionally up-regulated by several inflammatory
mediators, including LPS, IL-9, neutrophil elastase, TNF-a, and
IL-1b (Song et al., 2003). IL-8-induced binding of RNA-binding
proteins to the 3-untranslated region of MUC5AC is a potential
mechanism for regulating MUC5AC gene expression at the
posttranscriptional level (Bautista et al., 2009). Several studies
have shown that PMA induces a matrix metalloprotease-
mediated release of transforming growth factor-(Shao et al.,
2003). Eicosanoids mediate inflammation and mucus secretion in
chronic pulmonary inflammatory diseases (Garcia-Verdugo et al.,
2012). Some studies in the field have shown a substantial increase
of eicosanoid levels, including PGE2 and LTB4 in CF airways
(Bautista et al., 2009) and CF bronchial epithelial cells (BECs)
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stimulated by LPS from P. aeruginosa (Medjane et al., 2005). On
the other hand, this bacterium stimulates mucus production
through the induction of several mucins such as MUC5AC and
MUC2 both in cultured BECs and in a mouse model of lung
infection by P. aeruginosa. This induction mainly involves the
stimulation of BECs by flagellin through the TLR5 and Naip
pathways and is accompanied by the secretion of IL-8 by BECs,
which amplify mucus production (Mohamed et al., 2012).

Thus, we can suggest that in CF airways, mucus abnormalities
offer a niche that favors bacterial infections, which in turn
amplify mucus accumulation via a vicious circle that can
participate in the exacerbation of the severity of CF disease.
This amplification can occur either directly via virulence factors
(such as flagellin and LPS) of infecting bacteria or via cytokines
and eicosanoids produced by CF airways during infection.

Proteases and Lipids Imbalance
Current studies on mucolytic agents therapy used in CF have been
demonstrated to increase markedly neutrophil elastase (NE) activity
in CF sputum. Serine proteases, including NE, cathepsin G, and
proteinase 3, are the three most major proteases found in the CF
lung. These proteases are not only secreted by BECs, but also by
monocytes, lymphocytes, granulocytes, and, more importantly,
neutrophils (Pelaia et al., 2004; Hunt et al., 2020). Different
approaches have exposed their participation in intracellular and
extracellular activities, including inflammation, tissue remodeling,
mucin expression, bacterial killing, and neutrophil chemotaxis. NE,
a significant product of neutrophils granule degranulation, is
extensively studied in CF and is implicated in cleavage and
inactivation of CFTR protein (Chalmers et al., 2017). Besides, NE
also upregulates IL-8 and participates in activating cysteinyl
cathepsins and matrix metalloproteases.

In the CF airway, different articles have described the protease
and anti-protease imbalance, which could be explained by two
different mechanisms (Galli et al., 2012; Causer et al., 2020). Firstly,
CFTR is also a transporter of glutathione (GSH), a protease that is
the main non-enzymatic antioxidant present in the ASL (Rahman
and MacNee, 2000). Antioxidants are an essential protective
response to tissue injury and occur mainly in an inflammatory
environment. An absence of GSH in the extracellular medium
disequilibrates this balance and induces an oxidative environment.
This environment is intended to fight bacteria and viruses that may
be present. The goal of this process is to break up and eliminate the
injured tissues and, thus, promote tissue repair for the
inflammatory process resolution. When this natural response
arises in an uncontrolled way, the outcome is extreme tissue
damage that could induce chronic inflammation, as observed in
CF (Figure 1). During inflammation, reactive oxygen species (ROS)
such as the superoxide anion are liberated by phagocytes and are
thought to be the main cause of tissue damage.

In CF, the presence of numerous inflammatory cells that
release many oxidants will have a significant role in the
deregulation of the pro- and anti-inflammatory balance. Lung
cells are vulnerable to the damaging effects of ROS and release
inflammatory mediators, thereby amplifying lung inflammation.
ROS are extraordinarily reactive, and when produced near the
July 2020 | Volume 11 | Article 1096

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Mitri et al. Anti-Inflammatory Approaches in Cystic Fibrosis
cell membranes, they diminish intracellular GSH and cause
lipid peroxidation, which may harshly disrupt its function and
may lead to cell death or DNA damage in alveolar epithelial cells.
So, when ROS production increases, the redox balance of the
airways is altered, and this can lead to bronchial hyperactivity
and to further inflammation and participates in CF co-
morbidity. GSH is a sulfhydryl containing tripeptide (L-g-
glutamyl-L-cysteinyl-glycine) that scavenges oxidants and could,
therefore, participate in the control of the inflammatory process by
reducing oxidative stress (Rahman and MacNee, 2000; Ehre et al.,
2019). Therefore, a CFTR deficiency leads to an increased
accumulation of intracellular GSH in the epithelial lining fluid
compared with plasma. Secondly, different dysregulated
parameters such as infection, inflammation, and hypoxia,
increase the free radicals derived from oxygen and nitrogen.
This pro-oxidative environment may directly exert its effects by
activating transcription factors such as NFkB and MAP kinase
pathways responsible for the coordinated expression of numerous
genes involved in inflammation, cell death, proliferation, as well as
cytoprotection and antioxidant defenses (Pelaia et al., 2004).

CFTR-deficient tracheal epithelial cells are characterized by
high GSH levels that decrease the intracellular content of ceramide
(CER). CER deficiency occurring in CF seems to be responsible for
the increased activation of the pro-inflammatory transcriptional
nuclear factor NFkB that, in turn, is responsible for the abnormally
high inflammatory response in CF respiratory epithelial cells
(Vilela et al., 2006; Aureli et al., 2016). An increasing number of
studies indicate that sphingolipids play an important regulatory
role in CF concerning pulmonary inflammation. In different
models, it has been shown that de novo sphingolipid synthesis is
an inflammation responsive pathway. It is enhanced by
inflammatory mediators, both at transcriptional and enzyme
activity level, and the accumulation of its metabolite CER
potentiates inflammation in a vicious circle (Caretti et al., 2014).
Sphingosine-1-phosphate (S1P), generated in the nucleus by
phosphorylation of SphK2 ((Sphingosine Kinase 2), modulates
HDAC (histone deacetylases) activity either by direct binding or
through activation of nuclear ROS, and, regulates cell cycle and
pro-inflammatory gene expression (Fu et al., 2018). The
accumulation of CER causes Cftr- deficient mice to suffer from
constitutive age-dependent pulmonary inflammation, death of
respiratory epithelial cells, deposits of DNA in bronchi, and high
susceptibility to severe P. aeruginosa infections (Teichgräber et al.,
2008). Aggregates accrual, formed by misfolded mutant CFTR and
a miscellaneous of sequestered proteins within, induces
inflammation and oxidative stress, impairing proteins and lipids
transport, and consequently inflammatory statement (Mingione
et al., 2020).
HISTORY OF “CLASSICAL” ANTI-
INFLAMMATORY DRUGS

A better understanding of the molecular mechanisms involved in
inflammation has led to the development of new anti-
inflammatory therapeutic strategies. In CF, the intertwining of
Frontiers in Pharmacology | www.frontiersin.org 8
inflammation, infection, and airway mucus obstruction
complicates therapeutic approaches. Thus, anti-inflammatory
treatments, combined with antibiotic therapies and airway
clearance techniques, play an essential role in patient care,
particularly during periods of exacerbations and hospitalization.

Steroid Anti-Inflammatory Treatments
Glucocorticoids (GC), a class of corticosteroids (CS), are potent
anti-inflammatory molecules frequently applied in the treatment
of “inflammatory” pulmonary diseases. GC target many of the
proteins involved in inflammation, including IL-1b and IL-8 and
NFkB and activator protein (AP-1) (Tabary et al., 1998; Barnes,
2006). Until recently, CS were the main anti-inflammatory CF
treatments and were mainly used during exacerbations through
inhaled or oral administrations (Balfour-Lynn and Welch, 2014;
Lands and Stanojevic, 2019).

