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Alzheimer’s disease (AD) is an irreversible chronic neurodegenerative disorder that occurs
when neurons in the brain degenerate and die. Pain frequently arises in older patients with
neurodegenerative diseases including AD. However, the presence of pain in older people
is usually overlooked with cognitive dysfunctions. Most of the times dementia patients
experience moderate to severe pain but the development of severe cognitive dysfunctions
tremendously affects their capability to express the presence of pain. Currently, there are
no effective treatments against AD that emphasize the necessity for increasing research to
develop novel drugs for treating or preventing the disease process. Furthermore, the
prospective therapeutic use of cannabinoids in AD has been studied for the past few
years. In this regard, targeting the endocannabinoid system has considered as a probable
therapeutic strategy to control several associated pathological pathways, such as
mitochondrial dysfunction, excitotoxicity, oxidative stress, and neuroinflammation for
the management of AD. In this review, we focus on recent studies about the role of
cannabinoids for the treatment of pain and related neuropathological changes in AD.

Keywords: cannabinoids, marijuana, endocannabinoid system, pain, Alzheimer’s disease
in.org July 2020 | Volume 11 | Article 10971

https://www.frontiersin.org/articles/10.3389/fphar.2020.01097/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.01097/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.01097/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.01097/full
https://loop.frontiersin.org/people/337138
https://loop.frontiersin.org/people/492979
https://loop.frontiersin.org/people/1005249
https://loop.frontiersin.org/people/389048
https://loop.frontiersin.org/people/888676
https://loop.frontiersin.org/people/394429
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto: msu-neuropharma@hotmail.com
mailto:msu_neuropharma@hotmail.com
http://orcid.org/0000-0002-0805-7840
https://doi.org/10.3389/fphar.2020.01097
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.01097
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.01097&domain=pdf&date_stamp=2020-07-22


Uddin et al. Cannabinoids for the Management of Pain in Alzheimer’s Disease
INTRODUCTION

Pain is a complex emotional and perceptual experience, which
has sensory, cognitive, and affective dimensions (Bushnell et al.,
2013; Talbot et al., 2019). There is a cortical response
to nociceptive stimuli under vegetative as well as minimal
conscious state, hence the pain perception appears crucial for
survival and needs assessment in the absence of people with
severe cognitive dysfunctions (De Tommaso et al., 2013).
Neuropathological alterations that take place in dementia
patients are accountable for changes in the perception of pain
(Van Kooten et al., 2016). Though these changes can be common
in different forms of dementia, however, scientists are trying to
investigate the pain perception and processing in the patients of
Alzheimer’s disease (AD), which is characterized by behavioral
and cognitive impairments (Al Mamun et al., 2020b; Uddin et al.,
2020a; Uddin et al., 2020l). Neuropathological hallmarks of AD
are extracellular accumulations of amyloid beta (Ab) as well as
intracellular accumulations of neurofibrillary tangles (NFTs) that
are comprised of hyperphosphorylation of tau (Uddin et al.,
2019; Mamun et al., 2020; Uddin et al., 2020d). Furthermore, the
development of Ab plaques occurs primarily in the basal,
orbitofrontal neocortex, and temporal areas of the brain and
subsequently develops all over the hippocampus, diencephalon,
neocortex, basal ganglia, and amygdala (Tiwari et al., 2019).
Some events such as increased generation, oligomerization as
well as accumulation of Ab are the key factors at the beginning
stage of AD. The noxious Ab peptides including Ab40 and Ab42
are formed by the amyloid precursor protein (APP) through the
cleavage by b- and g-secretases (Kabir et al., 2020a; Uddin et al.,
2020e; Uddin et al., 2020j). Moreover, APP is one of
the transmembrane proteins that is folded and altered in the
endoplasmic reticulum (ER) as well as transferred via the Golgi
complex to the external membrane. It is evident that ER stress
plays a crucial role in AD pathology. Various pathological events
of AD such as accumulation of Ab and tau proteins, disturbances
in calcium (Ca2+) homeostasis, and oxidative stress might be
triggered by ER stress in brains (Salminen et al., 2009; Uddin
et al., 2020m). In contrast, this type of pathology could also
produce ER stress and therefore exacerbate the pathogenesis of
AD (Salminen et al., 2009; Uddin et al., 2020m).

The occurrence of chronic pain in AD patients was 45.8%
(Van Kooten et al., 2016). Perception of pain might be neglected
in AD patients as they might be unable to express their pain as
well as seek attention as efficiently as their cognitively healthy
peers (Cravello et al., 2019). Remarkably, pain is found more
prevalently in severe dementia patients (van Kooten et al., 2017),
and pain intensity is also connected positively with the severity of
dementia (Scherder et al., 2008; Rajkumar et al., 2017; Whitlock
et al., 2017). Although a bidirectional relationship exists between
AD and chronic pain, however, the exact mechanism remains
unclear. In a study by Hayashida and Obata, (2019) observed
several common pathologies, such as aberrations of the
Abbreviations: AD, Alzheimer’s disease; Ab, amyloid beta; CBD, cannabidiol;
ECS, endocannabinoid system; LC, locus coeruleus; NE, norepinephrine; NFTs,
neurofibrillary tangles; D9-THC, delta-9-tetrahydrocannabinol.
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noradrenergic system in the locus coeruleus (LC), microglial
activation in brain regions including the frontal cortex, and
raised central neuroinflammation in these areas in AD patients
or the patients with chronic pain (Salter and Stevens, 2017). The
neuropathological alterations that take place in the patients with
AD selectively affect vital regions, which involved in the medial
pain pathway, particularly the medial nuclei of the
hypothalamus, cingulate, insula, and thalamus, while the brain
regions involved in the lateral pain pathway are comparatively
well conserved (Braak et al., 1993).

