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G-protein–coupled receptors (GPCRs) are targets for around one third of currently
approved and clinical prescribed drugs and represent the largest and most structurally
diverse family of transmembrane signaling proteins, with almost 1000 members identified
in the human genome. Upon agonist stimulation, GPCRs are internalized and trafficked
inside the cell: they may be targeted to different organelles, recycled back to the plasma
membrane or be degraded. Once inside the cell, the receptors may initiate other signaling
pathways leading to different biological responses. GPCRs’ biological function may also
be influenced by interaction with other receptors. Thus, the ultimate cellular response may
depend not only on the activation of the receptor from the cell membrane, but also from
receptor trafficking and/or the interaction with other receptors. This review is focused on
angiotensin receptors and how their biological function is influenced by trafficking and
interaction with others receptors.

Keywords: angiotensin type 1 receptor, angiotensin type 2 receptor, Mas receptor, G-protein–coupled receptor,
trafficking, heteromerization, nucleus
INTRODUCTION

The renin-angiotensin system (RAS) exerts a fundamental role in blood pressure control and
fluid homeostasis. Cardiovascular diseases have been associated with disorders in the RAS. The
RAS is composed of two arms. The pressor arm, constituted by angiotensin (Ang) II and the Ang
II type 1 receptor (AT1R), which mediates the pressor, trophic, proinflammatory, fibrotic,
Abbreviations: AC, Adenylate Cyclase; Ang, Angiotensin; AT1R, Angiotensin II type 1 receptor; AT2R, Angiotensin II type 2
receptor; B2R, Bradykinin type 2 receptor; a-AR, a-adrenergic receptor; b-AR, b-adrenergic receptor; bARK, b-adrenergic
receptor kinase; cAMP, Cyclic adenosine monophosphate; CCPs, Clathrin-coated pits; D2R, Dopamine type 2 receptor;
D5R, Dopamine type 5 receptor; ERK1/2, Extracellular signal-regulated kinase ½; GPCR, G-protein–coupled receptor; GRK,
G-protein–coupled receptor kinase; HEK, Human embryonic kidney; HF, Heart failure; IP3, Inositol triphosphate; JNK, Jun
N-terminal kinase; MasR, Receptor Mas; MAPK, Mitogen-activated protein kinase; MI, Myocardial Infarction; MrgDR, Mas-
related G-protein–coupled receptor member D receptor; NLS, Nuclear localization sequences; NO, Nitric oxide; PKA, Protein
kinase A; PCK, Protein kinase C; RAS, Renin-angiotensin system; SHR, Spontaneously hypertensive rats; VSMC, vascular
smooth muscle cells.
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oxidative effects, among others, of Ang II. The opposite arm,
the depressor arm of the RAS, is constituted by Ang-(1-7), its
receptor Mas (MasR), which mediates the depressor,
vasodilatory, anti-inflammatory, and antifibrotic effects of
Ang-(1-7), and the Ang II type 2 receptor (AT2R), which
counteracts AT1R-mediated actions (Forrester et al., 2018;
Santos et al., 2018). Another component of the RAS,
alamandine, should be included in this depressor arm of the
RAS. Alamandine induces protective effects as those elicited by
Ang-(1-7) but through the stimulation of the Mas-related G-
protein–coupled receptor (GPCR) member D receptor
(MrgDR) (Lautner et al., 2013; Schleifenbaum, 2019).

MasR, AT1R, AT2R, and MrgDR belong to the GPCRs
family. GPCRs comprise the largest and most varied family of
transmembrane receptors, with almost 1000 members identified
in the human genome (Thomsen et al., 2018). GPCRs are targets
for ∼30% of currently approved and clinical prescribed drugs. All
GPCRs share a common structure, which consists of one
polypeptide that crosses the membrane seven times, with a
highly variable extracellular N-terminus and intracellular C-
terminus (Sposini and Hanyaloglu, 2018). GPCRs also share
the ability to interact with G-proteins, showing a great diversity
in the functional coupling and the number of alternative
signaling pathways elicited by their activation (Fredriksson
et al., 2003).

GPCRs comprise the most important receptor family that
participates in signaling in response to extracellular stimuli in
eukaryotes (Calebiro and Godbole, 2018). Given their
fundamental role in cell physiology, GPCR signaling is a
tightly regulated process, influenced by multiple factors in a
spatial and temporal way. Ligand availability, the properties of
both the receptor and G-protein, the interaction with other
proteins or receptors, and the trafficking are among the most
recognized factors influencing GPCR signaling (Foster and
Brauner-Osborne, 2018; Carbone et al., 2019).

GPCR primary mechanism of signaling is via coupling to G-
proteins, which are heterotrimeric proteins composed by three
subunits: Ga, Gb, and Gg (Sposini and Hanyaloglu, 2018).
Upon cell surface receptor binding to its extracellular ligand,
Ga and Gbg subunits of G-protein dissociate, acquiring the
capacity to initiate a signaling cascade of downstream events.
Ga proteins are divided into four subfamilies with differential
signaling features. Gbg subunits are numerous and have both
regulatory and signaling properties (Wootten et al., 2018). In
this prototypic model of GPCR signaling, GPCR activation
converges on common downstream signal pathways (Sposini
and Hanyaloglu, 2018).

Besides their canonical mechanism of signaling, studies over
the past decades have proven that GPCRs mediate diverse
physiological functions by activation of pleiotropic signaling
mechanisms. These pleiotropic signaling mechanisms have
helped to understand the fundamental role of GPCRs in cellular
physiology (Hanyaloglu, 2018). These alternative signaling models
exhibit extensive signal crosstalk and diversity, allowing GPCRs to
interact with an enormous variation of ligands as photons,
odorants, tastings, and many hormones and neurotransmitters
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mediating most physiological and pathological processes
(Thomsen et al., 2018; Wootten et al., 2018).

One of the mechanisms by which GPCRs can diversify their
signaling is through the interaction with another receptor to
associate as either homomeric or heteromeric complexes.
Recently, Ferre et al. (2020) defined receptor heteromer as “a
macromolecular complex composed of at least two (functional)
receptor units (protomers) with biochemical properties that are
demonstrably different from those of its individual components.”
This definition is different from that of heteromeric receptor, “a
dimeric or oligomeric receptor for which the minimal functional
unit is composed of two or more different subunits that are not
functional on their own” (Ferre et al., 2020). Receptor homomer
and homomeric receptor would be, respectively, defined in the
same way as receptor heteromer and heteromeric receptor but
with the distinction of being formed by “two or more identical
protomers or identical non-functional subunits” (Ferre et al.,
2020). Heteromerization of receptors may result in alterations in
their biosynthesis, plasma membrane diffusion rate, ligand
binding, pharmacology, and signaling (Sleno and Hebert, 2018;
Sposini and Hanyaloglu, 2018; Bourque et al., 2020).

On the other hand, over the last years, studies have pointed out a
significant role of endocytic trafficking as a mechanism underlying
GPCR signaling complexity and specificity. Being highly integrated
with the GPCR signaling network, endocytic trafficking provides an
important system that influences the organization and direction of
receptor signaling (Hanyaloglu, 2018).

Thus, the ultimate cellular response may depend not only on
the activation of the receptor from the cell membrane but also
from receptor trafficking and/or the interaction with other
receptors. This review is focused on angiotensin receptors and
how their biological function is influenced by trafficking and
interaction with others receptors.
BRIEF REVIEW OF GPCR SIGNALING
HISTORY

Although GPCRs play a fundamental role in eukaryotic cell
physiology, a vast number of years of exhaustive work were
required to unravel the intricate pathways and individual
components involved in the process of GPCRs signaling.
Interestingly, components of the membrane effector and
transduction system were identified before the GPCRs could be
isolated and characterized.

In the late 1950s and early 1960s, Earl Sutherland´s work led
to the identification of cyclic adenosine monophosphate (cAMP)
and adenylate cyclase (AC), which was initially postulated as the
receptor of the signaling system (Kresge et al., 2005). This
discovery gave him the Nobel Prize for Physiology or Medicine
in 1971. The subsequent work of Martin Rodbell and Alfred G.
Gilman led to the identification and purification of another
component of the system, the membrane effector, which was
named as G-protein (Gilman, 1995; Rodbell, 1995). For this,
Rodbell and Gilman were given the Nobel Prize for Physiology or
Medicine in 1994. One of the main contributions to the
August 2020 | Volume 11 | Article 1179
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knowledge of GPCRs structure and signaling mechanism was
that of Robert J. Lefkowitz and colleagues who purified the b-
adrenergic receptor (b-AR) for the first time and postulated a
ternary complex model to explain the agonist binding to the
receptor (De Lean et al., 1980; Lefkowitz, 2004).

During 1970 and 1980, the discovery and implementation of
novel experimental techniques such as radioligand binding
assay, detergent solubilization, and purification by affinity
chromatography led to the cloning of the genes encoding the
b2-AR (Dixon et al., 1986). Two important discoveries emerged
from the receptor cloning. First, the gene encoding the b2-AR
was intronless, meaning that the receptor’s sequence of amino
acids could be inferred from one exon (Kobilka et al., 1987). On
the other hand, the b2-AR sequence showed homology with the
visual pigment rhodopsin, leading to the postulation that all
GPCRs might present the same structural arrangement (Dixon
et al., 1986).