Since the first Prednisone clinical trials (Auerbach et al.,
1985), oral CS have been shown to diminish the lung
inflammation and reduce the development of the pathology in
CF patients. However, the use of CS is still controversial in the
CF context due to medium- and long-term use. The side effects
include growth impairment, cataract formation, glucose
intolerance, and osteoporosis (Balfour-Lynn and Welch, 2014).
Nonetheless, oral CS are promptly used during an exacerbation
to decrease inflammation in CF lungs.

Even though the use of GC in CF is common, the signaling
pathways remain partially described. Interestingly, we have
published that the NFkB signaling pathway was significantly
involved and refractory to the action of GC in glandular
epithelial cells (Tabary et al., 1998). Moreover, we have
confirmed these results in airway neutrophils from CF patients
(Corvol et al., 2003).

Even though inhaled CS have a better safety profile, their
efficacy has not yet been demonstrated (Balfour-Lynn and
Welch, 2014). The inhaled steroids withdrawal impact was
established in a multicentric randomized, double-blind
placebo-controlled trial, including CF children and adults
(Balfour-Lynn et al., 2006). This study failed to show any
beneficial effect of inhaled CS in CF patients treated for
six months.

Finally, GC remain interesting molecules, especially during
exacerbations, as they significantly reduce inflammation.
However, their use in CF can only be limited to specific cases.

Non-Steroid Anti-Inflammatory Treatments
As GC have significant side effects, alternative molecules have been
proposed. For a few years, Ibuprofen, a non-steroidal anti-
inflammatory drug (NSAID), has emerged and was proposed to
the CF patients as a GC alternative. Most of NSAID (such as
Aspirin) are known to block cyclo-oxygenase (COX) enzymes that
produce prostaglandins from free arachidonic acid (Kurumbail
et al., 1996). Ibuprofen, discovered by Stewart Adams laboratory
in 1961, was sold initially as Brufen to treat rheumatoid arthritis
(Balfour-Lynn et al., 2006; Halford et al., 2012). In CF, Ibuprofen
acts directly on neutrophil activation, inhibiting their mobility and
recruitment in the airways (Konstan et al., 2003). High-dose of
Ibuprofen can reduce the development of CF patients’ lung disease,
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especially in children (Lands and Stanojevic, 2007; Lands and
Stanojevic, 2019). A meta-analysis from a current update of a
regular review has been published on the Cochrane database (Lands
and Stanojevic, 2019). Multiple unwanted effects were a matter of
concern due to the high doses usage, which has limited the
Ibuprofen use in CF. Recent results have described that obvious
benefits of Ibuprofen therapy outbalance the low risk of
gastrointestinal bleeding, although long-term safety results are
limited. In low doses, some shreds of evidence indicate that
Ibuprofen may cause inflammation (Lands and Stanojevic, 2019).
Nonetheless, these outcomes are still a subject of debate among
scientists who suspect the inappropriate use of Ibuprofen for CF
patients (Lands and Stanojevic, 2016). The association
of Ibuprofen with infections is more complicated in that it
confers risk in some situations but benefits in others, therefore its
usage might require close monitoring (Varrassi et al., 2020).

Macrolides
Among the most exciting new anti-inflammatory drug
treatments established in the last few years in the CF context
the macrolides (Southern et al., 2012). Macrolides were
discovered in 1952 and were initially isolated from cultures of
Streptomyces erythraea. The frequently used macrolides have 14
(Clarithromycin, Erythromycin, and Roxithromycin) or 15
(Azithromycin) atoms attached to their macrocyclic rings
and were named macrolides in regards to the presence of
macrocyclic lactone ring. Macrolides are interesting original
antibiotics because of their double action of not only reducing
infections but also reducing inflammation. The macrolides
were used as antibiotics to treat different infectious diseases,
including numerous airway pathology as pneumonia, CF,
bronchitis, pharyngitis (Zalewska-Kaszubska and Gorska,
2001). Surprisingly, in 1987, a Japanese group has reported a
spectacular effect in panbronchiolitis patients’ lifespan when
treated with Erythromycin antibiotic (Kudoh et al., 1987). This
pathology is a typical and representative disease of chronic
respiratory tract infection in Japan, characterized by chronic
inflammation localized predominantly in the respiratory
bronchioles with inflammatory cells such as monocytes,
macrophages, neutrophils and, T lymphocytes.

The molecule showing the most interesting effects in CF patients
is Azithromycin, with an improvement of lung parameters, a
decrease of P. aeruginosa infection, and hospitalization duration
(Clement et al., 2006; Saiman et al., 2010; Nichols et al., 2020).
Prolonged use of small dose Azithromycin was related to a
beneficial impact on lung disease expression, well ahead of P.
aeruginosa infection. A metanalysis of these researches proved
substantial improvement or maintenance of the forced expiratory
volume in one second (FEV1, a measure of lung function) and
forced vital capacity (FVC) in treated patients vs. controls after 12
months of therapy. Even though there was no decline in the
intravenous antibiotic therapy necessity or the hospitalization
duration of any of these studies, a positive effect on the
restoration of Cl- efflux in CF has also been shown (Saint-Criq
et al., 2011).

Moreover, some scientists demonstrated that macrolides
operate by limiting pro-inflammatory cytokines and provoking
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direct alterations in the neutrophils function (Equi et al., 2002;
Southern and Barker, 2004; Haydar et al., 2019). However, they
failed to reduce the inflammation in BECs in CF patients (Saint-
Criq et al., 2012). One recently published article has
demonstrated that Azithromycin could modify the M2
phenotype macrophage and, therefore, indirectly modify the
inflammatory process by inhibiting NFkB activation by
increasing IKKb expression in J774 murine macrophages
(Haydar et al., 2019).

However, some macrolides, such as Clarithromycin, can
induce neutrophil extracellular trap (NET) generation, a
mechanism implicated in innate immunity and some
inflammatory processes. NETosis is a mechanism by which
neutrophils extrude their DNA and protein contents to form
NET, including AMPs. The physiology and the formation of the
NET have been extensively described in the review from
Ravindran et al. (2019). In the fetal stage and early childhood,
neutrophilic inflammation in the peri-bronchial regions is
present in CF patients who have mucus excess and obstructive
secretions but no persistent bacterial infections. Various
microbial components like inflammatory cytokines, lipid
mediators, and extracellular DNA found in CF patients induce
NET formation (Henke and Ratjen, 2007). In CF airways,
neutrophils are recruited to the airway upon infection and
exacerbate the disease by producing NETs, which can increase
mucus viscosity and consequently participate in the airway
obstruction. The excess of NETs and their cytotoxic
components, associated with hypervisquous mucus, exacerbate
CF NET produced by Clarithromycin and inhibit Acinetobacter
baumannii infection by acting on its growth and biofilm
formation in an LL-37-dependent manner (Konstantinidis
et al., 2016; Khan et al., 2019). Clarithromycin also enhances
the antibacterial defense of fibroblasts and improves their wound
healing capacity through the upregulation of LL-37 on NET
structures (Arampatzioglou et al., 2018). Although Azithromycin
and Chloramphenicol show that neutrophils pretreatment with
these macrolides decreases the NETs release. Moreover,
Azithromycin showed a concentration-dependent effect on
respiratory burst in neutrophils, whereas Chloramphenicol did
not affect degranulation, apoptosis or respiratory burst. So, these
antibiotics modulate the ability of neutrophils to release NETs
influencing human innate immunity (Bystrzycka et al., 2017).
The macrolide immunomodulatory role depends on the
macrolide used and the pathology involved.