Cannabis, also called marijuana, has widely been used for
therapeutic purposes throughout human history (Bridgeman and
Abazia, 2017). The first use of this plant had been recorded about
5000 years ago in ancient China, where plant extracts were
used for the treatment of pain and cramps (Zou and Kumar,
2018). Furthermore, the uses of cannabis have been recognized
for medical purposes such as anti-inflammatory, anticonvulsant,
anti-nociception, anti-emetic, and recreational use, which has
mostly restricted its medical uses (Uddin et al., 2018; Vučkovic
et al., 2018; Zou and Kumar, 2018). Cannabis comprises over 500
constituents, among them about 104 cannabinoids have
currently been detected (Lafaye et al., 2017). Moreover, two
constituents of cannabinoids including cannabidiol (CBD) and
delta-9-tetrahydrocannabinol (D9-THC) has widely been studied
for investigating their pharmacological properties (Lafaye et al.,
2017). Medical cannabis has extensively been considered as one
of the prospective alternative approaches for the treatments of
dementia (Liu et al., 2015; Broers et al., 2019).

Numerous research suggested promising effects of cannabis
for decreasing pain and noxious protein from the brain as well as
restore cognitive dysfunctions of AD (Esposito et al., 2006a;
Russo, 2008; Cheng et al., 2014). Moreover, endocannabinoid
signaling has broadly been revealed to control the foremost
pathological processes in neurodegenerative disorders, such as
misfolding of protein, mitochondrial dysfunction, oxidative
stress, excitotoxicity, and neuroinflammation. In this review, we
highlight the emerging studies regarding the effect of cannabinoid
compounds for treating pain and related neuropathological
changes in AD.
CANNABIS PLANT

Although cannabis has widely been cultivated and used by
mankind for at least 6000 years, (Li, 1973) however, our
insight into its pharmacological properties is based on
researches that have occurred merely since the end of the 19th

century. Cannabinol was the first compound that had been
separated in pure form from the cannabis plant (Wood et al.,
1899). Primarily, it was mistakenly supposed to be the chief
active compound of the cannabis plant that was accountable for
its psychoactive actions (Mechoulam and Hanus ̌, 2000).
Furthermore, CBD (Figure 1) was the second compound that
had been observed by Mechoulam and Shvo (Mechoulam and
Shvo, 1963). Subsequently, Gaoni and Mechoulam separated the
chief active compound, D9-THC (Figure 1) in 1964 (Gaoni and
Mechoulam, 1964).
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There are two main subspecies of the cannabis plant, including
Cannabis sativa and Cannabis indica, and they could be
distinguished by their diverse physical properties. Moreover, indica-
dominant species are small plantswithwide, dark green leaves aswell
as have a higher concentration of CBD than the sativa plants where
THC content is higher. Conversely, sativa-dominant species are
usually tall plants and thin with finger-like leaves with a pale green
color.Cannabissativaisthefavoritechoicebyconsumersbecauseofits
higher THC content. The four major compounds are CBD,
cannabinol, D-8-THC, and D-9-THC, which have extensively been
studied (Pertwee, 1997; Pertwee, 2008; Pamplona and Takahashi,
2012).Initially, itwasbelievedthatCBDwasthemetabolicparenttoD-
9-THC,however, lateritwasobservedthatitsbiosynthesisoccurredby
a genetically determined ratio (Russo and Guy, 2006). Although, all
four compounds have similar chemical structures, however, their
pharmacological effects aredifferent.CBDandD-9-THCare themost
studied compounds of the cannabis plant.
PAIN, COGNITIVE IMPAIRMENT, AND AD

The pain sensation is connected with the triggering of the receptors
in the primary afferent fibers including myelinated As-fiber and
unmyelinated C-fiber (Yam et al., 2018; Uddin et al., 2020k).
Furthermore, both nociceptors are initiated when there is a
probable toxic stimulus as well as stay silent during homeostasis
where the pain is absent. The perception of a sequence of sensory
actions is needed for the brainwith the purpose of detecting pain as
well as generate a response on the way to the threat. Moreover, the
perception of pain usually contains three main phases. The first
phase is the sensitivity of pain, after that the second phase in which
the signals are transferred to the dorsal horn in the spinal cord from
the periphery. Finally, the third phase is to execute the transference
of the signals to the higher brain through the central nervous system
(CNS) (Yam et al., 2018). Numerous research found that chronic
Frontiers in Pharmacology | www.frontiersin.org 3
pain is connected with the raised objective as well as self-reported
cognitive dysfunctions (Cha et al., 2017; Whitlock et al., 2017).
These cognitive dysfunctions are not precise to a specific pain
modality and could be found in postherpetic neuralgia (Pickering
et al., 2014), chronic back pain (Baker et al., 2018) and fibromyalgia
(Leavitt and Katz, 2015).