In parallel with these findings, Lefkowitz and colleagues
proposed a mechanism for b2-AR signaling regulation by
protein kinase A (PKA) phosphorylation, which was named as
heterologous desensitization (Benovic et al., 1985). Further
studies showed that the b2-AR could also be phosphorylated in
a PKA-independent manner, leading to the identification of the
b-adrenergic receptor kinase (bARK), now recognized as G-
Protein-coupled receptor kinase 2 (GRK2) (Benovic et al., 1986).
Subsequently, a non-visual arrestin named b-arrestin was
identified, with the ability to binding to the complex formed
between the phosphorylated b2-AR and bARK in order to block
its interaction with the G-protein (Benovic et al., 1987). Soon
after that, b-arrestin was cloned for the first time (Lohse et al.,
1990). Today, it is widely accepted that b-arrestins and GRKs
constitute a universal mechanism shared by GPCRs to regulate
their signaling.

In later years, several members of the GPCR family were
identified. The use of the techniques of mutagenesis and the
creation of receptor chimeras improved the knowledge of GPCRs
structure and the understanding of many aspects in the
regulation of receptor signaling (Prazeres and Martins, 2015).
MECHANISMS OF GPCR SIGNALING
DIVERSIFICATION

Angiotensin Receptors Heteromerization
GPCRs exist as homo-oligomers, in addition to interact with
other receptors, forming hetero-oligomers, affecting in this way
their functionality. Due to GPCR oligomerization, different
properties such as synthesis, cell membrane diffusion, binding
to the agonist, pharmacology, signaling, and trafficking may be
altered (Milligan, 2010; Ferre et al., 2014; Gomes et al., 2016;
Bourque et al., 2020). Due to GPCR oligomerization ligand
affinity for its receptor may change. Alternatively, agonist-
mediated receptor activation may be counteracted by the
antagonist of the other receptor forming the oligomer or one
of the protomer forming the heteromer may directly modulate
Frontiers in Pharmacology | www.frontiersin.org 3
the other protomer resulting in changes in its properties (Farran,
2017). By mediating several unique different effects, GPCR
heteromerization plays a fundamental role in cell physiology.
GPCR heteromerization has also been implicated in the
pathophysiology of several diseases, including cardiovascular
and neurological diseases (AbdAlla et al., 2009; Fernández-
Dueñas et al., 2019).

Regarding the RAS, some of the responses mediated by AT1R
activation are due to heteromerization with other receptors. It has
been largely reported heteromerization between the AT1R and the
bradykinin type 2 receptor (B2R) (AbdAlla et al., 2000; Hansen
et al., 2009; Quitterer et al., 2011; Wilson et al., 2013; Quitterer
et al., 2019). AT1R-B2R heteromerization is involved in the
increase of Ang II hypersensitivity in preeclampsia (AbdAlla
et al., 2000). Preeclampsia is a pregnancy complication
characterized by high blood pressure and proteinuria of ≥300
mg/day. It may cause serious complications for the mother and
fetus, which it even may be fatal (Bokslag et al., 2016; El-Sayed,
2017). Preeclampsia is associated with vasoconstriction and
microthrombi formation, leading to maternal organ reduced
blood flow and an increase in the risk of multi-organ
dysfunction. As a consequence of placenta hypo-perfusion,
complications and growth retardation of the fetus may occur
(El-Sayed, 2017). The presence of AT1R-B2R heteromers has been
reported in human placental biopsies from pregnancies with
preeclampsia (Quitterer et al., 2019). Due to AT1R-B2R
heteromerization, the arrestin-dependent internalization of B2R
in primary vascular smooth muscle cells (VSMCs) is blocked
when the AT1R is stimulated with a specific agonist (Wilson et al.,
2013). AT2R can also dimerize with B2R resulting in an
enhancement of nitric oxide (NO) production in rat
pheochromocytoma cells (Abadir et al., 2006).

Heteromerization between AT1R and AT2R has been
reported to be present in rat fetal fibroblasts and in
myometrial biopsies from humans (AbdAlla et al., 2001). The
interaction results in the inhibition of the inositol phosphate
generation induced by AT1R activation, leading to a lower
AT1R-mediated response (AbdAlla et al., 2001). In transfected
HeLa cells, AT2R inhibits the signaling of AT1R that is induced
by the ligand through a pathway dependent on protein kinase C
(PKC) activation, and this effect results from constitutive AT1R-
AT2R heteromerization (Inuzuka et al., 2016). In proximal
tubule cells from pig kidney (LLC-PK1 cells), it has been
shown that Ang II internalized together with AT1R-AT2R
heteromers forming a complex in a process that was
dependent on microtubules but not on clathrin to target
endoplasmic reticulum, where it might increase sarco(endo)
plasmic reticulum calcium ATPase activity and calcium levels
(Ferrao et al., 2017). AT1R endocytosis is also influenced by
interaction with other receptors. AT1R internalization is
modified due to AT1R-B2R heteromerization. The rate of
AT1R-B2R endocytosis is increased compared to B2R alone
but slowed compared to AT1R alone (Wilson et al., 2013; Bian
et al., 2018). In addition, AT1R-B2R heteromer stimulated by an
AT1R agonist leads to a reduction in bradykinin responsiveness
(Wilson et al., 2013).
August 2020 | Volume 11 | Article 1179
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Not only AT2R may antagonize AT1R-mediated actions. The
Ang-(1-7) MasR can also antagonize AT1R functional activity in
transfected CHO-K1 cells through the formation of a constitutive
heterodimer that was unaffected by the presence of their ligands
(Kostenis et al., 2005). In fact, Ang II–mediated vasoconstriction is
enhanced in vessels from MasR-knockout (KO) mice (Kostenis
et al., 2005). Ang II binding to AT1R is diminished due to
oligomerization with apelin receptor in transfected human
embryonic kidney 293 (HEK293) cells (Siddiquee et al., 2013),
whereas ligand occupation of prostaglandin F2a receptor
increased Ang II affinity for AT1R in VSMC (Goupil et al.,
2015). Heteromerization between the cannabinoid type 1
receptor and AT1R results in an enhanced calcium and
mitogenic response to Ang II in hepatic stellate cells isolated
from rats (Rozenfeld et al., 2011). Conversely, calcium response to
Ang II was attenuated by heteromerization between AT1R and the
dopamine type 2 receptor (D2R) in rat striatum and in transfected
HEK293T cells (Martinez-Pinilla et al., 2015). Moreover, AT1R
blockade by the AT1R antagonist candesartan prevented D2R-
mediated effects on cAMP levels, activation of mitogen-activated
protein kinase (MAPK), and b-arrestin recruitment. The authors
suggested that this crosstalk could have a beneficial effect to
prevent the side effects in patients with abnormal motor control
and dyskinesia subjected to dopamine-replacement therapy
(Martinez-Pinilla et al., 2015).

A crosstalk between the sympathetic nervous system and the
RAS has been described (Barki-Harrington et al., 2003), which may
be explained at least in part by receptor heteromerization. In a
fibroblast-like cell line, AT1R blockade inhibits downstream
signaling of b-AR, and vice versa, b-AR blockade inhibits
signaling of AT1R (Barki-Harrington et al., 2003). Accordingly,
heteromerization between AT1R and a2C-adrenergic receptor
(a2C-AR) was proposed to trigger an atypical Gs-cAMP–
PKA signaling and norepinephrine hypersecretion in transfected
HEK293T cells (Bellot et al., 2015). AT1R-b2AR heterodimerization
results in an enhancement of b-arrestin coupling to b2AR (Toth
et al., 2017). Adrenaline alpha 1D–adrenergic receptor (a1D-AR)
and AT1Rs can form heterodimers. This formation is greater in
preeclamptic rats compared to control group, suggesting that this
heteromer may play a role in preeclampsia (Gonzalez-Hernandez
Mde et al., 2010).

Regarding receptors that belong to the depressor arm of the
RAS, Leonhardt et al. (2017) described heterodimerization
between AT2R and MasR, which mediates the Ang-(1-7)– or
the AT2R agonist-induced CX3C chemokine receptor-1
messenger RNA expression in cultured astrocytes from mice
(Leonhardt et al., 2017). AT2R-MasR interaction was also
shown in obese Zucker rat kidney, and this heteromer
promotes diuretic and natriuretic responses and NO
generation (Patel et al., 2017). MasR-B2R heteromerization is
constitutively present in Wistar rat mesenteric vascular beds and
in human glomerular endothelial cells (Cerrato et al., 2016).
Heteromerization between the Ang-(1-7) MasR and the
bradykinin B2R results in a delayed sequestration of the MasR
from the plasma membrane and an increase in the affinity ligand
binding properties of MasR in HEK293T-transfected cells
Frontiers in Pharmacology | www.frontiersin.org 4
(Cerrato et al., 2016). Altogether, these changes in receptor
functional characteristics may lead to long-lasting protective
biological properties.

Alamandine, a new component of the RAS exerts protective
effects similar to those displayed by Ang-(1-7) through the
stimulation of the MrgDR (Lautner et al., 2013; Santos et al.,
2019). MrgDR has been shown to heteromerize with the Mas-
related GPCR member E receptor (MrgER) in HEK293T cells
expressing MrgDR and MrgER, which induces a lower
internalization of MrgDR compared to cells expressing MrgD
alone and an increase in extracellular signal–regulated kinase 1/2
(ERK1/2) phosphorylation (Milasta et al., 2006).

