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Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy

Sirtuins are class III histone deacetylases, whose enzymatic activity is dependent on NAD+

as a cofactor. Sirtuins are reported to modulate numerous activities by controlling gene
expression, DNA repair, metabolism, oxidative stress response, mitochondrial function,
and biogenesis. Deregulation of their expression and/or action may lead to tissue-specific
degenerative events involved in the development of several human pathologies, including
cancer, neurodegeneration, and cardiovascular disease. The most studied member of this
class of enzymes is sirtuin 1 (SIRT1), whose expression is associated with increasing
insulin sensitivity. SIRT1 has been implicated in both tumorigenic and anticancer
processes, and is reported to regulate essential metabolic pathways, suggesting that
its activation might be beneficial against disorders of the metabolism. Via regulation of p53
deacetylation and modulation of autophagy, SIRT1 is implicated in cellular response to
caloric restriction and lifespan extension. In recent years, scientific interest focusing on the
identification of SIRT1 modulators has led to the discovery of novel small molecules
targeting SIRT1 activity. This review will examine compounds of natural origin recently
found to upregulate SIRT1 activity, such as polyphenolic products in fruits, vegetables,
and plants including resveratrol, fisetin, quercetin, and curcumin. We will also discuss the
potential therapeutic effects of these natural compounds in the prevention and treatment
of human disorders, with particular emphasis on their metabolic impact.

Keywords: sirtuin 1, natural compounds, oxidative stress, human disorders, polyphenols
INTRODUCTION

Epigenetic modifications are associated with genome stability, gene transcription, and metabolic
regulation. Acetylation is one of the most characterized histone modifications. Histone
acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes control the levels of histone
acetylation, modulating gene expression (Cavalli and Heard, 2019).

Sirtuins (SIRT) 1–7 are enzymes classified as class III HDACs. They exhibit different subcellular
localizations: SIRT1, SIRT6, and SIRT7 are nuclear (although SIRT1 isoforms were also identified in
Abbreviations: SIRT1, Sirtuin 1; HATs, Histone acetyl transferases; HDACs, Histone deacetylases; ROS, Reactive oxygen
species; PPAR, Receptor peroxisome proliferator-activated receptor; NRF, Nuclear respiratory factor; TFAM, Mitochondrial
transcription factor A; SOD, Superoxide dismutase; TNF-a, Tumor necrosis factor a; IAP, Apoptosis protein inhibitor; Bcl-2,
B-cell lymphoma-2 family; MnSOD, Manganese superoxide dismutase; RSV, Resveratrol; Que, Quercetin; oxLDL, Oxidized
LDL; BBR, Berberine; Cur, Curcumin; COX, Cytochrome c oxidase; T2D, Type II diabetes; NAFLD, Non-alcoholic fatty liver
disease; CRM, Caloric restriction mimetic.
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the cytoplasm); SIRT2 is mainly cytosolic; SIRT3, SIRT4, and
SIRT5 are mitochondrial and can shuttle to the nucleus (Chang
and Guarente, 2014).

The enzymatic activity of SIRTs is dependent on NAD+ as a
cofactor and plays an important role in controlling gene
expression, DNA repair, metabolism, oxidative stress response,
mitochondrial function, and biogenesis. Deregulation of their
activity may lead to tissue-specific degenerative events that
underlie several human pathologies, including cancer,
diabetes, and cardiovascular diseases (Haigis and Sinclair,
2010; O’Callaghan and Vassilopoulos, 2017; Waldman et al.,
2018). The most studied member of this enzymatic class is
SIRT1. SIRT1 regulates metabolic pathways, cell survival,
cellular senescence, and inflammation, and acts in the
pathogenesis of chronic conditions such as diabetes as well as
pulmonary, neurodegenerative, and cardiovascular diseases.
Indeed, SIRT1 has been reported to play a key role in
tumorigenesis, as an oncogene or tumor suppressor depending
on the context specificity (Biason-Lauber et al., 2013). It is able to
control these processes via deacetylation of lysine groups of
histone and non-histone proteins, including known transcription
factors (FOXO, MyoD, p53, PGC-1a) (Kupis et al., 2016).