Based on the Einstein Aging Study, Ezzati et al. (2019) assessed
the connection of pain intensity, as well as pain interference with
incident dementia in1,114participantswhowere 70years of ageor
older and 10% of the participants, developed dementia over
4.4 years. In this study, it has been observed that higher levels of
pain interference are directly connectedwith ahigher possibility of
developing dementia (Ezzati et al., 2019). In a study by Ikram et al.
(2019) also advocated that pain interference was considerably
linked with AD and related dementia (ADRD). Furthermore,
according to the study of Malfliet et al. (2017) chronic pain and
AD demonstrated aberrations of the volume of gray matter, and
neuroimaging recommended that the patients of cognitive
dysfunctions with chronic pain might be connected with
alterations of the volume of gray matter in the brain.
Importantly, many of these changed brain regions are playing a
crucial role insensoryperception, theaffectiveelementofcognition
and pain (Baliki andApkarian, 2015;Ng et al., 2017). For example,
gray matter volume loss has extensively been observed in the
thalamus, parahippocampal gyrus, amygdala, entorhinal cortex,
insula, and anterior cingulate cortex (Busatto et al., 2008; Yi et al.,
2016; Kang et al., 2019). Numerous studies found that the
dysfunction of LC-norepinephrine (NE) system was connected
with chronic pain (Cao et al., 2019) as shown in Figure 2.

In the CNS, microglia is the main innate immune cells (Ibrahim
et al., 2020; Uddin et al., 2020f). Neuroinflammation mediated by
microglia is a typical feature in chronic pain (Chen et al., 2018).
Proinflammatory microglia release chemokines and cytokines
related to inflammation, including umor necrosis factor-a (TNF-a),
interleukin (IL)-6, and IL-1b in chronic pain states (Liu et al., 2017;
Barcelon et al., 2019). Subsequently, this proinflammatory (Figure 2)
state contributes to altering the connection of the brain, network
function, and synaptic remodeling (Inoue and Tsuda, 2018).
Copious studies reported that activation of microglia by persistent
exposure to Ab causes proinflammatory response (Meda et al., 1995;
Gold and El Khoury, 2015) that leads to secretion of cytokines, and
chemokines,aswellasreactiveoxygen/nitrogenspecies (Wyss-Coray,
2006; Rivest, 2009; Balducci and Forloni, 2018). On the other hand,
misfolded tau, and truncated tau as well as hyperphosphorylated tau
accompany with the proliferation of microglia and amplified the
expression of the inflammatory genes (Andrés-Benito et al., 2017).
Furthermore, inthebrain, reactivemicrogliacauses taupathologyand
contribute to the spreading of pathological tau (Nicole et al., 2015).
AD brains and chronic pain both show aberrant LC structure and
function as well as dynamic alterations in the turnover of NE in LC-
projecting regions (Gannon et al., 2015; Llorca-Torralba et al., 2016).
In these two disease states, the alterations of NE content might not
completely overlap in all brain regions, however, pathological
alterations in LC-NE in selective areas can be one of the initiators
that are responsible for the dysfunction of the neuron and
proinflammatory activation of microglia. Additionally, chronic pain
FIGURE 1 | Chemical structures of the most notable cannabinoids (i.e.
cannabidiol and delta-9-tetrahydrocannabinol) found in cannabis.
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might exacerbate the neuropathogenesis of AD via LC-NE-mediated
microglial neuroinflammation (Cao et al., 2019).
CANNABINOIDS AND PAIN REGULATION
IN AD

Numerous studies in AD patients have reported reduced, raised, or
typical sensory, affective, as well as behavioral reactions to painful
stimuli (Benedetti et al., 2004; Pickering et al., 2006; Kunz et al.,
2007; Kunz et al., 2009). The duration of impairment to the medial
(affective) and lateral (sensory) pain network is recognized in AD.
Besides, the locus, intensity, as well as pain quality are controlled by
the lateral pain system that intervenes acute or quick sensations of
pain. Some studies have recommended that the lateral system is less
affected during AD (Scherder et al., 2003; Scherder et al., 2005). On
the other hand, the medial pain system interferes the unfavorable,
affective reaction to toxic stimuli as well as the neurodegenerative
alterations in AD influence the medial pain system during disease
Frontiers in Pharmacology | www.frontiersin.org 4
(Vogt et al., 1990; Scherder and Bouma, 1997; Scherder and
Bouma, 2000).