Not only receptor heteromerization induces changes in
receptor functionality. AT1R was the first receptor of the RAS
to show to form homodimers (Hansen et al., 2004). An increase
in AT1R homodimerization has been reported in monocytes
from patients with hypertension, which correlated with
an increased Ang II–dependent monocyte activation and
adhesiveness (AbdAlla et al., 2004). Furthermore, this
homodimerization is covalently crosslinked by factor XIIIA
transglutaminase, an enzyme involved in stabilizing fibrin
polymer. In fact, inhibition of this enzyme causes a reduction
in AT1R homodimers (AbdAlla et al., 2004). AT2R and MasR
have also been shown to form homodimers (Leonhardt
et al., 2017).

Receptor homo-oligomerization has been shown to be
present in different pathological situations. For instance,
amyloid b induces AT2R oligomerization with the consequent
Gaq/11 protein sequestration and dysfunction in a model of
Alzheimer’s disease, thus contributing to the neurodegenerative
process during the progression of Alzheimer’s disease (AbdAlla
et al., 2009).

Table 1 resumes Angs receptor heteromerization and its
functional consequences. Some of the biological responses
associated to AT1R, AT2R, and MasR heteromerization are
represented in Figure 1. Given its fundamental role in
physiological and pathological processes, GPCR oligomerization
constitutes an important target in the development of novel drugs
that would act through this class of receptors and could lead to a
better design of new ligands, potentially more selective for these
receptors and with greater binding capacity, with major
implications in drug development and therapeutic approach in
several diseases, such as cardiovascular disease.

Receptor Trafficking
To avoid the potential harms of prolonged agonist stimulation in
the cell, GPCRs undergo a rapid internalization known as
desensitization. Upon prolonged and/or repetitive agonist
stimulation, GPCRs are internalized and trafficked inside the
cell: They may be targeted to different organelles such as
endoplasmic reticulum, Golgi body, mitochondria, or nucleus
or recycled back to the plasma membrane or be degraded in
lysosomes (Ribeiro-Oliveira et al., 2019).

GPCR desensitization is mediated by GRKs that phosphorylate
the receptor, followed by recruitment of b-arrestins. GRKs mediate
homologous desensitization, while other kinases such as PKA and
August 2020 | Volume 11 | Article 1179
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TABLE 1 | Angiotensin Receptors heteromerization and its functional consequences.

Receptors Model Effect Reference

AT1R – AT1R Monocytes from patients with
hypertension

Increased Ang II-dependent monocyte activation and adhesiveness AbdAlla et al., 2004

AT1R – APJR Transfected CHO-K1 cells Diminished Ang II binding to AT1R Siddiquee et al.,
2013

AT1R – AT2R Rat fetal fibroblast; human myometrial
biopsies

Inhibition of inositol phosphate generation AbdAlla et al., 2001

AT1R – B2R Transfected HEK293T cells Ang II hypersensitivity AbdAlla et al., 2000
AT1R – B2R Primary aortic VSMC Blocked arrestin-dependent internalization of B2R Wilson et al., 2013
AT1R – B2R Human placental biopsies Increased calcium signaling and high vascular smooth muscle

mechanosensitivity
Quitterer et al., 2019

AT1R – CB1R Hepatic stellate cells from rats Enhanced calcium and mitogenic response to Ang II Rozenfeld et al.,
2011

AT1R – CCR2 Transfected HEK293T and subtotal-
nephrectomized rat (chronic kidney
disease model)

Enhanced b-arrestin2 recruitment
Renal injury

Ayoub et al., 2015

AT1R – D1R Renal proximal tubule cells of WKY and
SHR,
A10 aortic vascular smooth muscle cells

Decreased AT1R induced by D1R stimulation in WKY and SHR and A10
vascular smooth muscle cells
Increased D1R induced by D1R stimulation only in WKY.
D1R-AT1R interaction greater in WKY than in SHR
D1R-AT1R interaction increased in WKY and decreased in SHR after D1R
stimulation

Zeng et al., 2003b

AT1R – D2R Ethanol-administered rats Attenuated calcium and mitogenic response to Ang II Martinez-Pinilla et al.,
2015

AT1R – D3R Renal proximal tubule cells of SHR and
WKY

Decreased D3R induced by Ang II in both strains, being greater in SHR than in
WKY
Decreased AT1R in WKY by Ang II
Increased AT1R in SHR by Ang II

Zeng et al., 2003a

AT1R – D5R Renal proximal tubule cells of SHR and
WKY

Negatively regulation of the expression of each receptor.
Decreased D5R expression induced by Ang II in WKY and SHR.

Zeng et al., 2005b

AT1R – ETBR Renal proximal tubule cells of SHR and
WKY

Increased ETBR expression induced by Ang II in WKY cells. No change in SHR
cells

Zeng et al., 2005a

AT1R – FP Primary rat aortic VSMCs Increased binding to AT1R Goupil et al., 2015
AT1R – MasR Transfected HEK293T and mesenteric

microvessels from wild type and MasR-
KO mice

Decreased Ang II-induced production of inositol phosphates and mobilization of
intracellular calcium

Kostenis et al., 2005

AT1R – P2Y6R VSMCs from mice P2Y6 promotes Ang II–induced hypertension Nishimura et al.,
2016

AT1R – SecR Transfected CHO, HEK293T and COS-
1 cells

Negative allosteric modulatory impact on secretin-stimulated cAMP responses
at SecR; Positive allosteric modulatory impact on secretin-stimulated cAMP
responses at AT1R

Harikumar et al.,
2016

AT1R – a1DR Aortic tissue from healthy and
preeclamptic pregnant rats

Higher heterodimerization in preeclamptic rats compared to control group Gonzalez-Hernandez
Mde et al., 2010

AT1R – a2C-
AR

Transfected HEK293T cells and mouse
superior cervical ganglion neurons

Atypical Gs-PKA signaling and norepinephrine hypersecretion Bellot et al., 2015

AT1R – b2AR Transfected COS-7 and HEK293T cells Enhancement of b-arrestin coupling to b2AR Toth et al., 2017
AT1R – bAR Mouse cardiomyocytes; HUVECs;

transfected COS-7 and HEK293T cells
Crossinhibition of signaling coupled to each receptor Barki-Harrington

et al., 2003
AT2R – AT2R Mice model of Alzheimer disease Gaq/11 sequestration and dysfunction AbdAlla et al., 2009
AT2R – B2R Transfected

PC-12 cells
Enhancement of NO generation Abadir et al., 2006

AT2R – MasR Cultured astrocytes from mice Induced CX3CR1 mRNA expression Leonhardt et al.,
2017

AT2R – MasR Obese Zucker rat kidney Increased NO generation
Diuretic and natriuretic responses

Patel et al., 2017

MasR – B2R Transfected
HEK293T cells

Delayed sequestration of MasR from the plasma membrane
Increased affinity ligand binding of MasR

Cerrato et al., 2016

MrgDR – MrgER Transfected
HEK293T cells

Decreased MrgDR internalization
Increased ERK1/2 phosphorylation

Milasta et al., 2006
Frontiers in Pharmaco
logy | www.frontiersin.org
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Ang II, Angiotensin II; APJR, apelin receptor; AT1R, Ang II receptor type 1; AT2R, Ang II receptor type 2; B2R, Bradykinin receptor type 2; cAMP, Cyclic adenosine monophosphate; CHO,
Chinese hamster ovary; CX3CR1, CX3C chemokine receptor; D1R, dopamine receptor type 1; D2R, dopamine receptor type 2; D3R, dopamine receptor type 3; D4R, dopamine receptor
type 4; D5R, dopamine receptor type 5; ETBR, Endothelin receptor type B; FPR, Prostaglandin F receptor; HEK293T, human embryonic kidney 293T; HUVECs, Human umbilical vein
endothelial cells; KO, knockout; MrgDR, Mas-related G protein-coupled receptor member D receptor; MrgER, Mas-related G protein-coupled receptor member E receptor; NO, nitric
oxide; P2Y6R, P2Y6 purinergic receptor; PKA, protein kinase A; SecR, secretin receptor; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SHR, Spontaneously hypertensive rat;
VSMC, Vascular smooth muscle cells; WKY, Wistar Kyoto; a1DR, adrenergic a1D receptor; a2C receptor; a2C-AR, adrenergic; b2AR, adrenergic b2 receptor; bAR, adrenergic
b receptor.
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PKC participate in the process of heterologous desensitization
(Foster and Brauner-Osborne, 2018; Rajagopal and Shenoy, 2018).
b-arrestins mediate both rapid uncoupling of G-protein and GPCR
interaction and fast receptor internalization mediated by clathrin-
coated pits (CCPs) (Sposini and Hanyaloglu, 2018).