As a final point, conventional anti-inflammatory treatments
for CF are limited and have not been explicitly developed for this
pathology, and could induce counterproductive effects. Research
in this field is still limited compared to antibiotics, but despite
this, new molecules or strategies are being evaluated.
NOVEL ANTI-INFLAMMATORY
APPROACHES

Better insight into the pathways involved has led to the
development of new therapeutic approaches that are currently
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being evaluated under cell experiments or clinical trials. These
new strategies aiming at the CF inflammation are designed to
treat different dysregulated aspects such as channel modulators,
oxidative stress, cytokines secretion, lung remodeling, and the
regulation of dysregulated pathways.

New Channel Modulators
CFTR Channel
The discovery of the CFTR gene in 1989 resulted in insights on how
CFTR mutations induce CF pathology and encouraged many
researchers to develop new drugs or strategies to correct the
mutation or increase the protein activity (Riordan et al., 1989).
Genetic therapy using adeno-associated virus (AAV) or other
strategies aiming to correct the CFTR gene was very promising
because CF is a monogenic disease. Nonetheless, the subsequent
realization tempered expectations because the airways are well
defended and are not absorptive surfaces. The natural barrier of
mucus considerably impairs gene transfer into the lungs, and the
epithelium renewing necessitates numerous administrations. For
these reasons, only one study has demonstrated a significant but
moderate effect on CF patients. Thus, further optimizations or other
strategies are needed and in progress (Alton et al., 2015; Alton
et al., 2017).

These data provided the grounds for pharmacologic
modulations of chloride transport, by targeting mutant CFTR
and/or alternative ion channels as anoctamin-1 (ANO1) that can
compensate for CFTR malfunction. This excitement has now
proven to be warranted because numerous new therapies
approved by the FDA or EMA are now either in the pipeline
or available for CF patients (Figure 5). This finding contributes
to the innovation of genetic disease pharmacotherapy with
Vertex Pharmaceuticals as a leader in the CF research field.
Fundamental CF research has set the stage for a better molecular
understanding of CFTRmutations by supplying structural pieces
of information to design new approaches for the pharmacology
dynamic even if the different drugs proposed were obtained by
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high-throughput screening (Callebaut et al., 2017). Till date, two
CFTR-directed molecule classes have been developed:
“potentiator” compounds increasing mutated CFTR activity at
the cell surface and, “corrector” drugs improving altered protein
processing and trafficking to the cell surface (Wainwright et al.,
2015; Rowe et al., 2017; Davies et al., 2018) (Figure 6). The first
generation of the compounds has either been limited to a few
patients with specific mutations (Ivacaftor) or was addressed to a
larger group (Orkambi) and demonstrated moderate effects in
CF (Mayer, 2016). For this reason, the U.K. National Institute for
Health and Care Excellence (NICE) issued a draft guidance
against recommending Orkambi. Recently, the FDA has
approved an auspicious combinat ion of molecules
(Elexacaftor–Tezacaftor–Ivacaftor called Trikafta) to restore
the function of p.Phe508del CFTR protein in CF patients even
if patients had a single p.Phe508del allele. The combination of
drugs relative to the control resulted in a percentage of predicted
FEV1 that was more than 14 points higher and a rate of
pulmonary exacerbations that was 60% lower through 24
weeks of treatment (Keating et al., 2018; Middleton et al.,
2019). Unfortunately, a few pieces of information are available
for the inflammatory aspects of these treatments. Although,
recent evidence showed that the inflammation and lung status
hampers these medications and can hinder their effects. Only one
article has demonstrated that CFTR modulators can reduce
excessive pro-inflammatory response following LPS
(lipopolysaccharide) stimulation of CF monocytes (Jarosz-
Griffiths et al., 2020). Moreover, in this article, the authors
have also demonstrated that IL-8, IL-1b, and TNF-a (Tumor
necrosis factor-a) decreased significantly in the serum of CF
patients treated with Ivacaftor and Tezacaftor treatment. It is not
known whether the observed effects are due to the restoration of
Cl- efflux, GSH (glutathione), or CFTR protein interactions
present at the membrane.

Other new classes of mutation are in development, such as
CFTR amplifiers, CFTR stabilizers, and read-through agents
FIGURE 5 | List of the different categories of drugs under development or clinical trials in the context of CF (adapted from https://www.cff.org/Trials/pipeline/).
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(Figure 6). CFTR amplifiers upregulate the expression, and
indirectly, the activity of mutant CFTR. PTI-428 and PTI-CH
are the two amplifiers who seem promising in pre-clinical and
clinical studies. PTI-428 can enhance lung function in CF
patients receiving Orkambi with no significant adverse
effects. CFTR stabilizer as Cavosonstat inhibits the enzyme
that is involved in regulating how much CFTR protein is
present at the cell surface (Donaldson et al., 2017). It could
potentially increase the benefits of other medications that
target the CFTR function. Read-through drugs can help the
ribosome skip over the early stop sequence in order to read the
mRNA remaining information and generate CFTR protein.
These therapies may be of interest to class I mutations where
there is no production of mRNA or CFTR protein. Ataluren
was developed as a potential treatment for these mutations, but
its development was terminated due to failed clinical trial
outcomes (Shoseyov et al., 2016).

This approach needs to be completed in the future evaluation of
CF trials to understand the effects better and investigate the
mechanism complex. It can be assumed that earlier treatment
using these drugs may avoid structural damages and give rise to
more efficient and prolonged results. We can imagine that the
improvement of various dysregulated parameters will have long-
term effects on the inflammation present in CF patients, even if
indirectly. A recent article has highlighted that by Tobramycin or
the AMP, 6K-F17 could restore the effects of Orkambi on
p.Phe508del-CFTR protein, suggesting a significant role of
Frontiers in Pharmacology | www.frontiersin.org 11
infection in the CF pathology (Laselva et al., 2020). Furthermore,
using this approach, they have demonstrated that the active AMP
can down-regulate the expression of pro-inflammatory cytokines
like IL-8, IL-6, and TNF-a in p.Phe508del-CFTR human BECs
(Laselva et al., 2020).

Some exciting improvements in chloride efflux have been
demonstrated using Sildenafil, a phosphodiesterase type 5
(PDE5) inhibitor. This drug recues p.Phe508del-CFTR
trafficking in vitro experiments and decreases sputum elastase
activity and, consequently, the inflammatory process (Lubamba
et al., 2011; Taylor-Cousar et al., 2015). In parallel to Vertex’s
studies, many other companies are interested in similar
approaches to develop CFTR modulators that either restore the
CFTR protein to the membrane or activate it (Figure 5). This
research work has been essential over the last ten years, and
many other molecules are currently being evaluated and at a
different stage.

More recently, another promising strategy has been proposed
to modulate post-transcriptionally activity of CFTR regulated by
acting through miRNA. Distinct groups have proved that wild-
type and mutated p.Phe508del human CFTR is regulated by
miR-101-3p, miR-145-5p, miR-223-3p, miR-494-3p,and miR-
509-3p (Glasgow et al., 2018). The approaches to inhibit the
effect of these miRNAs have demonstrated an increase in CFTR
protein expression and activity in BECs (De Santi et al., 2020).
This approach is exciting, but further researches are needed to
understand the subtility of this regulation better.
FIGURE 6 | Description of the different classes of CFTR mutations related to the different therapeutic proposed in the literature. I—ynthesis defect, II—processing
defect, III—channel gating defect, IV—channel conductance defect, V—reduced CFTR production, VI—defect of stability; ER, endoplasmic reticulum.
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ENaC Channel
Since CFTR negatively regulates the activity of the ENaC sodium
channel, different strategies have been proposed to decrease its
activity. The first proposed molecule was Amiloride, which acts
as a potassium-sparing diuretic, showing some benefit in both
animal studies and clinical trials. Unfortunately, its efficacy was
limited due to its short half-life (Zhou et al., 2008). This
approach was repeated with the use of a new ENaC blocker
called AZD5634 from AstraZeneca and BI1265162 from
Boehringer Ingelheim. A phase Ib study and a phase II study
to test, respectively, the safety and effectiveness of AZD5634
and BI 1265162 are underway in CF adults. Nowadays, a more
recent and exciting approach, using aerosol antisense
oligonucleotide (ASO) targeting ENaC mRNA (Ionis ENAC
2.5Rx), has demonstrated some interesting and impressive
results on mice by restoring inflammation and inhibiting
ENaC activity (Crosby et al., 2017). A first clinical study with
this therapy is currently ongoing.