Cannabinoid receptor 1 (CNR1) gene is responsible for
encoding the cannabinoid receptor type 1 (CB1R) and this
receptor comprises of 472 amino acids in humans as well as 473
amino acids in mouse and rat, with the identification of 97%–99%
amino acid sequence amid these species. Numerous research found
that some variations of CNR1 had been connected with the
dependence of Cannabis (Agrawal and Lynskey, 2009; Hartman
et al., 2009; Schacht et al., 2012). Conversely, the cannabinoid
receptor 2 (CNR2) gene is accountable for encoding the
cannabinoid receptor type 2 (CB2R) and this receptor comprises
of 360 amino acids in humans. At the protein level, CB2R shares
merely 44% sequence homology in comparison with CB1R.
Furthermore, the CB2R has also bigger species variations among
rodents and humans when compared to CB1R, as the homology of
the amino acid sequence is slightly more than 80% between rodents
and humans (Liu et al., 2009; Zhang et al., 2015). Two
polymorphisms of the CB2R have also been identified in humans
FIGURE 2 | The role of pain stimuli in the pathogenesis of Alzheimer’s disease by the dysfunction of the LC-NE system.
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(Liu et al., 2009). CB1Rs are not only expressed in the brain,
predominantly in the limbic system, cerebellum, substantia nigra,
hippocampus, and basal ganglia, but also they are expressed in the
peripheral nervous system (PNS), including uterus, bones, liver,
testicular tissue, and thyroid (Pagotto et al., 2006; Pertwee, 2006;
Russo and Guy, 2006). On the other hand, CB2Rs are mainly
expressed in the gastrointestinal system spleen, and immune cells,
and slightly in the brain and PNS (Izzo, 2004; Pertwee, 2006).
Remarkably, both CB1Rs and CB2Rs are observed in the human
placenta and play a pivotal role in controlling the serotonin
transporter activity (Kenney et al., 1999).

The characterization of CB1 and CB2 receptors endorsed the
revealing of endocannabinoids (Aso and Ferrer, 2014). In
preclinical and clinical studies found that central as well as
peripherally situated CB1R had widely been connected with
nociception (Manzanares et al., 2006). CB2R are mostly found in
the cells of the immune system might play an essential role in
reducing pain, since they have extensively been linked with the
inhibition of pain and inflammatory processes (Ashton and Glass,
2007). Furthermore, the endocannabinoid system (ECS) has widely
been connected with central stress-mediated analgesia (Hohmann
et al., 2005). THC has also revealed anti-inflammatory effects in
many preclinical and clinical studies. THC has also a great effect on
serotonergic, glutamatergic, and opioid receptors that have played a
pivotal role in the development as well as regulation of neuropathic
pain (Manzanares et al., 2006). Therefore, these results recommend
that although endogenous cannabinoids might be necessary for the
homeostatic regulation of pain, however, exogenous cannabinoids,
including synthetic cannabinoids and THC might be a promising
adjunct therapy for the treatment of clinical pain (Fine and
Rosenfeld, 2013).

Pain regulation is the initialmedical uses of cannabinoids.Many
studies have reported that the analgesic effects of cannabinoids in
diverse kinds of pain, such as mechanical, heat, and chemical pain,
and they also reduced inflammation as well as neuropathic pain
(Fine and Rosenfeld, 2013; Donvito et al., 2018). The ECS is also
played a crucial role in the control of nociception (Pacher et al.,
2006). Similarly, endocannabinoids have also a great effect on the
regulation of inflammation as well as neuropathic pain (Donvito
et al., 2018). Apart from theCB1R, there is also positive evidence for
advocating the involvement of the transient receptor potential
vanilloid-1 (TRPV1) and CB2R in cannabinoid-induced control
of pain (Jhaveri et al., 2007; Akopian et al., 2009). Moreover,
scientists are now focusing the phytocannabinoids for the
management of nociception as well as other neurological
complications. For example, CBD has widely been reported to
control chronic pain in many studies (Donvito et al., 2018).

In a clinical setting, pain could be a highly subjective measure. It
is very challenging to measure and manage pain in dementia
patients because the communication is frequently reduced as well
as many other symptoms present concurrently (Chow et al., 2016).
Nowadays various analgesics including nonsteroidal anti-
inflammatory drugs (NSAIDs), opioids, and acetaminophen are
used for treating pain in dementia (Sherman et al., 2018).
Conversely, as NSAIDs must use carefully as they exert
gastrointestinal side effects and the use of opioids should
Frontiers in Pharmacology | www.frontiersin.org 5
be carefully monitored because of common adverse effects
including nausea, vomiting, and sedation (Sherman et al., 2018).
Furthermore, targeting the ECS has demonstrated favorable effects
for the management of pain in diseases including multiple sclerosis
and fibromyalgia (Svendsen et al., 2004; Tsang and Giudice, 2016).
Recently, nabilone, a synthetic cannabinoid has used in AD patients
for examining pain as an exploratory finding of the clinical trial
(NCT02351882) by using the pain assessment in advanced
dementia scale (ClinicalTrials.gov, 2020). Based on the cautious
assessment of the effects of the ECS as well as preclinical studies, it
can be said that cannabinoids might show a positive effect on pain
in AD (ClinicalTrials.gov, 2020). Therefore, the use of randomized
controlled trials is needed to assess the safety as well as the efficacy
of cannabinoid for treating pain as a primary finding in the
dementia patients.
ENDOGENOUS CANNABINOID SYSTEM
IN ALZHEIMER’S BRAINS

The investigation of human post-mortem samples exposed several
changes in the composition of ECS as well as signaling in AD
brains, though the alterations in the pathophysiology of the disease
remain unclear until now. Likewise, the alterations in the
expression of CB1R in AD are unknown. Although, some studies
found that a considerable decrease in the levels of CB1R in cortical
areas as well as in neurons faraway from senile plaques (Ramıŕez
et al., 2005; Solas et al., 2013), however, many investigations have
reported no changes in the distribution and expression of CB1R in
hippocampus and cortex in AD (Benito et al., 2003; Ahmad et al.,
2014; Lee et al., 2010; Mulder et al., 2011). Moreover, no
relationship between the levels of CB1R and any pathological
marker of AD has been observed (Solas et al., 2013). On the
other hand, the significant levels of CB2R have found in AD brains
because of the expression of CB2R on microglia nearby senile
plaques (Ramıŕez et al., 2005; Solas et al., 2013). Importantly, the
expression of CB2R levels connects with the levels of Ab42 and the
accumulation of plaque, even though not with cognitive
impairment (Solas et al., 2013), recommending that these
pathogenic events trigger the expression of CB2R. Furthermore,
both CB1R and CB2R in the brain of AD are nitrosylated, as well as
this can lead to the impaired connection of these receptors to
downstream effector signaling molecules (Ramıŕez et al., 2005).