Upon agonist stimulation, AT1R is internalized into early
endosomes by a mechanism that requires the participation of
CCP and caveolae and then recycled back to the cell surface in a
process mediated by Rab4 and Rab11 porters in the early and
late stages of the recycling process, respectively (Gaborik et al.,
2001; Hunyady et al., 2002; Maxfield and McGraw, 2004;
Szakadati et al., 2015; Bian et al., 2018). AT1R targeting to
lysosome for degradation occurs under Rab7 overexpression
(Dale et al., 2004). A decrease in AT1R endocytosis, which
may result from a diminished receptor phosphorylation,
enhanced activity and up-regulation of Rab 4 and Rab 11, or
abnormal formation of endocytic vesicles, may be related to
cardiovascular diseases development (Bian et al., 2018). In this
sense, it has been proved that a GRK4 variant associated to
essential hypertension decreases AT1R phosphorylation,
thereby decreasing AT1R internalization (Chen et al., 2014).
AT1R may be also degraded by the proteasome. Increased AT1R
degradation has been documented after stimulation of the
dopamine type 5 receptor (D5R) both in transfected HEK cells
and in human renal proximal tubule cells. The mechanism
involved dissociation of AT1R-D5R interaction and increase
of glycosylated AT1R degradation via ubiquitin-proteasome
system (Li et al., 2008).

Despite the fact that most GPCRs are internalized upon agonist
stimulation, this is not the case for AT2R (Hein et al., 1997). It has
been shown that AT2R are not internalized upon agonist
stimulation in neuronal cells obtained from Wistar Kyoto rats
Frontiers in Pharmacology | www.frontiersin.org 6
(Lu et al., 1998). Instead, AT2R is internalized when a heteromer
with AT1R is formed (Inuzuka et al., 2016). Upon Ang II
stimulation, spatial arrangement of the complex is modulated in
such a way that internalization of AT1R and AT2R occurs. AT2R
is only internalized in the presence of AT1R. Losartan, an AT1R-
specific antagonist, fully blocked both AT2R internalization
together with AT1R (Inuzuka et al., 2016). Figure 2 represents
AT1R and AT2R trafficking upon agonist stimulation.

Regarding MasR, upon Ang-(1-7) stimulation, MasR is
endocyted by CCP and caveolae in a mechanism dependent
on dynamin, and then the receptor is directed to the cell surface
by slow recycling vesicles (Cerniello et al., 2017). This
mechanism of internalization was observed in transfected
HEK293T cells and in cultured brainstem neurons from
Sprague-Dawley rats, Wistar-Kyoto rats, and spontaneously
hypertensive rats (SHRs) (Cerniello et al., 2017; Cerniello
et al., 2019). The interesting observation is that MasR
undergoes a unique trafficking in brainstem neurons from
SHR: The number of MasRs internalized through caveolae was
greater compared to that internalized by CCP, and the number
of receptors that were returned to the cell membrane was
smaller, resulting in a lower amount of resensitized MasRs
present at the plasma membrane. Furthermore, a fraction of
MasRs is translocated to the nucleus bound to its ligand only in
brainstem neurons obtained from SHRs and not from
normotensive rats (Cerniello et al., 2019). Figure 3 represents
MasR trafficking in brainstem neurons from both strains.

GPCR trafficking plays a fundamental role not only in signaling
termination but also in regulating location and timing of receptor-
mediated signaling process, altering in this way the ultimate
cellular response (Lobingier and von Zastrow, 2019). In this
sense, although endocytic trafficking has been classically
FIGURE 1 | Biological responses associated to angiotensin receptors homo- or heteromerization. AD, Alzheimer’s disease; Ang II, Angiotensin II; AT1R, Ang II
receptor type 1; AT2R, Ang II receptor type 2; B2R, Bradykinin receptor type 2; CX3CR1, CX3C chemokine receptor; ER, endoplasmic reticulum; IP, inositol
phosphate; NO, nitric oxide; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; VSMC, vascular smooth muscle cells.
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considered as a process directed to mediate signal termination
from the cell surface, studies over the past decade have brought up
evidence about the existence of signaling platforms located at
endosomes, establishing an intricate system to organize and
regulate GPCR signaling (Hanyaloglu, 2018).

G Protein-Coupled Receptor Kinases
GRKs family is comprised by seven serine/threonine kinases that
phosphorylate GPCRs upon binding of agonists to terminate
GPCR-mediated signaling. GPCR phosphorylation changes the
receptor conformation, exposing b-arrestin–binding domains of
high affinity, which inhibit GPCR downstream signaling (Sun
et al., 2018; Yu et al., 2018).

The GRK family has been classified into three subfamilies
according to similarities in their structure and function: The
subfamily of rhodopsin kinase (GRK1 and GRK7), the subfamily
of b-adrenergic receptor kinase (GRK2 and GRK3), and the
subfamily of GRK4 (GRK4, GRK5, and GRK6) (Metaye et al.,
2005). GRK1 and GRK7 are expressed mainly in the retina, while
GRK4 is predominantly expressed in the brain, kidney, testis,
and human granulosa cells. GRK2, GRK3, GRK5, and GRK6
exhibit ubiquitous expression in the heart, brain, lung, kidney,
and other tissues, where they regulate the functions of a variety
of GPCRs.

Several lines of evidence indicate that GRKs are keymodulators
in GPCRs signaling. Given the high number of members of the
Frontiers in Pharmacology | www.frontiersin.org 7
GPCR family, each GRK is able to interact with and phosphorylate
multiple receptors. GRKs also play a significant role in non-
GPCR–mediated signaling, phosphorylating receptors that do
not belong to the GPCR family, interacting with many cellular
components or mediating cellular responses in a manner that not
depends on phosphorylation (Sun et al., 2018; Yu et al., 2018).

All of these factors explain GRKs participation in a wide range
of mechanisms of physiology and pathology (Sun et al., 2018).
The development of mice lacking/overexpressing a defined GRK
form constitutes the most useful technique to study the functions
that individual GRKs play in an intact animal (Metaye et al.,
2005). In particular, mice models of genetic modification of
several members of the GRK family have shown their important
function in cardiac physiology and pathology (Table 2).
Additionally, several studies have supported the fundamental
role of GRKs in animal models of heart diseases, such as
hypertension and heart failure (HF) (Table 3) (Metaye et al.,
2005; Traynham et al., 2016; Mayor et al., 2018).

One explanation regarding GRKs involvement in cardiac
diseases pathophysiology may be related to GRKs participation
in signaling pathways of the b-adrenergic, renin-angiotensin,
and dopaminergic systems, all implicated in cardiovascular
homeostasis and disease progression (Kim et al., 2005;
Gurevich et al., 2016; Rudomanova and Blaxall, 2017; Mayor
et al., 2018). In particular, several components of the family of
GRKs have the ability to interact with AT1R (Turu et al., 2019).
FIGURE 2 | Intracellular trafficking of AT1R and main biological responses coupled to nuclear AT1R or AT2R stimulation. AT1R stimulation by Ang II induces G-
protein activation, including Gi, Gq/11, and G12/13 (canonical signaling pathway) and G-protein-independent signal transduction (non-canonical pathway) leading to
ERK 1/2, JNK, Akt, p38 mitogen-activated protein kinases activation, and eNOS phosphorylation through b-arrestin. Upon agonist stimulation, AT1R is internalized
through CCPs and caveolae dependent pathways and then recycled back to the cell surface or targeted lysosome. AT1R-D5R heteromerization induced AT1R
proteasomal degradation after D5R stimulation. AT1R translocation to the nucleus induces biological responses depicted in the scheme. AT2R translocation to the
nucleus occurs by heteromerization with AT1R. Nuclear AT2R stimulation induced NO generation. Abbreviations: Ang II, Angiotensin II; AT1R, Ang II receptor type 1;
AT2R, Ang II receptor type 2; D5R, dopamine receptor type 5; eNOS, endothelial nitric oxide synthase; ERK1/2, Extracellular signal-regulated kinase 1/2; IGF-1,
insulin-like growth factor 1; IP3, Inositol triphosphate; JNK, Jun N-terminal kinase; NET, norepinephrine transporter; NO, nitric oxide; PRR, pro-renin receptor; TH,
tyrosine hydroxylase; b-arr, b-arrestin.
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AT1R phosphorylation by GRK2 or GRK3 mediates the
endocytosis of the receptor after homologous desensitization,
while phosphorylation mediated by GRK5 or GRK6 affects
receptor signaling through ERK1/2 activation in AT1R-
transfected HEK293 cells (Kim et al., 2005). Interestingly, Kim
Frontiers in Pharmacology | www.frontiersin.org 8
et al. (2005) have shown that inhibition of GRK5 or GRK6
expression suppresses the activation of ERK that depends on b-
arrestin, while GRK2/3 downregulation induces an increase in
ERK signaling elicited by AT1R activation in HEK293 cells with
heterologous expression of the receptor (Kim et al., 2005).
FIGURE 3 | Intracellular trafficking of MasR and main biological responses coupled to nuclear MasR stimulation. Upon Ang-(1-7) stimulation, MasR is endocyted into
early endosome by CCPs and caveolae in a dynamin-dependent pathway and then recycled back to the cell surface by slow recycling vesicles. Once in early
endosome, MasR triggers Akt and ERK1/2 activation. MasR undergoes a unique trafficking in brainstem neurons from SHR: the number of MasRs internalized
through caveolae was greater compared to that internalized by CCPs and the number of receptors that were returned to the cell membrane was smaller, resulting in
a lower amount of resensitized MasRs present at the plasma membrane. A fraction of MasRs is translocated to the nucleus bound to its ligand only in brainstem
neurons obtained from SHRs and not from normotensive rats. Upon stimulation, constitutive nuclear MasR stimulates NO generation and opposes the increase in
nuclear superoxide production and the decrease in AT2R mRNA expression induced by Ang II. Blue and red arrows represent MasR trafficking in brainstem neurons
Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR), respectively. Abbreviations: Ang-(1-7), Angiotensin-(1-7); Ang II, Angiotensin II; AT2R, Ang II
receptor type 2; ERK1/2, extracellular signal-regulated kinase 1/2; NO, nitric oxide; SHR, spontaneously hypertensive rat; WKY, Wistar Kyoto; b-arr, b-arrestin.
TABLE 2 | Animal models of GRKs genetic modifications affecting cardiac functions.