In the same way, Arrowhead asks to open a phase I/II trial
into inhaled small interference RNA (iRNA) therapy. The drug,
called ARO-ENaC, is an investigational RNA therapy designed
to lower the production of the epithelial sodium channel alpha
subunit (aENaC) in the lungs of CF patients. ARO-ENaC is an
iRNA molecule intending to block the production of ENaC
channels. It works by targeting and destroying the aENaC
mRNA molecules, which are genetic messengers that carry the
necessary information for making aENaC proteins and
consequently ENaC activity.

ANO1 Channel
Since functional CFTR rescue remains limited, with mutation-
dependent effects, alternative strategies have been suggested to
compensate for the CFTR deficiency and were proposed as a
potential CF therapeutic target. Such a strategy was the
stimulation of calcium-activated chloride channels (CaCCs)
such as the Anoctamin 1 channel (ANO1) (Figure 3). In the
nineties, Knowles et al. have discovered that adenosine ‘5’-
triphosphate and uridine-5’-triphosphate stimulated Cl-

secretion in both standards and CF respiratory epithelial,
offering a potential by-pass mechanism for defective CFTR
(Knowles et al., 1991). These activators transduce a signal
through P2Y2 receptors that lead to the release of intracellular
calcium and activate the CaCCs. An analog called Denufosol was
developed. Different studies have demonstrated that this drug
can increase Cl- secretion through a CaCC, inhibit sodium
absorption via the epithelial sodium channel called ENaC, and
stimulate epithelial ciliary beat frequency (Accurso et al., 2011).
Based on these data, ‘Denufosol’ clinical trials begun in 2001
using a wet nebulization direct airway delivery approach.
Unfortunately, the last phase III had failed to demonstrate any
benefit, and the project was dropped, but the idea of developing
this approach remained (Moss, 2013). At the time of this study,
CaCCs were poorly known. Their identity remained elusive for
over 20 years until 2008 (Nilius and Droogmans, 2003; Caputo
et al., 2008; Schroeder et al., 2008; Yang et al., 2008). When
ANO1, the principal CaCC present in the airways, was identified
in 2008, it allowed for more targeted approaches. Attractively,
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ANO1 channel has, at the apical membrane of epithelial cells, the
same expression pattern as CFTR channels, and this protein was
shown to be essential in the activity of CFTR as a chloride
channel (Benedetto et al., 2017; Benedetto et al., 2019). Besides,
ANO1 is implicated in HCO3 different permeability,
proliferation, wound healing, inflammation, and its expression
decreased in CF patients (Veit et al., 2012; Jung et al., 2013; Ruffin
et al., 2013). Moreover, a recent article highlighted that ANO1
inhibition decreased ASL height. The authors have also
demonstrated that ANO1 is not required for MUC5AC
expression, the main protein of the mucus (Simoes et al.,
2019). For this reason, a novel ANO1 potentiator was
developed (ETX001), and airway epithelial function and mucus
transport were evaluated in the human cells and animal models.
This approach confirmed previous results and demonstrated that
this drug could increase epithelial fluid secretion and enhance
mucus clearance (Danahay et al., 2020).

Recently, our group has proposed a particular strategy using
an ASO specific to ANO1 to reestablish ANO1 expression in the
context of CF. This strategy “hijacks” the miRNA regulatory
system and allows highly targeted effects. We have demonstrated
that ASO-ANO1 could be used to inhibit the fixation of miR-9
on ANO1 mRNA by a target site blocker, and consequently to
activate the alternative chloride channel to compensate CFTR Cl-

deficiency regardless of the mutation (Sonneville et al., 2017). We
have also shown that with this strategy, we can improve tissue
repair on cell lines but also on CF primary patient cells. We have
likewise demonstrated that with this approach, we can activate
mucociliary clearance on primary cells but also CF mice.
Although we have not studied the effects of ANO1 modulation
of inflammation, preliminary studies have already shown that
activating ANO1 limits the secretion of IL-8 (Veit et al., 2012).

Novel Anti-Cytokines Approaches
A pathophysiology pulmonary characteristic of CF is a severe
neutrophil accumulation, which is correlated with high levels of
pro-inflammatory cytokines (IL-8, IL-6, TNF-a), and low levels
of anti-inflammatory mediators like IL-10 (Jacquot et al., 2008b).
For numerous years, different approaches, as curcumin or
vitamin D, have been proposed to limit IL-8 secretion and
neutrophils influx (Gaggar et al., 2011; Olszowiec-Chlebna
et al., 2019). Some pre-clinical data have demonstrated that
using antibodies, like antibodies directed against intercellular
adhesion molecule (ICAM)-1 and IL-8, could be a promising
target. The most advanced therapy using SB-656933, an oral
CXCR2 antagonist, was already tested in CF patients and has
demonstrated along with safety some exciting results in the
modulation of airway inflammation (Moss et al., 2013).
However, another study using SCH527123 (MK-7123,
Navarixin), a CXCR1/2 antagonist, was also attempted in
chronic obstructive pulmonary disease (COPD) but was
abandoned because of a severe decline in neutrophil number
(Rennard et al., 2015). By contrast, a phase II clinical trial has
already been carried out in patients with ulcerative colitis and
demonstrated inhibition of ozone-induced airway inflammation
in humans (Lazaar et al., 2011). Numerous other modulators of
cytokines in the context of CF have been proposed, but only
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in vitro experiments have been performed (Lampronti et al., 2017;
De Fenza et al., 2019). Cytokine modulation shows that cytokines
have a significant role in limiting infections, although these
approaches are confusing. A recent publication has highlighted
the role of an IL-1 signaling pathway in sterile neutrophilic
inflammation and mucus hypersecretion and has suggested that
treatment with IL-1 receptor antagonist as Anakinra could be
promising to prevent lung inflammation (Balazs and Mall, 2019).

The possibility of increasing gene expression and protein
activity by the use of ASO has become more and more promising
in the last years. However, long-term efficacy, safe delivery, and
side effects of long-term treatment must be evaluated in order to
be applied in patients with CF (Bardin et al., 2018b; Vencken
et al., 2019). Fabbri et al. have developed this original concept by
modulating the IL-8 expression by increasing miR-93 in BECs
during P. aeruginosa infection (Fabbri et al., 2014). More recent
results have highlighted that other miRNA involved in CF
pathology, like miR-199a-3p or miR-636, could be targeted to
control the CF lung inflammatory process (Bardin et al., 2018a;
Bardin et al., 2019). Other interesting approaches have been
performed to modulate the cascade of inflammation targeting
NFkB activity by using, for example, Angelicin derived from
different angiosperms or Sulindac, an NSAID (Rocca et al.,
2016). Unfortunately, these approaches are not specific, and
the risk of side effects remains high.
New Development in Antibiotic
Approaches
“Synthetic” Antibiotics
InCF, antibiotics are utilized for various applications, such as initial
infection prevention, eradication (for early infection), control (for
chronic infection), and finally, pulmonary exacerbations treatment.
The antibiotics are given in three different primary ways: oral,
inhalation, or intravenous. The choice of antibiotics depends on the
nature of the pathogen to be eliminated, the age of the patient, and
the nature of other pathogens present such as H. influenza, S.
aureus, or P. aeruginosa infections.