Some investigations demonstrated other elements of ECS in
AD human samples. The initial study examining the levels of
endocannabinoid showed no changes between healthy controls
and AD patients in the plasma concentrations of 2-arachidonoyl-
sn-glycerol (2-AG) and anandamide (AEA) (Koppel et al., 2009).
However, in a study by Jung et al. (2012) reported that the lower
levels of AEA in temporal cortices and midfrontal in AD when
compared to control subjects in post-mortem brain samples,
which reciprocally connected with the levels of Ab42 in the
neurotoxic brain as well as cognitive deficiencies documented
in these patients, recommending an involvement in the Ab42-
dependent impairment of AEA to cognitive decline. Besides,
several changes have widely been observed in the activity of the
July 2020 | Volume 11 | Article 1097
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enzymes associated with the synthesis of endocannabinoid as
well as degradation in the brains of AD. Therefore, fatty acid
amide hydrolase (FAAH), the endocannabinoid metabolizing
enzyme, is up-regulated in AD brains both in peripheral blood
mononuclear cells (D’Addario et al., 2012) and neuritic plaque-
related glia (Benito et al., 2003), and this can lead to the increase
of the degradation of AEA in the surrounding area of the
senile plaque. Furthermore, the increased expression of FAAH
might have two detrimental outcomes in the progression of
disease such as limitation of the availability of neuronal AEA
and increases proinflammatory molecules mediated by the
metabolites of AEA including arachidonic acid (Calder, 2005).
In a study by Mulder et al. (2011) reported that changed 2-AG
signaling throughout late phases of AD because of the
combination of impaired recruitment of monoacylglycerol
lipase (MAGL) as well as raised levels of diacylglycerol lipase
that promote synapse silencing in AD.
EFFECT OF CANNABINOIDS ON
ALZHEIMER’S HALLMARKS

Ab Pathology
As stated earlier, atypical production and accumulation of Ab
peptides in the brain are considered as the hallmark of AD (Al
Mamun et al., 2020a; Sharma et al., 2020; Uddin et al., 2020i).
Exogenous cannabinoids, a neuroprotective agent, have
persistently been disclosed to restrain memory deficits in Ab-
treated animal models for both synthetic selective cannabinoid
receptors agonists (Haghani et al., 2012; Wang et al., 2013), as well
as mixed cannabinoid receptors agonists (Ramıŕez et al., 2005;
Martıń-Moreno et al., 2011; Fakhfouri et al., 2012) and natural
CBD (Martıń-Moreno et al., 2011). For example, prolonged
treatment of two separate transgenic (Tg) mice models of brain
amyloidosis with CB1R agonist arachidonyl-2-chloroethylamide
(ACEA) (Aso et al., 2012), CB2R agonist JWH-133 (Martıń-
Moreno et al., 2012; Aso et al., 2013), or non-selective agonist
WIN55,212-2 (Martıń-Moreno et al., 2012) resulted in the
improvement of cognitive parameters. Interestingly, the
protective effects of cannabinoid compounds in Tg animals
against cognitive deterioration had declined with disease
advancement (Aso et al., 2012; Aso et al., 2013).

The neuroprotective mechanisms of cannabinoid that
eventually responsible for memory improvement in Ab are
multiplex and are presumed to take action in parallel or
interacting within them. Even if most of the suggested defensive
mechanisms of action depending on the magnitude of
cannabinoids to indirectly alleviate the devastating effects of Ab,
the direct consequences of cannabinoids on Ab processing also
proposed. For that reason, activation of CB2R provoked Ab
clearance by human macrophages (Gangaidzo et al., 1997; Wu
et al., 2013) and supported Ab transfer through the choroid plexus
(Martıń-Moreno et al., 2012). This supports the Ab-clearance
across the blood-brain barrier (BBB) had also revealed for the 2-
AG, a synthetic endocannabinoid that CB1R/CB2R agonist, in in
vitro and in vivo BBB clearance models (Bachmeier et al., 2013). In
Frontiers in Pharmacology | www.frontiersin.org 6
the Tg AD mice model, these results could interpret that
prolonged administered with CB2R or CB1R/CB2R agonists
markedly reduced Ab levels (Martıń-Moreno et al., 2012).
Conversely, chronically treated with ACEA (Aso et al., 2012) or
HU-210 (Chen et al., 2010) were observed no significant effects on
Ab generation, accumulation, or clearance in Tg AD animal
models. Nevertheless, the Stumm et al. (2013) demonstrated that
APP23/CB1(-/-) mice decreased the formation of Ab plaque and
APP levels, probably caused by a shift in intracellular APP
transport, even though the experimental mice showed elevated
cognitive deficits. Furthermore, Chen et al. (2013) study disclosed
that D-9-THC, one of the cannabinoid isomers, markedly elevated
the neprilysin (an enzyme that can degrade Ab) expression, but
not b-secretase (BACE1), as a result to a significant decreased of
Ab plaques in 5xFAD APP Tg animal model. This study fizzled to
elucidate, the distinctive CB1R or CB2R function in such a D-9-
THC effect on Ab-clearance (Figure 3).