GRK
studied

Animal model Main findings Reference

GRK2 GRK2 -/- KO mice Embryonic lethality Matkovich et al.,
2006

GRK2+/- mice Enhanced expression of key genes involved in physiological hypertrophy/
cardioprotection
Enhanced cardiac insulin sensitivity

Lucas et al., 2014

GRK2 cardiac overexpression Decreased b-adrenergic (b-AR) signaling (Attenuation of contractility and heart
rate in response to a b-agonist)
Desensitized AT1 receptor (AT1R)-mediated responses to angiotensin II (Ang II)

Koch et al., 1995

Transgenic mice with GRK2 vascular smooth muscle
(VSM) targeted overexpression

Increased blood pressure levels
Cardiac hypertrophy

Eckhart et al., 2002

GRK4 Mice carrying the naturally occurring polymorphism
A142V in GRK4g (polymorphism linked to
hypertension in genetic studies)

Development of hypertension
Impaired diuretic and natriuretic effects of dopamine D1 Receptor agonists

Felder et al., 2002

GRK5 Mice bearing targeted deletion of the GRK5 gene
between exons 7 and 8 (GRK5-KO)

Muscarinic supersensitivity and impaired receptor desensitization Gainetdinov et al.,
1999

Cardiac GRK5 overexpression Decreased b-AR signaling (Attenuation of contractility and heart rate in
response to a b-agonist)
No effects on AT1R signaling in response to Ang II

Rockman et al.,
1996
August 2020 | Volum
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Regarding RAS involvement in cardiovascular diseases
pathophysiology, sustained Gq-mediated Ang II AT1R
activation has been proved to induce maladaptive cardiac
hypertrophy that can lead to HF progression over time. GRK2
mediates Ang II–mediated cardiac contraction by interacting
with Gaq, known as the final common trigger of maladaptive
cardiac hypertrophy in situations of pressure overload
(Schumacher et al., 2015). In association with this concept,
Schumacher et al. (2015) demonstrated the effects of a peptide
disrupting Gaq/GRK2 association on the suppression of
pathological cardiac hypertrophy in an animal model of HF.
It has also been proved that the selective serotonin reuptake
inhibitor paroxetine, used as an antidepressant drug, selectively
binds and inhibits GRK2 activity. In this context, treatment of
mice with paroxetine was associated to improvement of
heart function post-myocardial infarction (MI), being this
Frontiers in Pharmacology | www.frontiersin.org 9
benefit greater than that obtained with b-blockers treatment
(Schumacher et al., 2015). Increased GRK2 expression in
different cell types contributes to dysfunction of the heart and
progression of cardiovascular disease (Table 4).

Altogether, the evidence indicates that modulation of GRK
activity may have great potentiality in the design of new
approaches for the treatment of pathologies related to GPCR
dysregulation, such as cardiovascular disease (Mayor et al., 2018).
Taking into account the evidence supporting the role of GRK2
activation in the cardiovascular pathology, the development of
GRK2 inhibitors would be of particular interest for their potential
use in clinical practice.

Arrestins
b-arrestins are scaffolding and multifunctional proteins that
modulate GPCR functions and signaling (Sharma and
August 2020 | Volume 11 | Article 117
r

TABLE 3 | GRK alterations in animal models of cardiovascular disease.

Cardiovascular
disease

Animal model Main finding References

Heart failure
(HF)

Rats with surgical coronary artery occlusion Increased myocardial GRK2 and GRK5 mRNA expression and protein
levels

Vinge et al., 2001

Spontaneously hypertensive heart failure (SHHF)
rats

Increased GRK2 expression and activity Yi et al., 2005

Cardiac GRK2-deleted mice (deletion after birth)
with surgical coronary artery occlusion

Prevented maladaptive post-infarction remodeling and preserved b-
adrenergic (bAR) responsiveness prior to coronary artery ligation

Raake et al., 2008

Paroxetine-mediated inhibition of GRK2 after
myocardial infarction in mice

Improved cardiac function, left ventricule (LV) structure and reverse the re-
expression of the maladaptive fetal gene program that characterizes HF

Schumacher et al.,
2015

Acute cardiac
injury

GRK2 inhibition through a C-terminal peptide that
competes with GRK2 binding to Gbg (bARKct)

Enhanced cardiac function
Increased sensitivity to acute
b-AR stimulation

Raake et al., 2013

GRK2 overexpressing transgenic mice subjected
to ischemia/reperfusion (I/R) injury

Increased injury (i.e., cardiac infarction size) Brinks et al., 2011

Fibroblast GRK2 KO subjected to I/R injury Decreased infarct size and preserved cardiac function Woodall et al.,
2016

Hypertension SHR rats Increased vascular smooth muscle GRK-2 protein expression Gros et al., 2000
Hypertensive Dahl salt-sensitive rats Increased vascular GRK-2 protein expression Gros et al., 2000
GRK, G-protein–coupled receptor kinase.
TABLE 4 | Molecular changes and main effects associated to GRK2 overexpression in different cell types associated to cardiovascular disease.

Cell type Molecular changes induced by GRK2 overexpression/activation Main effects Reference

Cardiomyocytes Reduction of the contractile response to bAR stimulation Alteration of contractility Koch et al., 1995
Impairment of insulin signaling cascades by interfering with insulin-Gq/11 signaling to
GLUT4 translocation or by phosphorylating IRS1

Impaired cardiac insulin
sensitivity

Lucas et al., 2014

Regulation of Ang II–mediated contraction by directly interacting with Gaq Maladaptive remodeling and
cardiac hypertrophy

Rockman et al., 1996

Increased mitochondrial superoxide and altered substrate utilization for energy
production

Metabolic dysregulation Sato et al., 2015;
AbdAlla et al., 2016

Impairment of the cardioprotective eNOS pathway Myocytes injury
Alteration of cardiac function

Huang et al., 2013

Endothelial
cells

Impaired Akt/eNOS activation and lower NO synthesis/release Endothelial dysfunction Taguchi et al., 2014

Fibroblasts Increased expression of TNF-a Fibrosis Woodall et al., 2016
VSMC Attenuation of AR signaling and MAPK activation Increased resting blood

pressure
Vascular thickening
Cardiac hypertrophy

Eckhart et al., 2002
AR, adrenergic receptor; bAR, b-adrenergic receptor; eNOS, endothelial nitric oxide synthase; GLUT, glucose transporter; GRK, G protein-coupled receptor kinase; IRS, insulin recepto
substrate; MAPK, Mitogen-activated protein kinase; NO, nitric oxide, TNF-a, tumor necrosis factor alpha; VSMC, vascular smooth muscle cells.
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Parameswaran, 2015). They are part of the arrestin family, which
is classified into subfamilies on the basis of sequence homology
and tissue distribution: visual rod arrestin and cone arrestin
expressed in the eye and b-arrestins (b-arrestin1 and b-arrestin2)
ubiquitously expressed (Peterson and Luttrell, 2017). b-arrestins
are not only involved in G-protein desensitization but also in b-
arrestin–dependent cell signaling in modulating GPCRs
trafficking and in mediating transactivation and transcriptional
regulation of the receptors (Bond et al., 2019). For further
reading about the roles of arrestin, please refer to Gaborik
et al. (2001); Peterson and Luttrell (2017), and Lymperopoulos
(2018). b-arrestins participate in signal translation as scaffolds
for transducer proteins that can trigger signals such as
extracellular c-Jun N-terminal kinase (JNK), ERK 1/2, and
MAPK, among others (Toth et al., 2018a). Related to this, the
concept of biased agonism refers to b-arrestins capacity to
initiate and regulate cellular signaling, implying that several
different agonists for one GPCR can activate distinct subsets of
downstream signaling pathways (Wang et al., 2018).

Based on the pleiotropic influence exerted on GPCRs, b-
arrestins regulate a wide range of physiological functions,
including apoptosis, organization of the cytoskeleton, polarity,
and migration of cells, among others. In addition to their
participation in a broad range of physiological processes, b-
arrestins participate in the pathophysiology of numerous diseases,
including inflammatory, cardiometabolic, and neurodegenerative
diseases (Bond et al., 2019). Interestingly, both b-arrestin1 and b-
arrestin2 display comparable biological functions in certain
pathologies while they present opposite roles in other disorders
(Sharma and Parameswaran, 2015).