P. aeruginosa is an opportunistic Gram-negative pathogen
and is one of the main reasons for morbidity and mortality in CF
and immunosuppressed patients. In order to eradicate new P.
aeruginosa infections, antibiotic regimens are now a care
standard around the world. Different groups assessed the
effectiveness of inhaled Tobramycin, Aztreonam, and Colistin
as well as oral Ciprofloxacin in eradicating new P. aeruginosa
infection (Waters, 2018; Pang et al., 2019), although P.
aeruginosa eradication is now much more challenging as a
result of its impressive capability to resist antibiotics. These
organisms become embedded in an exopolysaccharide biofilm,
which protects the organism from phagocytosis and reduces the
efficacy of anti-microbial drugs (Doring, 2010). Once this change
has occurred, the mucoid P. aeruginosa could acquire multi-drug
resistance, and this bacterium is virtually impossible to eradicate
(Southern et al., 2012). If the P. aeruginosa infection cannot be
cleared, the affected person is faced with an increased treatment
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burden, accelerated decline in lung function, increased symptom
severity, and increased mortality (Nixon et al., 2002).

Recently, there has been a growing number of “new”
antibiotics, of different classes and formulations, for pulmonary
infection treatments in CF patients (Waters and Smyth, 2015). In
order to limit toxicity and reduce side effects while directly
targeting the lungs, many studies took an interest in using
aerosols as a method of administration. In this frame of mind,
Levofloxacin was developed for CF patients to target P.
aeruginosa infections (Chirgwin et al., 2019; Epps et al., 2019).
This drug, derived from the fluoroquinolone family, inhibits
topoisomerases, which is essential for the synthesis of bacterial
DNA. In the same way, inhaled Zitreonam is now available to
treat P. aeruginosa infections in CF patients. Although its
aerosolized formulation was proven to be beneficial, the
formulation for intravenous injections induces significant lung
inflammation, which has limited its use. Another example of the
existing improvement of drugs is Tobramycin, presented as a dry
powder. Inhaled tobramycin provides, in less than 5 minutes, a
rapid action directly at the site of the lung infection.

In order to increase the efficacy of P. aeruginosa eradication and
have a less often resistance development in comparison to the
existing “classical” antibiotics, recent P. aeruginosa suggested
treatment is the use of a combination of antibiotics and the
development of new ones. Also, they can be associated with an
alternative strategy such as EDTA (Respirion) or inhaled
glycopolymer (SNP113).

Thus, a new carbapenem antibiotic called Doripenem has been
developed with wide spectrum activity against bacteria through
bacterial cellwall synthesis inhibition.Different authorshave shown
in vitro that this molecule has more significant activity than other
antibiotics of the same family on strains isolated from CF patients
(Traczewski andBrown, 2006; Riera et al., 2011).A clinical phase III
study showed that patients infected with P. aeruginosa and treated
with Doripenem had higher recovery rates in comparison to
Imipenem-treated patients but, no clinical trial with CF patients
is in progress (Chastre et al., 2008). In the same way, Plazomicin (a
semisynthetic aminoglycoside) and POL7001 (a protein epitope
mimetic) came out as an interesting strategy against P. aeruginosa
(Cigana et al., 2016). These drugs have demonstrated in vitro some
exciting effects on the multidrug-resistant P. aeruginosa isolated
from CF patients (Cigana et al., 2016).

“Natural” Approaches
For many years an original approach using bacteriophages has
been advanced. Bacteriophages were discovered in 1915 and can
kill bacteria by causing lysis (Summers, 2001). Bacteriophage
therapy was applied extensively in the 1930s and 1940s before
antibiotics, and it is still being used in Eastern Europe.
Nevertheless, after antibiotics became broadly accessible, phage
therapy was renounced in Western countries. Many phages can
target P. aeruginosa and have demonstrated some exciting effects
on mice by decreasing the bacteria burden in the lungs or
preventing infection (Morello et al., 2011). Even if clinical
studies have shown relative effectiveness, treatments using
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phages remain negligible so far. Various reasons have limited the
treatments with bacteriophages. The idea of introducing a living
organism into the body is difficult to accept and remains an
important psychological barrier. Moreover, early tests showed
that the preparation generated impurities and that these
preparations were not very stable (Morello et al., 2011).
Although the use of phages in combination with quorum
sensing inhibitors seems interesting, this approach remains
marginal (Pang et al., 2019), and only a phase Ib/II trial is
planned to test the safety and tolerability of AP-PA02 in adults
with CF. AP-PA02 is a type of phage intended to control P.
aeruginosa infections in CF patients. In in vitro studies, AP-PA02
can kill more than 80% of P. aeruginosa strains from CF people,
and some first results are encouraging (Law et al., 2019).

Another “natural strategy” is inhaled nitric oxide (NO) for
which an initial phase II study is underway. NO is a gas derived
from nitrogen with anti-microbial properties. Some in vivo
studies have validated this approach to eradicate the infection
and to decrease mucus viscoelastic (Rouillard et al., 2020).

In the late 1970s, various studies showed that iron played an
essential role in bacterial growth and was involved in particular
in DNA replication, energy production, and pathogen-host
interaction (Payne and Finkelstein, 1978). Recent results
demonstrated that the iron content of human sputum is
considerably high in CF, which facilitates chronic infections in
the lungs of CF patients (Reid et al., 2007). These observations
resulted in the development of novel therapeutic strategies in
order to limit the amount of iron present in the airways. Gallium
is a compound that shares the same properties with iron. It has
demonstrated in vitro and in vivo anti-Pseudomonas properties
(Tovar-Garcıá et al., 2020). The FDA has already approved the
intravenous administration of Gallium. Clinical studies, in phase
II for intravenous and a phase I for an inhaled strategy, are
ongoing to evaluate its efficiency in treating P. aeruginosa
infections in CF patients (Tovar-Garcıá et al., 2020).

During the last decades, AMPs naturally emerged as a
potential therapy to cure infections with antibiotic resistance,
in CF included. Treatments of bacterial infections by antibiotics
result in a worldwide spread of dissemination of antibiotic
resistance, both in the community and clinical settings.
Besides, the development of new antibiotics is costly and time-
consuming. It is hence of great importance to note that AMPs
can treat methicillin-resistant S. aureus and multidrug-
resistant P. aeruginosa that are resistant to conventional
antibiotics (Geitani et al., 2019). Studies showed that
treatments of antibiotic-resistant bacterial strains with AMPs
were associated with almost no induced resistance to AMPs,
which may encourage their use as potential replacement therapy
for antibiotics. AMPs can exert anti-inflammatory actions either
by suppressing the production of pro-inflammatory cytokines or
by stimulating that of anti-inflammatory cytokines by host cells
(Figure 7). Cathelicidin LL-37 (one of the most studied AMPs)
enhances the production of the anti-inflammatory cytokine IL-
1R by the human peripheral blood-derived mononuclear cells
and macrophages (Choi et al., 2014), and similar results were
observed with LL-37 and beta-defensin-3 (hBD-3) (Mookherjee
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et al., 2009; Smithrithee et al., 2015). Besides their direct actions
on host cells involved in the initiation/modulation of
inflammation, a number of AMPs, such as LL-37, Magainin-2,
and bactericidal-permeability-increasing (BPI), can neutralize
the activity of bacterial toxins such as LPS, thus participating
in maintaining a balance between pro- and anti-inflammatory
cytokines (Sun and Shang, 2015; Skovbakke and Franzyk, 2017).