Chronic inflammation caused by oxidative damage increases
the risk of many chronic disorders, including heart,
cardiovascular, and neurodegenerative diseases, obesity, insulin
resistance, and type 2 diabetes (T2D) (Geto et al., 2020).
Oxidative stress plays a key role in the pathogenesis of these
conditions. The overproduction of reactive oxygen species
(ROS), including free radicals, and reactive nitrogen species
(RNS) can lead to damage of cellular components, such as
lipids, proteins, and DNA. The imbalance between oxidants
and antioxidants can result in cellular dysfunction, apoptosis,
and necrosis (Liguori et al., 2018).

SIRT1 guards against oxidative stress by activating gene
transcription of PGC-1a via deacetylation, and by regulating
transcription of factors such as the nuclear receptor peroxisome
proliferator-activated receptor (PPAR), nuclear respiratory factor
(NRF), and mitochondrial transcription factor A (TFAM),
involved in modulation of biogenesis and mitochondrial
function (Ren et al., 2019), and metabolism of glucose and lipids
(Rodgers et al., 2005). SIRT1 is also able to regulate the expression
of superoxide dismutase (SOD) and glutathione peroxidase (Sun
et al., 2018). In addition, since mitochondrial dysfunction leads to
the activation of apoptosis, SIRT1 can directly regulate the
apoptotic process by modulating acetylation of PGC-1a (Zhang
et al., 2019). SIRT1 also regulates inflammatory response
(Kauppinen et al., 2013). By modulating the acetylation level of
NF-kB p65, SIRT1 is able to control transcription of genes such as
IL (interleukin)-1, tumor necrosis factor a (TNF-a), IL-8, IL-6,
and other inflammatory factors (Rodgers et al., 2005; Ren et al.,
2019; Yeung et al., 2019). Through NF-kB, SIRT1 also regulates
the expression of genes such as inhibitor of apoptosis protein
(IAP) and B-cell lymphoma-2 (Bcl-2) and tumor necrosis factor
receptor (TNFR) (Ren et al., 2019).

SIRT1 protects against oxidative stress via regulation of
FOXO protein acetylation, which is involved in antioxidant
Frontiers in Pharmacology | www.frontiersin.org 2
processes, apoptosis, and cell proliferation (Wong and
Woodcock, 2009). By activating FOXO/MsSOD pathway,
SIRT1 increases the expression of manganese superoxide
dismutase (MnSOD) and catalase, counteracting oxidative
stress and promoting damage repair (Gu et al., 2016). SIRT1
also increases the expression of MnSOD by deacetylating p53,
thus enhancing cellular antioxidant capacity (Brunet et al., 2004;
Zhang et al., 2017; Ren et al., 2019).

Over the past few years, the ever-growing awareness that good
health goes hand in hand with a healthy and balanced diet has
encouraged people to eat more fruit and vegetables, and to take
supplements to make up for any deficiency (D’Angelo et al.,
2019). Bioactive compounds in the diet can act as antioxidant
and anti-inflammatory agents, thereby reducing the negative
effects of oxidative stress and the incidence of chronic
diseases such as obesity, diabetes, and cardiovascular disorders
(Wang et al., 2014). Several molecules, including natural
phytochemical compounds, can modulate SIRT1 activity
(Miceli et al., 2014). Numerous studies have provided evidence
of the protective effects of natural polyphenolic substances such
as resveratrol, quercetin, curcumin, and fisetin, and of
natural non-polyphenolic substances such as berberine
(McCubrey et al., 2017). Natural polyphenols are the largest
group of phytonutrients and are considered potential agents for
the prevention and treatment of stress-related oxidative diseases.
They are found in many plants and foods, such as fruits,
vegetables, tea, cereals, and wine, and long-term intake is
associated with health benefits. Mediterranean diets are in fact
linked to a reduced risk of chronic diseases due to the
consumption of olive oil and red wine, which contain high
amounts of polyphenols (Romagnolo and Selmin, 2017).

Most of the evidence supporting the beneficial effects of
phytochemical compounds comes from in vitro or animal
studies, while human studies evaluating the long-term impact of
phytomolecules are particularly few or inconsistent. Interventional
studies are in fact limited by issues of bioavailability and
metabolism. However, in vitro studies aimed at identifying
cellular targets linked to the beneficial actions of phytonutrient-
rich foods at concentrations ranging from nM to µM challenge the
translatability of data. After ingestion, these compounds are in fact
detected as phase II metabolites and their blood level does not
exceed concentrations in the nM range. Substantial amounts of the
compounds and their metabolites are degraded in the colon by
intestinal microbiota, giving rise to small phenolic acids and
aromatic catabolises which are absorbed by the circulatory
system (Del Rio et al., 2013). Interesting studies showed that
these natural polyphenol and non-polyphenol substances could
affect SIRT1 expression/activity (Table 1) (de Boer et al., 2006). The
main mechanisms of action common to polyphenol and non-
polyphenol molecules that lead to antioxidant and anti-
inflammatory effects via SIRT1 activation are reported in Figure 1.