Tau Pathology
Hyperphosphorylation and aggregation of tau is another major
hallmarks of AD (Uddin et al., 2020h: Uddin et al., 2020g).
Accumulating evidence suggested that cannabinoids also play a
significant role in tau pathology. Previously, Ab-induced PC12
neuronal cell culture study revealed that CBD, ACEA, and
WIN55,212-2 impede hyperphosphorylation of tau protein
(Esposito et al., 2006a). For CBD, this effect might mediate by
reducing of phosphorylated glycogen synthase kinase-3b (GSK-
3b) (Figure 3), as a consequence activation of the Wnt/b-catenin
signaling pathway that eventually responsible for the reduction
of neuronal apoptosis (Ferrer et al., 2005; Esposito et al., 2006a).
On the other side, the effect of both the selective (ACEA) and
non-selective (WIN55,212-2) CB1R agonist on tau hyper-
phosphorylation was selectively induced by the CB1R in Ab-
induced C6 glioma cells co-cultured with PC12 neuronal cells
through down-regulating inducible nitric oxide synthase (iNOS)
and nitric oxide (NO) generation (Esposito et al., 2006b). In line
with the molecular mechanism of the CB1 receptor on tau hyper-
phosphorylation, chronically treated APP/PS1 mice with ACEA
decreased the proportion of phosphorylated tau at Thr181 area
(a site nearby Ab plaques), perhaps ACEA-mediated reduction
in GSK-3b detrimental effects (Aso et al., 2012). Additionally, a
particular mechanism for the CB2R in the regulation of tau
phosphorylation has also proposed. For example, in double Tg
mice, chronically administered specific CB2R agonist (JWH-133)
lowered tau hyper-phosphorylation in the surrounding of Ab
plaques that may be achievable by reducing the action of GSK-
3b, p38, and stress-activated protein kinase/c-Jun N-terminal
kinase (SAPK/JNK) (Aso et al., 2013).

To validate these trials, recently, one study reported that long-
term treatment with Sativex®, an approved medicine that made
by mixed D-9-THC and CBD natural extracts, significantly
decreased NFTs in PK(-/-)/Tau(VLW) (parkin-null, human tau
overexpression) mice model (Casarejos et al., 2013). The
investigators of this study proposed cannabinoid strengthen of
autophagy improving redox status as likely mechanisms
responsible for the lowering of tau accumulation.
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EFFECT OF CANNABINOIDS AGAINST
NEUROINFLAMMATION IN AD

Neuroinflammation, primarily expressed as microglial activation, is
an important characteristic in AD that accelerates cell damage and
neuronal loss as well (Akiyama et al., 2000; Hensley, 2010; Sardi
et al., 2011; Uddin et al., 2020c; Uddin et al., 2020f). Accumulating
data indicating that CB2R is fundamentally responsible for several
immune reactions, where they are capable of suppressingmicroglia-
induced neurotoxicity, eventually, cannabinoids compounds that
act on the CB2R can serve as an anti-inflammatory agent (Figure 3)
in neuroinflammation (Cabral and Griffin-Thomas, 2009).
Previously, it has demonstrated that by activating CB2R notably
decreased Ab-mediated neuroinflammatory response in several AD
animal models. For instance, several studies reported that the
microglial response and production of proinflammatory
mediators were significantly reduced by both the selective or
mixed CB2R agonists in Ab-induced animal brains (Ramıŕez
et al., 2005; van der Stelt et al., 2006; Esposito et al., 2007;
Fakhfouri et al., 2012; Wu et al., 2013). Likewise, in APP Tg
models, the proportion of reactive microglial cells adjacent to the
Ab deposition area and concentration of the proinflammatory
cytokines were depleted by selective CB2R agonists (Martıń-
Moreno et al., 2012; Aso et al., 2013). Furthermore, in a
tauopathy animal model, Sativex® can be able to dampen the
microglial activation (Casarejos et al., 2013), though no directly
implicating proof of CB2R or other receptors in such effects
provided. Moreover, recently one study reported that chronically
treated with CB1R agonist ACEA decreased astrocytic reactivation
and lower expression of interferon-g in AbPP/PS1 Tg mice (Aso
et al., 2012). Surprisingly, CBD had not shown an affinity to CB1 or
CB2 receptors but manifested anti-inflammatory characteristics in
the AD animal model (Esposito et al., 2006a; Martıń-Moreno et al.,
2011). The exact location where CBD expresses its neuroprotective
effects is yet to confirm, but few findings indicate that CBD may
have selective interaction with peroxisome proliferator-activated
receptors-g (PPARg) (Esposito et al., 2011).