Most of the reported studies in the field have focused on the
roles of AMPs in the modulation of cytokine production.
However, cytokines are only the tip of the iceberg in the
inflammatory process, and other mediators of inflammation,
such as eicosanoids, deserve to be investigated to identify their
relative role in the modulation of inflammation by AMPs.
Indeed, studies have reported that AMPs such as LL-37
modulates the production of eicosanoids, including leukotriene
B4 (LTB4) and thromboxane A2 (TXA2) by macrophages (Agier
et al., 2015). TXB2 and LTB4 are metabolites of arachidonic acid
conversion by COX and lipoxygenase (LOX), respectively, and
known to induce platelet aggregation and neutrophils
recruitment at the site of infection (Yeung and Holinstat,
2011). It has been shown that LL-37 AMP blocks the
expression of pro-inflammatory pathways involved, such as
NF-kB in the presence of LPS (Agier et al., 2015). However,
further studies are awaited to decipher the importance of the
AMPs/eicosanoids network in the inflammatory reaction and
potential implication in inflammatory diseases such as COPD,
asthma, and CF. Similar anti-inflammatory effects were observed
with WALK11.3 (an AMP with amphipathic helical
conformation) in the mouse alveolar macrophage cell line
RAW264.7 (Shim et al., 2015). They revealed the ability of this
peptide to inhibit the expression of several inflammatory
mediators, including NO, COX-derived metabolites, IL-1b, IL-
6, interferon (IFN)-b, and TNF-a (Figure 7). The chicken
cathelicidin-2 (CATH-2), the known ortholog of the human
LL-37, has been shown to reduce inflammation in parallel to its
anti-microbial activity against P. aeruginosa-resistant strains
from CF patients (Banaschewski et al., 2017). The ability of
CATH-2 to downregulate inflammation occurred through the
anti-microbial-independent process, as this down-regulation was
observed by silencing the inflammatory response that arises from
killed bacteria. It is now clear that AMPs play a key role in host
defense toward infectious by invading pathogens and represent a
potential therapeutic tool to control infections by antibiotic-
resistant bacterial strains. They also have the potential to protect
the host from harmful inflammation that may result from these
infections. Drug design and structure-relationship studies will
greatly improve our knowledge of AMPs and the relative
importance of their bactericidal vs anti-inflammatory
functions, which will be of great help to optimize their
potential therapeutic use in disease characterized by both
chronic infection and inflammation such as CF.

All these data suggested that AMPs could be useful for clinical
applications in the view of the protective function against
pathogens. A series of clinical trials have started mostly in the
pediatric population, and some compounds have been used as
topical treatments but not known in the CF context. Different
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AMPs are under evaluation for the treatment of acute skin
infection as Bralicidin, Omiganan, LTC109 (phase II clinical
trial), or Pexiganam (phase III clinical trial). Other strategies and
applications are currently under study. For example, in sepsis,
Talactoferrin was tested by systemic injection in phase II clinical
study (Guntupalli et al., 2013). Initial results showed a significant
decrease in mortality after 28 days of treatment. However, phase
II/III oral Talactoferrin was stopped for problems of safety and
efficacy (Vincent et al., 2015). In the case of meningococcemia,
rBPI21 pre-clinical trial has demonstrated some anti-bacterial
and anti-LPS effects. Encouraging results led to the initiation of a
phase III study in children with severe meningococcal sepsis
(Giroir et al., 2001). The study outcome showed a reduction in
complications with a shorter hospitalization also suggests the
possibility to treat with rBPI21 other patients, including CF. The
therapeutic applications of P. aeruginosa have been summarized
in a recent publication (Magrone et al., 2018). An alternative
therapeutic pathway for the use of AMPs has been envisaged by
indirectly promoting their expression through the use of natural
compounds. Several compounds have been identified as the use
of Apigenin to enhance the expression and activity of
b-3 defensin and cathelicidin in mice (Hou et al., 2013).
Similar effects have been observed with vitamin D on in vitro
studies to increase b-2 defensins and LL-37 on keratinocytes
(Kim et al., 2009).

The use of natural or synthetic antibiotics can have a
significant influence on the emergence of new pathogens. It is
well established now that microbiota composition and dynamic
impact the host immunity, health, and diseases (Belkaid and
Hand, 2014). However, a new concept is now progressively
emerging, suggesting that the innate immune response of the
host can also modulate, at least in part via AMPs, the microbiota
composition. For example, recent studies reported the
involvement of sPLA2-IIA in the selection of species in
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pathologies characterized by polymicrobial infections such as
CF. P. aeruginosa is known to progressively colonize CF airways
to become the dominant pathogen at later stages of CF. This
pathogen induces the production by CF airways of sPLA2-IIA,
which in turn eradicate S. aureus, therefore helping in its gradual
elimination from CF airways and its substitution by P.
aeruginosa (Pernet et al., 2014). This effect is mostly due to the
intrinsic resistance of P. aeruginosa and high susceptibility of S.
aureus to sPLA2-IIA, respectively. Finally, it emerges that AMPs
represent valid substitutes of antibiotics when a condition of
antibiotic resistance is established.

Alternative Strategies
Anti-Proteases
CF “anti-protease therapies” can be separated into two separate
groups of drugs: some to increase anti-protease and some to
inhibit protease expression. CFTR is an essential apical GSH
transporter in the lung, and can indirectly participate in the
inflammatory process by reducing oxidative stress. Evidence
supporting the occurrence of oxidative stress in CF is
established and extensively described (Galli et al., 2012; Causer
et al., 2020). Some interesting works have demonstrated that
oxidative stress could suppress CFTR expression (Cantin et al.,
2006). Oxidative stress has a major role in the development of
lung pathology in CF children and will, in addition to having a
role in lung remodeling, have a role in the pulmonary microbiota
(Shi et al., 2019). A recent metanalysis has positively correlated
the expression of antioxidants with body mass index and lung
function in CF (Causer et al., 2020). The malabsorption of
nutrients with antioxidants properties in CF, participate in the
imbalance in favor of oxidative stress and disrupt redox
signaling, and, finally, molecular damages even if some data
appears to be conflicting (Shamseer et al., 2010; Siwamogsatham
et al., 2014). Therefore, multiple studies have been carried out to
FIGURE 7 | General mechanisms by which AMPs exert anti-inflammatory actions on host cells. AMPs can bind to bacterial virulence factors such as LPS or LTA
and prevent their interactions with host cells. AMPs are also able to interfere with host cell signaling pathways involved in the inflammatory reaction. The overall
consequence is that AMPs reduce the production of inflammatory mediators by these cells that may help in the resolution of inflammation.
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check the anti-protease supplementation in CF (Galli et al.,
2012). Some studies have focused on especially serine proteases
via two distinct administration routes: aerosolized and
intravenously (McKelvey et al., 2020). In CF, exocrine
pancreatic insufficiency and reduced bile acids induce critical
antioxidants malabsorption, including carotenoids (b-carotene),
tocopherols (vitamin E), coenzyme Q10, and selenium.
Supplementation of antioxidant micronutrients (vitamin E, C,
D, b-carotene, and selenium) may, therefore, potentially help
maintain an oxidant-antioxidant balance, and this aspect has
been extensively reviewed (Sagel et al., 2011; Ciofu et al., 2019).
In the same approach, LAU-7b, an oral drug, is a derived form
related to vitamin A. This compound can reduce the lung
inflammatory response of CF people. In parallel, a phase II
clinical study to test the effectiveness and safety of LAU-7b in
CF patients is underway (Lands and Stanojevic, 2016). LAU-7b,
also called, Fenretidine, work to increase docosahexaenoic acid
(DHA) and consequently CER concentration. Some authors
supported that the decrease of CER concentration contributes
to the persistent bacterial infection and the constitutive MAP
kinases and NFkB activation (Guilbault et al., 2008; Guilbault
et al., 2009).

Human a-1 antitrypsin (A1AT) is still the most studied drug
by far. Different clinical trials were already achieved. An inhaled
a1-proteinase inhibitor is known to reduce NE burden in some
patients with CF. A phase I in non-CF bronchiectasis and an IIa
clinical study with purified A1AT products given through
inhalation in CF subjects were just finalized and have
demonstrated safety and efficacy (Gaggar et al., 2016; Watz
et al., 2019). In the conclusion of the second study, the daily
a-1 hydrophobic chromatography process delivered for three
weeks was safe, well-tolerated, and effective in raising the a1-PI
levels in the sputum of subjects with CF. However, the effects
were transient and difficult to predict due to the proteases’
variability in CF patients’ lungs. The administration by airway
routeway effectively increased the concentration of A1AT in
sputum. The current study was not powered to assess changes in
FEV1 or biomarkers in sputum, and further clinical are needed.