AT1Rs play a fundamental role in heart diseases. AT1R
stimulation by Ang II induces the activation of G-proteins,
including Gi, Gq/11, and G12/13 (Forrester et al., 2018;
Wang et al., 2018). However, Ang II also induces G-protein–
independent signal transduction cascades, the so-called non-
canonical pathways. Ang II induces Src tyrosine kinases, ERK1/2,
JNK, Akt, and p38 MAPKs activation through b-arrestin2
(Forrester et al., 2018; Wang et al., 2018). Thus, in this way,
both AT1R-mediated canonical and non-canonical pathways are
involved in HF (Bond et al., 2019). It has been shown that the
detrimental effects associated to AT1R activation are dependent
on the Gq-protein pathway stimulation, while the beneficial
effects are related to b-arrestin signaling activation (Kim et al.,
2012; Atef and Anand-Srivastava, 2016). This evidence has
been the basis for the development of biased agonists as
new therapeutic agents in the treatment of HF (Boerrigter
et al., 2012).

Biased agonism is a term used to make reference to the capacity
of ligands that act on the same GPCR to evoke different cellular
signaling pathways by preferentially inducing the stabilization of
differential active states of receptor conformation (Wootten et al.,
2018). In this context, TRV120027 (Sar-Arg-Val-Tyr-Ile-His-
Pro-D-Ala-OH) is a b-arrestin biased AT1R ligand that has
been shown to promote b-arrestin2 recruitment to AT1R in
HEK293 cells overexpressing b-arrestin2 and AT1R, activating
Frontiers in Pharmacology | www.frontiersin.org 10
in this way the p42/44 MAPK and Src pathways and the
phosphorylation of the endothelial NO synthase (Violin et al.,
2010). Instead, TRV120027 antagonizes G-protein coupling
to AT1R, which results in prevention of the increase in
arterial pressure exerted by Ang II in rats, in the same way as
losartan and telmisartan, unbiased AT1R antagonists (Violin
et al., 2010). However, TRV120027 improved cardiac
performance and conserved stroke volume, opposing the
unbiased antagonists effects of decreasing cardiac performance
(Violin et al., 2010).

AT1R-induced cardiac hypertrophy might be dependent on
the activation of G-protein but not of b-arrestin, since b-arrestin
biased agonist [Sar1,Ile4,Ile8]-Ang II (SII-Ang II) stimulation of
AT1Rs did not induce hypertrophy in neonatal ventricular
cardiomyocytes (Smith et al., 2011). Another b-arrestin biased
agonist (TRV120067) improved mice cardiac structure and
function due to stimulation of ERK1/2- ribosomal S3 kinase
signaling elicited by b-arrestin/AT1R activation in an animal
model of familial dilated cardiomyopathy (Ryba et al., 2017).

Not only kinases but also ion channels are regulated through b-
arrestin upon AT1R activation. TRV120027 stimulates acute
catecholamine secretion through coupling with the transient
receptor potential cation channel subfamily C 3 in a b-arrestin1–
dependent mechanism (Liu et al., 2017). AT1R stimulation induces
b-arrestin1 recruitment and the subsequent internalization of
CaV1.2 channels (Hermosilla et al., 2017) or b-arrestin2
recruitment followed by activation of L-type Ca2+ channels
(Kashihara et al., 2017).

Ang-(1-7) also acts as a biased AT1R agonist. Ang-(1-7)
counteracts the Ang II/AT1R/Gq pathway but stimulates b-
arrestin recruitment to the AT1R, justifying, in part, its
cardioprotective effects. Ang-(1-7) was shown to reverse
phenylephrine-induced aorta contraction, an effect lost in KO-
AT1R mice (Galandrin et al., 2016). Altogether, it seems that in
cardiovascular diseases treatment, the ideal ligand for AT1R
would be that one acting as an antagonist of the canonical G-
protein pathway but at the same time as agonist of the receptor
conformation promoting the non-canonical pathway through b-
arrestin signaling. However, activation of AT1R-mediated b-
arrestin signaling in adrenocortical zona glomerulosa cells may
have cardiac detrimental effects because of aldosterone
cardiotoxic actions (Maning et al., 2017). Increased levels of
plasma aldosterone promote maladaptative cardiac remodeling
and hypertrophy, along with a pro-inflammatory and pro-
oxidant state with collagen deposition and fibrosis in the
failing heart (Zhao et al., 2006). Adrenal b-arrestin stimulates
aldosterone synthesis from adrenocortical zona glomerulosa cells
through an AT1R-dependent mechanism, inducing its “second
wave” of signaling to up-regulate the steroidogenic acute
regulatory protein via ERK1/2 activation and also facilitating
aldosterone secretion from adrenocortical zona glomerulosa cells
(Lymperopoulos et al., 2011). Since Ang II–induced aldosterone
production from the adrenal cortex is dependent on Gq-protein
and b-arrestin1 activation, it has been proposed that complete
inhibition of both signaling cascades is needed to fully block the
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synthesis of adrenal aldosterone in pathologies associated to high
circulating levels of this hormone, such as HF (Maning et al.,
2017). In this sense, AT1R blockers efficacy to block b-arrestin1
activation has been evaluated. Losartan has been demonstrated to
be a poor biased antagonist, since it elicits a weak antagonism for
b-arrestin1 activation by AT1R, being unable to prevent post-MI
hyperaldosteronism in an animal model of HF (Lymperopoulos
et al., 2011; Lymperopoulos et al., 2014). On the contrary,
candesartan and valsartan are the most potent b-arrestin1
inhibitors, with an excellent efficacy to decrease aldosterone
levels in vitro and in vivo, being the chosen agents of their class
to treat HF (Dabul et al., 2015).

b-arrestin signaling induced by AT1R activation in astrocytes
might contribute to central control of blood pressure and may be
implicated in the pathophysiology of hypertension, given the fact
that AT1R signaling through b-arrestins may be involved in the
regulation of angiotensinogen production by these cells
(Negussie et al., 2019).

Given their central role in the regulation of GPCRs signaling,
manipulating b-arrestin function may be a key factor in the
development of novel strategies for the treatment of several
diseases. b-arrestin activity impairment may enhance G-
protein signaling in situations where b-arrestin blockade may
be deleterious, such as in inflammatory and neurodegenerative
diseases and cancer (Hu et al., 2013; Urs et al., 2015). On the
opposite, selective activation of b-arrestin–dependent signaling
may be beneficial in situations in which excessive GPCR
stimulation underlies a pathophysiologic process, as is the case
with AT1R activation by Ang II in cardiovascular disease (van
Gastel et al., 2018). In this sense, b-arrestin biased ligands may be
postulated as new therapeutic agents that could selectively
activate some beneficial signaling pathways while avoiding the
untoward activation of G-proteins, which has been shown to be
detrimental and involved in cardiovascular disease development
(Wang et al., 2018).

GPCR Endosomal Signaling
Evidence from several studies has proven that GPCRs in
endosomes can continue signaling after internalization. This
led to the hypothesis of the existence of a third trafficking
pathway, apart from degradation or recycling, in which GPCR
can remain on intracellular membranes such as endosomes for
longer periods of time (Retamal et al., 2019). At this location,
GPCR can elicit distinct b-arrestin and G-protein–dependent
signaling processes. GPCR intracellular localization can strongly
contribute to receptor signaling with important consequences in
health and disease, opening up the possibility to design new
drugs taking into account of the context of where the receptor is
signaling from (Jong et al., 2018).

We have previously shown in MasR-transfected HEK293T
cells that upon agonist stimulation MasR is internalized into
early endosomes. Once it has been internalized, MasR promote
the activation of Akt in a mechanism that does not depend on b-
arrestin2. Conversely, the activation of ERK1/2 depends on b-
arrestin2. Afterwards, MasR returns back to the cell membrane
through slow recycling vesicles (Cerniello et al., 2017) (Figure 3).
Frontiers in Pharmacology | www.frontiersin.org 11
Regarding AT1R, b-arrestin binding to AT1R induces receptor
endocytosis in transfected HEK293T cells (Toth et al., 2017; Toth
et al., 2018b). After GRK-phosphorylation of AT1R, b-arrestin
binds the complex formed between the phosphorylated AT1R and
GRK, which is targeted to early endosomes. AT1R preferentially
fuses to Rab5-endosomes, which favors its retention in early
endosomes, preventing recycling and degradation and also
prolonging the intracellular effects of Ang II. Sustained binding of
AT1R to b-arrestin induces trafficking to late endosomes and
lysosomes, promoting receptor down-regulation and terminating
intracellular signaling pathways activated by Ang II/AT1R (Dale
et al., 2004; Toth et al., 2018b).
GPCRS IN THE NUCLEUS

Until recently, it was thought that GPCR signaling came
exclusively from the plasma membrane in response to
extracellular stimuli. The first evidence suggesting the existence
of GPCRs in the nucleus comes from the 1980s, with the
demonstration of AC localization and activity in the nuclear
fraction of the cell, which represented around 30% of total cellular
AC activity (Monneron and D’Alayer, 1980; Buchwalow et al.,
1981). At that time, however, the existence of enzymatic activity
in the nucleus could not be explained. Recent research has
brought to light the existence of nuclear GPCRs with the
capacity to initiate identical and/or different signaling pathways
compared to their respective counterparts located on the cell
surface (Ribeiro-Oliveira et al., 2019). Approximately 30 different
types of GPCRs have been detected in the nuclear membrane of
multiple cells (Gobeil et al., 2006; Zhu et al., 2006). The first
receptors described to be present were muscarinic cholinergic
receptors in the nucleus of keratocytes, epithelial and endothelial
cells (Lind and Cavanagh, 1993), and prostaglandin E receptor in
nuclei isolated from adult rat liver and newborn porcine brain
cortex (Bhattacharya et al., 1998).