In AD, the enzymes that are related to AEA and 2-AG
deterioration may also responsible for regulating the
inflammation. FAAH is an enzyme that manifested not only in
the neurons but also astrocytes, where it can contribute to a role in
response to the inflammatory process. A study reported that FAAH
overexpressed in astrocyte and notably sustained in the
neuroinflammatory process, which was possessed to assist the
detrimental process mediated by toxic insults due to the lowering
of endocannabinoid tone (Benito et al., 2003). However, FAAH-
knockout mice expressed more responsive to Ab than wildtype
astrocytes and exhibited higher proinflammatory phenotype,
distinguished by an elevation in cytokine production as well as
cell death likely due to the alternation of signaling pathways
involved in cell survival and inflammation, including, extracellular
signal-regulated protein kinases 1/2 (ERK1/2), p38 mitogen-
activated protein kinase (p38MAPK), and nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB), as well as to the
escalation in inflammatory molecules such as iNOS and
cyclooxygenase (Benito et al., 2012). The researchers of this study
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disclosed that these processes not related to CB1 or CB2 receptors
but PPAR-a, PPAR-g, and TRPV1. So far, in astrocytes, the
proinflammatory phenotype could not be initiated by the
pharmacological blockade of FAAH, suggesting that the audited
effects in astrocytes absent FAAH could be due to compensative
shifts that result from the probably prolonged augment of N-
acylethanolamines. The result of this study indicates that an
exceedingly long-term prolongation of endocannabinoid tone may
have detrimental effects. On the contrary, the inhibition of MAGL,
an enzyme that role in hydrolyzing endocannabinoids (Nomura
et al., 2011), and regulate the arachidonic acid release, reduced the
Ab levels and diminished neuroinflammation in AD animal model
(Piro et al., 2012). These findings were verified by the
pharmacological MAGL inhibitor, which reiterated the
proinflammatory cytokine-reducing effects through lowering
prostaglandin generation, rather than intensified endocannabinoid
signaling pathway.
EFFECT OF CANNABINOIDS AGAINST
OXIDATIVE STRESS IN AD

Overwhelming evidence demonstrated that mitochondrial
dysfunction as a causative factor to neurodegenerative diseases,
including AD (Ferrer, 2009; Ankarcrona et al., 2010; Burchell et al.,
2010; Uddin and Kabir, 2019). Impaired mitochondrial function
emerges at the early stage in AD, which eventually causative factor
for neurons exhaustion as a consequence of converging in the
reduction of energy generation, elevated energy demand, and
uncontrolled oxidative stress (Ferrer, 2009; Uddin et al., 2020b).
The cannabis derivatives also have a potent antioxidant property,
particularly CBD was shown more protective than a-tocopherol
against glutamate neurotoxicity (Hampson et al., 1998). Besides,
CBD not only suppressed ROS generation and lipid peroxidation
but also reduced caspase 3, (Figure 3) and intracellular calcium
levels in Ab-induced PC12 neuronal cells (Iuvone et al., 2004).
Furthermore, it also lowered iNOS and NO in similar conditions
(Esposito et al., 2006b). Moreover, other cannabinoids, for
example, selective CB2R agonists exerted antioxidant properties
in AD animal models. Therefore, JWH-133, a selective CB2R
agonist, lowered hydroxynonenal adducts (produced from lipid
peroxidation), elevated superoxide dismutases-1 (SOD-1) and
superoxide dismutases-2 (SOD-2) in surrounding of plaques in
APP/PS1 mice, suggesting the role of CB2R in lowering harmful
effects against oxidative stress (Aso et al., 2013). Chronically
administered with Sativex® in the tauopathy animal model was
also proposed to lower the free radicals and mitochondrial activity
in the tauopathy animal model.
EFFECT OF CANNABINOIDS ON ENERGY
METABOLISM IN AD

The functional role of cannabinoid receptors in regulating
neuronal energy metabolism has been becoming great attention
in the scientific community. However, only a few studies available
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so far to confirm the direct possession of CB1R over neuronal
respiration and energy generation. For instance, Bénard et al.
(2012) used anti-CB1R antibodies, disclosed the protein
localization of CB1R nearly 30 percent of neuronal
mitochondria, which when triggered by exogenous/endogenous
cannabinoids lowers the respiratory chain complex-I activity
and oxygen consumption, probably via cyclic adenosine
monophosphate (cAMP) and protein kinase-A (PKA) signaling.
These results are supported by Athanasiou et al. (2007) findings,
which reveal that all of the partial CB1R agonists including AEA,
D-9-THC, and HU-210 markedly reduced oxygen consumption
(Figure 3) and mitochondrial membrane potential. However, care
must be taken to interpret these findings due to using commercial
anti-CB1R antibodies (Morozov et al., 2013).
EFFECT OF CANNABINOIDS ON THE
MODULATION OF NEUROTRANSMISSION
IN AD