In parallel, A1AT gene therapy is emerging. Some recent data
have demonstrated encouraging results in the inhibition of
miRNA, which targets the A1AT gene called SERPINA1 (Hunt
et al., 2020). This strategy aims to by-pass protein regulation
systems of the most abundant inhibitor of NE in the airways. It is
an alternative to the delivery of recombinant by using miRNA-
targeted therapies. It was found that dual miRNA and adeno-
associated viral (AAV)-based therapy engendered the long-term
knockdown of circulating Z-A1AT and could be a new strategy
in CF (Mueller et al., 2012). This approach was fully described in
a review published (Hunt et al., 2020). The other approach is to
directly activate SERPINA1 using gene therapy by using viral
vectors like retrovirus or adenovirus, but numerous side effects
have been observed (Gregory et al., 2011). Their use remains
challenging, especially in the CF field.

Another strategy proposed is to use serine protease inhibitors
such as secretory leukoprotease inhibitor (SLPI) which act locally
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to maintain a protease/anti-protease balance, thereby preventing
protease-mediated tissue destruction. SLPI is a well-characterized
member of the trapping gene family of proteins and is produced
by respiratory tract epithelial cells and phagocytic neutrophils.
Different approaches have been proposed to increase the anti-
protease activity by nebulizing SLPI, but the efficacy is currently
being evaluated alone or in association with other strategies
(McElvaney et al., 1993; Quabius et al., 2017). Currently, novel
protease inhibitor drugs, which have promising interest in the CF
context, are in development (DX-890, AZD9668, POL6014,
Grifols T6006-201) in order to improve their resistance
against inactivation.

Promoting tissue repair represents another strategy by
focusing on the proteins involved. Matrix metalloproteinases
(MMP) are a group of distinct metalloendopeptidase enzymes
that regulate various inflammatory and repair processes. They
are either secreted or anchored to the cell surface, and therefore
their activity is directed against membrane proteins or
extracellular proteins, including inflammatory mediators. In
CF patients, different articles have demonstrated that MMP is
upregulated in the sputum of patients and is related to tissue
damage (Delacourt et al., 1995; Gaggar et al., 2011). Various pro-
inflammatory cytokines induce them at the transcription level.
They might include the activation of a diverse group of
intracellular signaling pathways (such as p38 MAPK or ERK 1/
2 MAPK), causing the activation of nuclear signaling factors like
AP1, NFkB, and STAT (signal transducer and activator of
transcription). Activation of MMP can be induced by proteases
or oxidants and are controlled by tissue inhibitor of
metalloproteases (TIMP). There have been increasing interests
in modulating MMP activity to enhance disease outcomes, and
different clinical studies are in progress with promising effects in
CF. A phase II study with Andecaliximab/GS-5745 in CF adults
is in progress and was tolerated in patients with ulcerative colitis
or Crohn’s disease, and could be an exciting approach to control
pulmonary degradation.

The approaches using protease inhibitors are very varied, and
many studies are still in progress. Although these therapies have
been shown to improve patients’ health outcomes, they can only
be considered in combination with other therapeutic targets.

Eicosanoids Pathway
Alterations in the metabolism of fatty acids present in membrane
lipids may have an essential role in the inflammatory CF
pulmonary disease. The arachidonic acid (AA): docosahexaenoic
acid (DHA) ratio in blood serum, pulmonary airways, and rectal
biopsies are increased in CF patients with either pancreatic
sufficiency or pancreatic insufficiency, as compared with healthy
control subjects (Freedman et al., 2004). AA is stored in cell
membranes and is released from membrane lipids by various
PLA2 proteins. Some interesting studies have highlighted the
implication of sPLA2 in the pathogenicity of CF mice showing
that reduced CFTR expression increased cytosolic PLA2a
(cPLA2a) activity. A review has summarized the state of the art
of fatty acid metabolism in CF (Strandvik, 2010). These effects
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improved mucus secretion and accumulation in airway epithelia
independent of CFTR chloride transport function (Medjane et al.,
2005; Dif et al., 2010). Therefore, cPLA2a has been proposed as an
appropriate new target for therapeutic intervention in CF (Dif
et al., 2010). Small lipid mediators were produced in the course
of inflammation resolution and generated varied responses,
which are cell types and tissue specific. A large number of these
molecules modulate inflammation processes and provide essential
functions in chemoattraction, aggregation, and degranulation of
inflammatory cells. They are also implicated in tissue and vascular
permeability, bronchoconstriction, and mucus production. Some
of the lipid mediators include lipoxins (LX), resolvins, protectins,
and maresins, which are generated by the activity of lipoxygenases
lipoxin A4 (LXA4).

Interestingly, inhibitors of the 12R-lipoxygenase have
demonstrated an essential role in mucin expression. The
inhibitors decreased MUC5AC mucin expression by the
inhibition of the ERK/SP1 dependent mechanism (Garcia-
Verdugo et al., 2012). LXA4 has been described as a significant
signal for the inflammation resolution and is generated at a low
level in the CF patients’ lungs. LXA4 and RvD1 activate a GPCR
termed ALX/FPR2.

This pro-resolving receptor is recognized by annexin A1, an
endogenous anti-inflammatory peptide. A recent article provides
evidence that the miR-181b, overexpressed in CF cells, may be
considered as a new strategy to decrease the anti-inflammatory
process in CF via the normalization of the expression receptor-
dependent LXA4 (Pierdomenico et al., 2017). The LXA4
inhalation consequences have been examined in a pilot study
of asthmatic and healthy adult subjects. The drug was well-
tolerated, and no harmful effect was observed (Christie et al.,
1992). Some impressive results were observed in the topical
treatment of infantile eczema (Wu et al., 2013). Together with
data showing beneficial actions of LXA4 in the CF context, these
results highlight additional studies to check whether the
upregulation of the lipidic mediators’ pathway can be
considered as an appropriate tactic to fight inflammation in CF
patients (Higgins et al., 2015).

Similarly, the LTB4 produced by resting BECs has been
proposed as a target. Inflammatory stimuli increase the
production of LTB4 and might also contribute to progressive
pulmonary destruction in CF. Bronchial epithelial LTB4 acts as a
potent chemoattractant for neutrophils via the cell surface
integrins upregulation. When these cells are activated and
present at the site of inflammation, they can also participate in
the secretion of LTB4. LTB4 synthesis includes lipid
peroxidation by 5-lipoxygenase, and produce numerous ROS,
and consequently, pro-inflammatory activation. A clinical trial
with Montelukast (BIIL 284), a leukotriene receptor agonist,
counting a small number of patients, has provided contentious
results in CF patients. This therapy has demonstrated a notable
decrease in serum eosinophil cationic protein levels and
eosinophils without any significant improvement in FEV1, and
FEF25–75%. Also, this strategy has shown a significant decrease
in cough, serum, and sputum levels of eosinophil cationic protein
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and IL-8 chemokine. Moreover, an increase in serum and
sputum levels of IL-10 has been observed. The trial was
stopped early due to a significant increase in the risk of severe
pulmonary events in patients receiving the active drug (Schmitt-
Grohe and Zielen, 2005). A more recent drug, Acebilustat (CTX-
4430), has been evaluated in CF patients. This drug has shown
anti-inflammatory activity via the LTA4 hydrolase inhibition
and LTB4 modulation. In two-phase I clinical trials, Acebilustat
decreased the production of LTB4 and pro-inflammatory
cytokines in healthy volunteers and CF patients, and in phase
II, optimal dose and duration were identified for future studies
(Elborn et al., 2017; Elborn et al., 2018).