The nuclear membrane is a double lipid membrane: the inner
and the outer nuclear membrane. The nuclear pore complex
allows the selective exchange of macromolecules and RNA
between the cytoplasm and the nucleoplasm (Isermann and
Lammerding, 2013). Nuclear GPCRs can be located at the
inner and/or outer nuclear membranes of the nuclear envelope
with an orientation that allows the exposure of the effector-
binding domain either to the cytosol or nucleus. It has also been
postulated that nuclear GPCRs could be located in the
nucleoplasm, particularly in the network of invaginations of
the inner and outer nuclear membranes (Jong et al., 2018;
Bhosle et al., 2019; Ribeiro-Oliveira et al., 2019). AT1R and
MasR have been described to colocalize with a nuclear pore
complex marker in brain neurons, suggesting the presence of
both receptors in the nuclear pore complex (Lu et al., 1998;
Cerniello et al., 2019). In cardiomyocytes, nuclei GPCRs have
been described to be present in both inner and outer membranes
(O’Malley et al., 2003; Jong et al., 2005; Vaniotis et al., 2011;
Bkaily et al., 2012; Tadevosyan et al., 2012). Nuclear a1- and b1-
ARs, endothelin, and Ang receptors have been shown to activate
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intranuclear signaling in isolated nuclei from cardiac myocytes,
suggesting that these receptors would be located in the inner
membrane (Tadevosyan et al., 2010; Wright et al., 2012; Vaniotis
et al., 2013). In fact, direct evidence from confocal microscopy
and immunocytochemistry has shown that nuclear a1-ARs from
cardiac myocytes are localized in the inner membrane with such
an orientation that allows intranuclear signaling activation (Wu
et al., 2014). On the other hand, indirect evidence arising from
the activation of different signaling pathways suggests that some
nuclear GPCRs are located in the outer membrane. For instance,
nuclear endothelin receptors activate phospholipase C-ϵ in the
outer nuclear membrane from nuclei isolated from cardiac
myocytes (Zhang et al., 2013).

The nucleus possesses all fundamental components involved
in GPCRs signaling pathways such as G-proteins, second
messengers, ion channels, and regulator molecules (Ribeiro-
Oliveira et al., 2019). Nuclear GPCRs mainly regulate nuclear
Ca2+, NO levels, or cAMP synthesis; however, others, such as
IP3, cyclic guanosine monophosphate, and diacylglycerol have
been described. The presence of AC, phospholipase A2,
phospholipase C-b1, phospholipase D, and b-arrestin1 have
also been found in the nucleus membrane (Booz et al., 1992;
Kim et al., 1996; Yamamoto et al., 1998; Topham et al., 1998;
Faenza et al., 2000; Zhang et al., 2001; Scott et al., 2002; Fatima
et al., 2003; Wang et al., 2003; Boivin et al., 2006; Gayral et al.,
2006; Vaniotis et al., 2013). Ca2+ATPase sensitive to ryanodine
or inositol triphosphate have also been reported to be present in
the nuclear membrane (Guihard et al., 1997; Abrenica and
Gilchrist, 2000; Bare et al., 2005).

Second messengers modify diverse cellular processes and
reactions, such as DNA transcription, cell proliferation, redox
status, and genesis of tumors (Jong et al., 2018; Ribeiro-Oliveira
et al., 2019). In addition, proteins that act as regulators of G-
protein signaling can stay in the nucleus or commute between
the nucleus and the cytosol or some are directed to specific
subnuclear locations (Huang and Fisher, 2009; Huang and
Fisher, 2009). It has been demonstrated that several nuclear
receptors such as B2R, endothelin-1 receptor, and AT1R regulate
Ca2+ concentration in the nucleoplasm, constituting important
modulators of nucleoplasmic Ca2+ transients (Kockskämper
et al., 2008; Savard et al., 2008; Tadevosyan et al., 2017).

GPCRs have been found in the nuclei of cardiomyocytes, such
as endothelin B receptor, AT1R, AT2R, and ARs (Boivin et al.,
2003; Huang et al., 2007; Tadevosyan et al., 2010; Vaniotis et al.,
2011; Merlen et al., 2013). Endothelin B receptor is involved in
the activation of inositol triphosphate (IP3) and nuclear Ca2+

mobilization (Merlen et al., 2013). Nuclear AT1R and AT2R
mediate the novo synthesis of mRNA affecting nuclear factor kB
gene transcription, while nuclear AT1R induces Ca2+ transients
via IP3 receptor-dependent pathways (Tadevosyan et al., 2010).
a1-AR induces PCK activation and regulates contractile function
in adult cardiac myocytes (Wu et al., 2014). b1-AR receptor
activates AC, probably through Gas, while b3-AR stimulation
activates NO generation, probably through Gai, and gene
transcription (Boivin et al., 2006; Vaniotis et al., 2013).
Frontiers in Pharmacology | www.frontiersin.org 12
The presence of nuclear GPCRs has been suggested to occur
in at least three different ways: (1) agonist dependent or
independent translocation from the cell membrane, (2) it
might be synthesized in the endoplasmic reticulum and then
traffic directly to the nucleus by lateral diffusion, (3) or be
synthesized within the nucleus (Bhosle et al., 2019; Ribeiro-
Oliveira et al., 2019). The involvement of small GTPases,
importins, and sorting nexin proteins has been postulated in
the process of translocation of nuclear GPCRs mediated by
vesicles (Bhosle et al., 2019). GPCR translocation to the
nucleus depends for some receptors on a specific sequences of
short peptides containing residues of basic amino acids (usually
repetitions of lysine/glycine-arginine sequences) in the C
terminus or an intracellular loop of the GPCR, the nuclear
localization sequences (NLSs) (Bhosle et al., 2019; Ribeiro-
Oliveira et al., 2019). AT1R translocation to the nucleus
depends on the NLS sequence present in AT1R (Lu et al.,
1998; Morinelli et al., 2007). In contrast, Ang II did not induce
AT2Rs translocation to the nucleus, since they do not have the
putative NLS sequence (Lu et al., 1998; Costa-Besada et al., 2018).
Instead, upon Ang II stimulation, the promyelocytic zinc finger
protein, which acts as a transcription factor, binds to AT2R C-
terminal peptide, resulting in AT2R accumulation in the
perinuclear region (Senbonmatsu et al., 2003). AT2R
translocation to the nucleus occurs only by heteromerization
with AT1R (Inuzuka et al., 2016).

The process of translocation of GPCRs to the nucleus seems to
depend on the specific cell type and also on conditions of the cell,
such as its metabolic state, interaction with other receptors, or
even a pathological state (Ribeiro-Oliveira et al., 2019). It also
depends on the type of receptor. For instance, Ang II induces
nuclear sequestration of AT1R in rat brain neurons but not in rat
astroglial cells and VSMC (Lu et al., 1998; Morinelli et al., 2007).
Ang II–induced nuclear translocation of AT1R mediates
neuromodulatory chronic effects of this peptide in hypothalamic
and brainstem neurons (Lu et al., 1998) and activation of
cyclooxygenase 2 gene transcription in HEK293 cells stable
expressing wild type AT1R (Morinelli et al., 2007). MasR is
another example of cell specific receptor nuclear translocation.
Agonist stimulation induces MasR translocation to the nucleus in
brainstem neurons from SHR but not from normotensive rats
(Cerniello et al., 2019). Physiological consequences of agonist-
dependent MasR trafficking to the nucleus only in neurons from
SHR need to be elucidated.

Ang receptors can be constitutively located at the nuclear/
perinuclear membranes, independent of agonist stimulation.
Regarding these receptors, it has been shown that direct
activation of nuclear AT1R results in an increase in the
intranuclear free Ca2+ in the nucleus of human VSMC (Bkaily
et al., 2003) and in reactive oxygen species generation in the
nucleus of cells from rat renal cortex (Pendergrass et al., 2009).
AT1R present in rat ventricular cardiomyocytes nuclear
membranes couples to RNA transcription and nuclear calcium
signaling, and, in this way, nuclear AT1R signaling constitutes a
fundamental intermediary of Ang II effects in the promotion of
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cardiac remodeling through alteration of gene transcription
(Tadevosyan et al., 2010). AT1R binding sites present in the
nuclei of canine atrial fibroblast are coupled to the mobilization
of intranuclear Ca2+, regulating, in this way, distinct processes
such as cell proliferation, gene expression of collagen, and also its
secretion (Tadevosyan et al., 2017). Ang II can activate nuclear
AT1R in human mesangial cells by an intracrine mechanism that
does not depend on plasma membrane Ang II receptors (da Silva
Novaes et al., 2018). In rat renal cortical cells, Ang II binds to
nuclear AT1Rs to induce the transcription of the transforming
growth factor-b, macrophage chemoattractant protein-1, and the
sodium and hydrogen exchanger-3 to regulate responses
associated to tubular sodium transport, cellular growth, and
inflammation (Li and Zhuo, 2008).