Here, we focus on the natural molecules resveratrol,
quercetin, fisetin, curcumin, and berberine, and elucidate their
effect on SIRT1 activation and their potential to treat and/or
prevent several human pathologies, mainly associated with
metabolic disorders (Figure 2).
August 2020 | Volume 11 | Article 1225
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NATURAL COMPOUNDS ENHANCING
SIRT1 EXPRESSION AND ACTIVITY

Resveratrol
Resveratrol (RSV), a non-flavonoid polyphenol found in grapes
and grape products such as red wine, exerts an antioxidant action
with reported cancer preventive properties (Kris-Etherton
et al., 2002). RSV also has anti-inflammatory, anticancer, and
Frontiers in Pharmacology | www.frontiersin.org 3
anti-neurodegenerative effects (Piotrowska et al., 2012). The role
of RSV as an immune response modulator was demonstrated in
both in vitro and in vivo studies, where it reversed immune
senescence in older rats, reduced inflammatory responses in
rodents, and improved immunological activity against cancer
cells (Malaguarnera, 2019). RSV was shown to be involved in the
activation of macrophages, T cells, and natural killer cells, as well
as in the suppression processes of CD4+ CD25+ regulatory T cells
(Yang et al., 2008; Svajger and Jeras, 2012). All these effects are
due to its ability to remove ROS, inhibit cyclooxygenase
(COX), and trigger anti-inflammatory pathways via SIRT1
activation (Miceli et al., 2014; Malaguarnera, 2019). Activated
SIRT1 interrupts TLR4/NF-kB/STAT axis, reduces cytokine
production by inactivated immune cells, and inhibits pro-
inflammatory factors derived from macrophages/mast cells,
such as platelet-activating factor and TNF-a (Capiralla
et al., 2012).

RSV-SIRT1 interaction modifies SIRT1 structure and
promotes binding activity with its substrates including p65/
RelA (Yeung et al., 2004), a component of the NF-kB complex,
which regulates activation of leukocytes and inflammatory
cytokines. SIRT1 activated by RSV inhibits acetylation of RelA
by reducing the expression of inflammatory factors such as TNF-
a, IL-1b, IL-6, metalloprotease (MMP)-1, MMP-3, and NF-
kB-mediated Cox-2 (Malaguarnera, 2019). AMP activated
protein kinase (AMPK) is also a target of RSV, as it controls
SIRT1 activity via regulation of cellular levels of NAD+, thus
acting as an energy sensor (Price et al., 2012). Cyclic
adenosine monophosphate (cAMP) levels activate protein
kinase A, resulting in phosphorylation and activation of SIRT1
FIGURE 1 | Basic mechanisms and effects of SIRT1 activation by polyphenol and non-polyphenol molecules.
TABLE 1 | Classification of nutraceuticals based on their action and food source.

Natural
SIRT1
activators

Effect Source References

Resveratrol Positive effect on blood
lipid profile, antioxidant

Dark grapes,
raisins, peanuts

D’Angelo (2019)
#44
Zordoky (2015) #54

Quercetin Anticancer, positive
effect on blood lipid
profile, antioxidant, anti-
inflammatory

Fruits, vegetables,
nuts

Hung (2015) #72
Nabavi (2012) #68

Berberine Antioxidant, anti-
inflammatory

Natural component
of traditional
Chinese herb
Coptidis rhizoma

Nabavi (2012) #68
Wu (2014) #70
Hung (2015) #72

Curcumin Anticancer, antioxidant,
anti-inflammatory

Active component
in Curcuma longa

Zendedel (2018)
#92

Fisetin Anticancer,
cardiovascular
preventive, anti-
inflammatory,
antioxidant

Apples,
persimmons,
grapes, onions,
kiwi, kale,
strawberries

Kim (2015) #98
Chen et al., 2015)
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(Wan et al., 2016). Activated SIRT1 catalyzes the deacetylation
and activation of PGC-1a, thereby promoting beneficial effects
in the metabolism (Ren et al., 2019).