Cannabinoid-Derived Drug
Ajulemic acid (JBT-101, Lenabasum) is a cannabinoid-derived
molecule that preferably binds to the active CB2 receptor and is
non-psychoactive. In some pre-clinical trials done on human
lung cells obtained from CF patients, it was shown that
Lenabasum stopped the production of both TNF-a and
IL-6, two crucial pro-inflammatory cytokines that trigger
inflammation. In phase I and II clinical trials, this drug
demonstrated favorable safety and tolerability. Recently, a
group has also shown significant efficacy in mice models of
inflammation and fibrosis (Burstein, 2018). Therefore, phase II
was initiated. It will be used to test safety, tolerability,
pharmacokinetics, and efficacy of JBT-101 in 70 subjects ≥ 18
and < 65 years of age with documented CF. Treatment of CF
patients with Lenabasum twice daily has been able to decrease
the number of acute lung exacerbations as well as a reduction of
inflammatory cells and mediators present in the sputum. A new
clinical trial is undergoing and seeks to enroll more than 400 CF
patients over numerous clinical sites.
Mucus Therapies
In the lungs, the abnormal production of mucus has been
assumed to participate actively in the early CF pathogenesis
(Ehre et al., 2014). For many years, researchers and clinicians
have been trying to understand the origin of mucus
abnormalities and found mucoactive drugs molecules to
control CF bronchial obstruction. Mucoactive drugs are
regularly used as a therapeutic option and are defined by their
activity as mucolytics, expectorants, and cough facilitating drug.
The expectorants, such as hypertonic solution (HSS), increase
the ASL layer and decrease mucus adhesiveness. Mucolytics,
such as both N-acetylcysteine (NAC) and recombinant human
DNase (rhDNase), reduce sputum viscosity. Medications such as
inhaled mannitol, rhDNase (Dornase), and hypertonic HSS have
proven efficacy in CF and indirectly reduced inflammation in
airways of CF patients (Tarrant et al., 2017). The low volume
hypothesis would estimate that approaches increasing the ASL
height will increase mucociliary clearance, and consequently
reduce lung infection. In order to increase the ASL height and
fluidity, an HSS (3 to 7% NaCl) has been proposed to treat CFTR
deficiency for better mucociliary clearance. Recently, Wark &
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McDonald have performed a meta-analysis of 17 different
clinical trials of HSS and concluded that, after four weeks, a
small enhancement in the lung function was observed but was
not sustained at 48 weeks. HSS might also have a little impact on
improving life quality in adults (Wark and McDonald, 2018).
New clinical trials are in progress in order to establish who may
benefit most and whether this benefit is sustained in the longer
term (https://www.cff.org/Trials/Finder).

In the same manner, a meta-analysis was performed with
mannitol, which is a naturally occurring sugar alcohol. When
inhaled mannitol creates a change in the osmotic gradient. It
leads to water movement into the CF airway hydrating the ASL,
and enhancing mucociliary clearance. In the different studies,
there was no evidence showing that the mannitol treatment for
over six months is related to an enhancement of lung function in
CF patients compared to control (Nevitt et al., 2018). Recently,
different groups have observed expression, biochemical and
biophysical alterations of the mucous present in the airways of
CF patients (Rhim et al., 2001). More, they observed that
abnormal glycosylation of the airway mucins is associated with
bacterial infection and inflammation. The effects of altered host
mucin glycosylation affect P. aeruginosa adhesion and so
pathogenicity. A review from Ventalakrishan et al. has
extensively described this feature (Venkatakrishnan et al.,
2013). Different therapeutic approaches have been proposed to
correct this observation by using, for example, mannose-biding
lectin, which recognizes bacterial glycoconjugates and
participates in an effective defense against pathogens (Moller-
Kristensen et al., 2006).

Another strategy used in CF is to disrupt the high DNA
content present in the airway mucus of CF patients. DNA is a
polyanion compound responsible for the viscosity and
adhesiveness of the pulmonary secretions. DNA release and
accumulation in ASL occur as a result of tissue destruction
caused by inflammatory cells on bacteria and epithelial cells.
The strategy is to use a recombinant human deoxyribonuclease I
(rhDNase), an enzyme that selectively cleaves DNA, hence
decreasing mucus viscosity (Puchelle et al., 1995). Nebulized
rhDNase hydrolyzes extracellular DNA within the mucus and
transforms it from an adhesive gel into a liquid form of fluid
through dilution within minutes. In contrast to mannitol or HSS,
rhDNase has shown some significant effects on the improvement
of lung function of CF patients and is considered as an
effective treatment for the liquefaction of viscous mucus in CF.
However, individual responses are unpredictable (Yang and
Montgomery, 2018).

The only approved reducing agent for human use is N-
acetylcysteine (NAC), a well-known antioxidant GSH drug.
This drug ameliorates the redox imbalance in neutrophils
present in the blood and inhibits their recruitment in the
airways of CF patients (Tirouvanziam et al., 2006). NAC is
also used in CF as an aerosolized mucus solution to break
down disulfide bonds between mucin proteins in order to
fluidify mucus (Duijvestijn and Brand, 1999). Some evidence
demonstrated that NAC has excellent anti-bacterial properties,
the capacity to intervene with biofilm formation and, to disturb
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the adherence of respiratory pathogens to respiratory epithelial
cells (Blasi et al., 2016). In CF patients, NAC has been proven to
be safe at large doses with negligible interaction with other drugs.
NAC was investigated in CF despite its partial effectiveness as an
inhaled mucolytic agent because the extremely oxidizing CF
airway environment consumes aerosolized antioxidants quickly
(Tirouvanziam et al., 2006; Cantin et al., 2007). Finally, inhaled
NAC is being used as a mucolytic drug in CF for several decades,
although the positive results remain limited. Newer agents
targeting other components of CF mucus are currently in
development or clinical trials (NAC 40630) and exhibit an
exciting effect on mucus (Blasi et al., 2016).

Another original approach is undergoing with OligoG CF-5/
20. OligoG is an alginate oligosaccharide derived from natural
seaweed. It is administrated using a dry powder inhaler and also
developed as a liquid to use with a nebulizer. Studies have shown
that this dry power drug is capable of reducing the mucus
thickness in the lungs. In addition, this drug enhances the
efficiency of antibiotics and may facilitate mucus clearance in
CF patients. The drug could detach CF mucus by calcium
chelation (Ermund et al., 2017). Initiated in 2018, phase II
includes more than 120 patients from European and
Australian sites. It aims to determine the optimal dose of
OligoG and to describe long-term safety and efficacy, with
FEV1 as a primary endpoint.

Recently, numerous articles have been published to describe
new regulation mechanisms of the different proteins present in
the mucus and especially on mucins expressed in the airways.
The epigenetic regulation role of MUC5AC and MUC5B, the
main mucins expressed in the airways, has been thoroughly
researched in COPD and have highlighted the implication of
methylation and miRNA. Different specific therapies are in
progress to modulate the miRNA, and new treatment ways are
in progress in CF (Bardin et al., 2018b).
CONCLUSION

Although current anti-inflammatory drugs (corticosteroids and
Ibuprofen) in CF patients have shown little effectiveness, the
creation and improvement of new anti-inflammatory drugs for
CF lungs has been overlooked for a long time. In the last decade,
most of the research fields in CF therapy, have focused mainly on
the discovery of new CFTR activators. Despite this, basic
researches that are now in the evaluation phase have shown
that new approaches could be very promising in resolving
efficiently the CF lungs’ ongoing inflammatory vicious cycle.
However, treatment complexity is challenging. Currently
available treatments offered to CF patients certainly help
reduce inflammation, but in indirect and non-specific
pathways, by targeting the viscosity of the mucus, reducing
infection, or activating Cl- efflux. As the traditional approaches
have shown their limitations, it seems essential to us that original
work should continue in order to identify innovative approaches
that would be more specific. The identification of critical
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druggable molecular targets to decrease inflammation is still an
unsatisfied demand that needs numerous additional researches.
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