Having a look at the RAS depressor arm, it has been reported
that nuclear AT2R and MasR are functionally linked to the
production of NO (Gwathmey et al., 2009; Gwathmey et al., 2010;
Tadevosyan et al., 2017). Ang-(1-7) stimulates NO generation
through nuclear MasR stimulation in nuclei from kidneys of
young adult sheep (Gwathmey et al., 2010) and substantia nigra
of rodents (Costa-Besada et al., 2018), but these effects were
independent of MasR translocation to the nucleus. The nuclear
MasR-mediated increase in NO is reduced in old animals and also
in fetally programmed hypertensive animals (Gwathmey et al., 2012;
Chappell et al., 2014; Costa-Besada et al., 2018). Ang-(1-7)–induced
nuclear activation of MasR not only exerted an elevation in NO
generation in the nucleus of animal neurons but also opposes the
increase in nuclear superoxide production and the decrease in
AT2R mRNA expression induced by Ang II. This function is
impaired in aged animals (Costa-Besada et al., 2018).

Nuclear GPCRs can be activated by endogenous ligands
synthetized within the cell or can be activated in a constitutive
way. Ligands from the extracellular space might reach those
receptors by cellular uptake using selective membrane
transporters, membrane exchangers, or via receptor endocytosis
(Ribeiro-Oliveira et al., 2019). In fact, the components of the RAS
are present in the nucleus of several cells types (Tang et al., 1992;
Jimenez et al., 1994; Camargo de Andrade et al., 2006; Cook and Re,
2012; Gwathmey et al., 2012; Kumar et al., 2012; Alzayadneh and
Chappell, 2015; Costa-Besada et al., 2018; Cerniello et al., 2019).
Thus, nuclear Ang receptors may be activated by endogenously
synthetized Angs (Tadevosyan et al., 2012). Ang II is generated
intracellularly (Singh et al., 2007; Kumar et al., 2009). In this way,
Ang II induces autocrine biological responses by interacting with
cytoplasmic proteins or receptors present in the nucleus, thus
regulating gene expression (Re et al., 1984; Tadevosyan et al.,
2010; Cook and Re, 2012; Tadevosyan et al., 2017). Intracellular
Ang II synthesis has been demonstrated in cardiomyocytes and
fibroblasts (Singh et al., 2007; Singh et al., 2008). Both
angiotensinogen and renin can be synthetized locally or taken up
from circulation (Kumar et al., 2009). Angiotensin-converting
enzyme (ACE) is also expressed in cardiomyocytes and can be
localized within the cell including the cytoplasm, endoplasmic
reticulum. and nucleus (Vidotti et al., 2004; Camargo de Andrade
et al., 2006; Shen et al., 2008). Lucero et al. (2010) have shown that
Frontiers in Pharmacology | www.frontiersin.org 13
ACE transited through the early endosome, the late endosome, and
the lysosome and was directed to VSMC and endothelial cells
nuclei. These results revealed the pathway employed by these cells
to deliver ACE coming from the extracellular space to the nucleus
(Lucero et al., 2010).

Ang II generation has been demonstrated to occur in
cardiomyocytes cytoplasm, involving renin and chymase. In
this sense, intracellular Ang II generation was fully blocked by
renin and chymase and not by ACE inhibitors, suggesting that
ACE is not involved in Ang II synthesis within cardiomyocytes
(Kumar et al., 2009). Intracellular Ang II disrupts cell
proliferation and signal transduction and elevates blood
pressure (Ellis et al., 2012). Ang II concentration inside the cell
is up-regulated in certain diseases, including hypertension and
diabetes (Frustaci et al., 2000; Serneri et al., 2001; Singh et al.,
2007). Intracellular Ang II in myocytes may reflect disease
severity, given the fact that the increase progresses along with
the disease (Serneri et al., 2001). Ang II levels in cardiomyocytes
are increased in diabetic rats, being 10-fold higher than those
found in healthy rats (Singh et al., 2008). In cardiomyocytes, the
increase in intracellular Ang II production induced by high
glucose concentrations is mediated by chymase rather than
ACE (Singh et al., 2008). Intracellular Ang II levels are
increased more than three times in myocytes from human
diabetic patients and two times in diabetic hypertensive
patients in comparison to diabetic nonhypertensive patients
(Frustaci et al., 2000). Intracellular Ang II may contribute to
disease progression by enhancing oxidative damage, cardiac cell
apoptosis, and necrosis. Moreover, mice overexpressing Ang II
only in cardiomyocytes developed hypertrophy, suggesting that
intracellular Ang II induces cardiac hypertrophy (Baker et al.,
2004). Altogether, these results demonstrate that an intracellular
RAS exists in cardiac cells. In addition, this intracellular RAS may
act as an autocrine system, acting on receptors present in
the nucleus.

Alterations in nuclear GPCRs density have been reported in
pathophysiological conditions (Ribeiro-Oliveira et al., 2019).
Regarding the RAS, it has been shown that atrial-fibroblast
nuclear ATRs are altered in congestive HF: an increment in
intracellular Ang II and nuclear AT1R expression, together with
the alteration in nuclear AT2Rs glycosylation. The increased
amount of AT1R in atrial fibroblasts was associated with
alteration of the expression and secretion of collagen and with
changes in cell proliferation (Tadevosyan et al., 2017). By
contrast, in established hypertension, nuclear AT1R expression
from rat renal cortex was lower compared to normotensive
conditions, despite the fact that AT1R levels were predominant
in the nuclear fraction vs. the plasma membrane (Pendergrass
et al., 2006). Regarding MasR, we have shown that they are
expressed in nuclear membranes from brainstem neurons of
normotensive and SHR rats, but those levels were similar in
boths strains (Cerniello et al., 2019).

Table 5 resumes nuclear Ang receptors and their biological
response. Figures 2 and 3 represent main biological responses of
AT1R, AT2R and MasR present in the nucleus.
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CONCLUSIONS

Receptor trafficking is a key event in the ultimate cellular
response elicited by receptor stimulation. Upon agonist
stimulation, the receptor activates different signaling pathways
from the plasma membrane, but once internalized it may be
recycled back to the cell membrane or be directed to different
organelles leading to other signaling events or be directed to
lysosomes for degradation. Thus, the biological response may
result from the integration of those events. In addition, receptor
functionality may also be influenced by interaction with other
receptors, leading to different biological responses compared to
the receptor alone. Receptors are in constant dynamism,
undergoing dynamic interactions with each other and with G-
proteins, as well as with the surrounding cytoskeleton, other
structural components, and other receptors, leading to the
formation of receptor heteromers. Altogether, this explains the
diversity in receptor function. Broadening our knowledge on
receptors regulation would open new therapeutic strategies.
There is a need to go far beyond the concept of designing
Frontiers in Pharmacology | www.frontiersin.org 14
drugs to activate or inhibit a single GPCR to design newer
drugs directed to regulate a specific receptor signaling pathway
or effector at a desired time and subcellular location. Particularly,
targeting of Ang receptors-dependent signaling constitutes one
of the most promising tools in the therapy of cardiovascular
disease and needs further investigation.
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TABLE 5 | Nuclear angiotensin receptors.

Receptor Biological response Cell/tissue Reference

AT1R Chronic neuromodulatory actions of Ang II (↑ NET
transcription)

Hypothalamic and
brainstem primary rat neurons

Lu et al., 1998

↑ nuclear Ca2+ levels Human vascular smooth
muscle cells

Bkaily et al., 2003

Not determined HEK transfected cells Lee et al., 2004
↑ reactive oxygen species production Rat renal cortex nucleus Pendergrass et al., 2009
Not determined Rat vascular smooth muscle cell line Cook et al., 2006
↑ nuclear calcium levels Fetal human endocardial endothelial cells Jacques et al., 2003
Not determined Rat renal cortex from control and Ang II-infused

rats
Licea et al., 2002

↑ cyclooxygenase 2 transcription HEK transfected cells Morinelli et al., 2007
↑ nuclear Ca2+ levels Rat ventricular cardiomyocytes Tadevosyan et al., 2010
↑TGF-beta1, MCP-1, and NHE-3 mRNAs Rat renal cortical cells Li and Zhuo, 2008
Not determined Rat liver Re et al., 1984; Tang et al., 1992; Jimenez

et al., 1994
↑ nuclear IP3 and Ca2+ levels
↑ collagen‐1A1 mRNA

Canine atrial fibroblasts Tadevosyan et al., 2017

Overexpression of fibronectin
↑ cell proliferation

Human mesangial cells da Silva Novaes et al., 2018

↑ AT2R, angiotensinogen, renin, and prorenin/renin receptor
mRNA
↑ NOX4/superoxide
↑ IP3/Ca2+ levels
↑ PGC-1a
↑ IGF-1

Dopaminergic neurons Villar-Cheda et al., 2017

AT2R Not determined Fetal human endocardial endothelial cells Jacques et al., 2003
↑ NO generation Dopaminergic neurons Villar-Cheda et al., 2017

MasR Not determined Brainstem neuronal culture from normotensive
and SHR rats

Cerniello et al., 2019

↑ NO generation Kidneys of young adult sheep Gwathmey et al., 2010
↑ NO generation
Counteraction of the increased Ang II-derived nuclear
superoxide generation
↓ mRNA for AT2Rs

Rat substantia nigra Costa-Besada et al., 2018
IGF-1, insulin-like growth factor 1; MCP-1, macrophage chemoattractant protein-1; NHE-3, sodium and hydrogen exchanger-3; NET, norepinephrine transporter; NO, nitric oxide; PGC-
1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; TGF-beta1, transforming growth factor-beta1.
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