In different organisms (S. cerevisiae, C. elegans, and D.
melanogaster) expressing SIRT1 (or its homologous genes),
RSV treatment is able to extend life span. In mammalians,
RSV administration can improve SIRT1-dependent cellular
processes such as axonal protection (Araki et al., 2004), fat
mobilization (Chaplin et al., 2018), and inhibition of NF-kB-
dependent transcription (Yeung et al., 2019); these effects are
abolished in SIRT1 knockdown models. Numerous studies
investigated the beneficial effects of RSV in cardiovascular
diseases including hypertension (Theodotou et al., 2017),
cardiac ischemia (Fourny et al., 2019), and atherosclerosis
(Chassot et al., 2018). RSV has an effect on blood vessels,
reduces inflammation, and prevents thrombus formation and
platelet oxidation (Zordoky et al., 2015). It can also reduce
cardiac dysfunction, oxidative stress, fibrosis, and apoptosis in
the heart (Gupta et al., 2014; Yamagata, 2019). In addition, RSV
was found to improve heart and kidney damage in rats (Li et al.,
2020a). The protective effect of RSV is associated with an
increase in SIRT1 activity, which deacetylates FOXO1 and
activates MnSOD downstream. RSV-induced MnSOD also
reduces oxidative stress (Li et al., 2020a). A recent in vitro
study showed that RSV reduces hypoxia-induced apoptosis in
H9C2 cells through activation of SIRT1/miR-30d-5p/NF-kB axis
(Han et al., 2020). RSV treatment decreased cortical and
hippocampal malondialdehyde levels while increasing SOD
activity and SIRT1 expression in a diabetic rat model (Ma
et al., 2019).

RSV was shown to activate SIRT1 and improve endothelial
function in obese mice via upregulation of PPARd expression/
activity in PPARd mutant mice (Cheang et al., 2019). It had
Frontiers in Pharmacology | www.frontiersin.org 4
previously been observed that Akt activation together with
PPARd is involved in vascularization of db/db mice (Tian
et al., 2012); RSV was subsequently reported to increase
phosphorylation of Akt and transcriptional activity of PPARd
in the aorta of wild-type mice, thus supporting the hypothesis of
SIRT1-PPARd interaction, and to strongly decrease LPC-
induced mitochondrial ROS in the aortic endothelium of
C57BL/6 mice (Cheang et al., 2019). Taken together, these
findings highlight the beneficial effects of RSV against oxidative
stress, which is involved in major pathologies such as heart and
metabolic disorders. Although RSV is beneficial in many
contexts, its pleiotropic actions need to be better studied in
order to understand which of its described activities are directly
due to SIRT1 modulation and whether this effect is always direct.

Because of the pleiotropic actions of RSV, clinical trials are
currently testing its therapeutic potential in a wide range of
human diseases. However, of all the mechanisms described in in
vitro and in vivo studies, only a few have been confirmed in
humans, such as gene and protein regulation in blood or muscle
cells, and Akt signaling pathways (Ghanim et al., 2010; Brasnyo
et al., 2011). Many clinical studies conducted in healthy patients
and volunteers using both high and low doses of RSV highlight
its potential cardioprotective benefit through improvement of
endothelial function, inflammatory markers, and glucose
metabolism. Nevertheless, the mechanisms of action are not
yet well defined. Despite clinical evidence of its effects, the
poor bioavailability and rapid metabolism of RSV severely
limit the potential use of this molecule in the clinic. Future
scientific research should focus on identifying actual metabolites
or mediators of these observed effects.