In recent years, acetylcholine esterase (AChE) inhibitors mostly
approved by drug administration to treat AD, which rises the
acetylcholine (ACh) availability to some extent alleviating this
Frontiers in Pharmacology | www.frontiersin.org 8
neurotransmitter insufficiency in AD patients, or they are non-
competitive N-methyl-D-aspartate (NMDA) receptor antagonists,
which blocks the NMDA-associated ion channel consequently
lower calcium influx and restrain excitotoxicity (Kabir et al.,
2019b; Kabir et al., 2019a; Kabir et al., 2020b). Surprisingly,
particular cannabinoid molecules play a role in the same target
compared to contemporary medicaments, resulting in analogous
or increased favorable effects. For example, D-9-THC competitively
impedes AChE, (Figure 3) consequently elevating ACh levels, as
well as hindering AChE-mediated Ab deposition by binding in the
peripheral-anionic-site of AChE, the dreadful area engaged with
amyloidogenesis (Eubanks et al., 2006). Some synthetic
cannabinoids can act as stereoselective NMDA receptors blockers
(Feigenbaum et al., 1989). For example, HU-211, which can protect
cells against NMDA-inducing neurotoxicity (Feigenbaum et al.,
1989; Eshhar et al., 1993; Nadler et al., 1993). The neuroprotective
activity of HU-211 caused by direct binding to NMDA receptors,
unfortunately not to cannabinoid receptors, however; the widely
considered cannabinoid-induced neuroprotective effects against
excitotoxicity may be accomplished through several mechanisms,
including suppression of presynaptic glutamate release (Marsicano
et al., 2003), interruption of voltage-dependent calcium channels
(Mackie and Hille, 1992), and the prohibition of calcium release
FIGURE 3 | Neuroprotective effects of cannabinoids against Alzheimer’s disease.
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(Zhuang et al., 2005), which predominantly indicates the direct or
indirect involvement of CB1R.
CONCLUSION

Cannabinoids act by targeting several signaling processes, such as
pain, abnormal processing of Ab and tau, neuroinflammation,
excitotoxicity, oxidative stress, and mitochondrial dysfunction,
which play a pivotal role in the management of AD. Cannabinoids
also ameliorate behavioral and cognitive dysfunctions. Therefore,
due to these extensive medical uses of cannabinoid compounds, it
can be said that targeting the endocannabinoid system can be a
promising strategy to develop an effective therapy for the
management of AD. Furthermore, cannabinoids may demonstrate
a safe and reliable low-cost therapy, with limited side effects. Future
research is needed to investigate the use of cannabinoids for the
treatment of AD in a clinical trial setting.
Frontiers in Pharmacology | www.frontiersin.org 9
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et al. (2012). Mitochondrial CB₁ receptors regulate neuronal energy
metabolism. Nat. Neurosci. 15, 558–564. doi: 10.1038/nn.3053

Benedetti, F., Arduino, C., Vighetti, S., Asteggiano, G., Tarenzi, L., and Rainero, I.
(2004). Pain reactivity in Alzheimer patients with different degrees of cognitive
impairment and brain electrical activity deterioration. Pain 111, 22–29.
doi: 10.1016/j.pain.2004.05.015
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Pacher, P., Bátkai, S., and Kunos, G. (2006). The endocannabinoid system as an
emerging target of pharmacotherapy. Pharmacol. Rev. 58, 389–462.
doi: 10.1124/pr.58.3.2

Pagotto, U., Marsicano, G., Cota, D., Lutz, B., and Pasquali, R. (2006). The
emerging role of the endocannabinoid system in endocrine regulation and
energy balance. Endocr. Rev. 27, 73–100. doi: 10.1210/er.2005-0009

Pamplona, F. A., and Takahashi, R. N. (2012). Psychopharmacology of the
endocannabinoids: Far beyond anandamide. J. Psychopharmacol. 26, 7–22.
doi: 10.1177/0269881111405357

Pertwee, R. G. (1997). Pharmacology of cannabinoid CB1 and CB2 receptors.
Pharmacol. Ther. 74, 129–180. doi: 10.1016/S0163-7258(97)82001-3

Pertwee, R. G. (2006). The pharmacology of cannabinoid receptors and their
ligands: An overview. Int. J. Obes. 30, S13–S18. doi: 10.1038/sj.ijo.0803272

Pertwee, R. G. (2008). The diverse CB 1 and CB 2 receptor pharmacology of three
plant cannabinoids: D 9-tetrahydrocannabinol, cannabidiol and D 9-
tetrahydrocannabivarin. Br. J. Pharmacol. 153, 199–215. doi: 10.1038/
sj.bjp.0707442

Pickering, G., Jourdan, D., and Dubray, C. (2006). Acute versus chronic pain
treatment in Alzheimer’s disease. Eur. J. Pain 10, 379. doi: 10.1016/
j.ejpain.2005.06.010

Pickering, G., Pereira, B., Clère, F., Sorel, M., de Montgazon, G., Navez, M., et al.
(2014). Cognitive function in older patients with postherpetic neuralgia. Pain
Pract. 14, E1–E7. doi: 10.1111/papr.12079

Piro, J. R., Benjamin, D.II, Duerr, J. M., Pi, Y., Gonzales, C., Wood, K. M., et al.
(2012). A dysregulated endocannabinoid-eicosanoid network supports
pathogenesis in a mouse model of Alzheimer’s disease. Cell Rep. 1, 617–623.
doi: 10.1016/j.celrep.2012.05.001

Rajkumar, A. P., Ballard, C., Fossey, J., Orrell, M., Moniz-Cook, E., Woods, R. T.,
et al. (2017). Epidemiology of Pain in People With Dementia Living in Care
Homes: Longitudinal Course, Prevalence, and Treatment Implications. J. Am.
Med. Dir. Assoc. 18, 453.e1–453.e6. doi: 10.1016/j.jamda.2017.01.024
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