To date, 165 clinical trials have tested the efficacy, safety, and
pharmacokinetics of RSV in the prevention and treatment of 32
different pathological conditions (www.clinical.trials.gov).
FIGURE 2 | Nutraceutical action on SIRT1 expression. Natural substances have beneficial effects on human health by regulating SIRT1 action in different cellular
processes (www.pubchem.ncbi.nlm.nih.gov).
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Restricting the search to interventional phase 1/2/3/4 studies
(completed and terminated clinical trials), 55 addressed the
ability of RSV to improve the pathological conditions of
patients affected by several diseases. Most of these studies
tested RSV-mediated effects in central nervous system
disorders (Friedreich ataxia, Alzheimer’s disease, Parkinson’s
disease), metabolic disorders [T2D, insulin resistance,
dyslipidemia, hypercholesterolemia, metabolic syndrome X,
non-alcoholic fatty liver disease (NAFLD)]. A phase 1 clinical
trial (NCT01640197) tested the effects of chronic resveratrol
supplementation (500 mg daily for 28 days) in healthy humans
and found considerable improvements in cognitive performance,
cerebral blood flow, subjective sleep, mood, health, and blood
pressure. A list of completed and terminated clinical trials in
which RSV was tested for metabolic disorders is reported in
Table 2. Focusing on completed clinical trials with available
results, NCT02114892 evaluated the effect of RSV on metabolic
syndrome, demonstrating that, when administered three times
per day (1,500 mg/die) before meals, RSV was able to treat and
protect from obesity and diabetes with beneficial effects on
glucose and lipid metabolism, blood pressure, and body
weight. Another phase 1/2 study (NCT02095873) evaluated the
effects of a formulation composed of RSV and hesperetin in
obese subjects and found that these molecules are dietary
inducers of glyxalase 1, improving metabolic and vascular
health of obese subjects (Xue et al., 2016).
Frontiers in Pharmacology | www.frontiersin.org 5
Quercetin
The flavonoid polyphenol quercetin (Que; 3,3′,4′,5,7-
pentahydroxyflavone) is a natural, safe dietary supplement
found in a glycoside form in fruits, vegetables, and nuts, which
has antioxidant and anti-inflammatory properties (Nabavi et al.,
2012; Wu et al., 2014).

In recent years, the scientific community has focused on the
potential antiproliferative, chemopreventive and anticarcinogenic
activities of Que as well as on its role as a modulator of gene
expression. However, Que was also found to have potentially toxic
effects including mutagenicity, pro-oxidant activity, mitochondrial
toxicity, and inhibition of enzymes involved in hormonal
metabolism (Li et al., 2016). Due to its poor solubility, short half-
life, and low bioavailability, its medical use is limited (Konrad and
Nieman, 2015). In humans, Que bioavailability is very low (~ 2%)
and absorption varies from3% to 17% in subjects receiving 100mg/
die (Costa et al., 2016). Que may reduce infection (Li et al., 2016),
hepatic lipemic-oxidative damage (Cui et al., 2013) (Zhang et al.,
2016b), and antioxidant risk (Xu et al., 2019). In addition, Que is
known to exert a modulating action on immunity (Galleggiante
et al., 2019). As regards its mechanism of action, in some cell lines
Que was able to inhibit the production of TNF in macrophages
(Tang et al., 2019), IL-8 in A549 lung cells induced by
lipopolysaccharide (LPS) (Geraets et al., 2007), and TNF-a and
IL-1amRNA levels in glial cells, causing a decrease in neuronal cell
death induced by microglial activation (Li et al., 2016). Mainly
TABLE 2 | Resveratrol in clinical trials for metabolic disorders.

Status Study Title Conditions Intervention Phase NCT Number

Completed Effects of Resveratrol in Patients With Type
2 Diabetes

Type 2 Diabetes 500 mg to a maximum dose of
3 g daily

Phase 1 NCT01677611

Terminated Effect of Administration of Resveratrol on
Glycemic Variability in Individuals With Type
2 Diabetes Mellitus

Type 2 Diabetes Mellitus 500 mg 3 times daily Phase 2 NCT02549924

Completed Effect of Resveratrol on Age-related Insulin
Resistance and Inflammation in Humans

Type 2 Diabetes Mellitus & Insulin
Resistance

1,000 mg twice daily for 28 days Phase 2 NCT01354977

Completed Regulation of Intestinal and Hepatic
Lipoprotein Secretion by Resveratrol

Dyslipidaemia & Insulin Resistance 500 mg for 1 week followed by
1 g for 1 week

Phase 2 NCT01451918

Completed Effects of Dietary Antioxidants to Prevent
Cardiovascular Disease

Hypercholesterolemia & Healthy Dietary Supplement: red wine for
1 month
Dietary Supplement:
resveratrol for 1 month

Phase 2 NCT02409537

Completed
with results

Healthy Aging Through Functional Food Glucose Intolerance & Aortic Stiffness &
Vasodilation

Trans-resveratrol, 90 mg +
hesperetin, 120 mg (combination)

Phase 1/2 NCT02095873

Completed Effects of Resveratrol on Inflammation in
Type 2 Diabetic Patients

Type 2 Diabetes Mellitus & Inflammation &
Insulin Resistance & Other Disorders of
Bone Density and Structure

6 months 40 mg daily then 6
months 500 mg daily

Phase 3 NCT02244879

Completed
with results

Effect of Resveratrol Administration on
Metabolic Syndrome, Insulin Sensitivity and
Insulin Secretion

Metabolic Syndrome X 500 mg 3 times daily before
meals with a total dose of 1,500
mg daily

Phase 2 NCT02114892

Completed Resveratrol for the Treatment of Non
Alcoholic Fatty Liver Disease and Insulin
Resistance in Overweight Adolescents

NAFLD & Type 2 Diabetes & Metabolic
Syndrome

75 mg twice daily for a total daily
dose of 150 mg for 30 days

Phase 2/3 NCT02216552

Completed A Study of Resveratrol as Treatment for
Friedreich Ataxia

Friedreich Ataxia 1 g daily (500 mg twice daily) for
12 weeks then 5 g daily (2.5 g
twice daily) for 12 weeks

Phase 1/2 NCT01339884

Completed Effect of Banaba (Lagerstroemia Speciosa)
on Metabolic Syndrome, Insulin Secretion
and Insulin Sensitivity

Metabolic Syndrome X Banaba capsules, 500 mg, 2
times daily before meals for 90
days

Phase 2 NCT02767869
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in immunity and inflammation, Que acts on leukocytes and targets
many intracellular signaling kinases and phosphatases as well as
enzymes and membrane proteins (Li et al., 2016). The
immunostimulating effect of Que is due to induction of the
expression of interferon-g (IFN-g) derived from Th-1 and
inhibition of IL-4 derived from Th-2 in normal peripheral blood
mononuclear cells (Nair et al., 2002). In addition,Que reducesT cell
proliferation by blocking IL-12-induced tyrosine phosphorylation
of JAK2, TYK2, STAT3, and STAT4 (Muthian and Bright, 2004;
Nabavi et al., 2012). In inflammation, Que inhibits the enzymes
COX and lipoxygenase (Lee andMin, 2013; Savikin et al., 2017). In
the RAW 264.7 cell line, Que was also shown to counteract LPS-
induced inflammation by phosphorylation of tyrosine
phosphatidylinositol-3-kinase (PI3K)-p85 and complex
formation of toll-like receptor 4 (TLR4)/MyD88/PI3K (Endale
et al., 2013).

Oxidative stress occurs following an imbalance of the body’s
antioxidant defence mechanisms and excessive generation of free
radicals, and is involved in various pathologies such as diabetes,
atherosclerosis, hypertension, neurodegenerative diseases,
inflammation, and cancer (Oboh et al., 2016). Que is a
powerful ROS scavenger and its antioxidant action is due to
the presence of two pharmacophores within the molecular
structure, which confer a favorable configuration for free
radical elimination (Costa et al., 2016). Generally, Que reduces
the effects of free radicals by transferring the hydrogen atom and
stabilizing the radicals, a feature that has a structure-function
relationship (Oboh et al., 2016).

Que can also act as both an antioxidant and pro-oxidant agent.
At lowconcentrations (10–10µM),Quedisplayed aprotective effect
against oxidativeDNAdamage (in vitro) inhuman lymphocytes (Li
et al., 2016). At concentrations between 5 µM and 50 µM, Que was
able to directly eliminate ROS in vitro (Costa et al., 2016). However,
its effect in vivo is very likely not direct but due to its ability to
modulate the cell’s antioxidant defense mechanisms; moderate
oxidative stress can in fact increase the cell’s antioxidant defenses,
resulting in general cytoprotection (Halliwell et al., 2005). Recent
research showed that oxidized LDL (oxLDL) induces oxidative
stress (Lara-Guzman et al., 2018). Oxidative injuries promote ROS
generation in human endothelial cells and SIRT1 regulates
endothelial function. Therefore, enhancement of SIRT1 activity
and SIRT1/AMPK axis upregulation inhibits oxidative injury,
inducing endothelial dysfunction (Chen et al., 2013) (Shentu
et al., 2016). Que may reduce oxLDL-induced oxidative damage
by upregulating SIRT1 and AMPK (Hung et al., 2015), therefore
potentially preventing oxLDL-impaired SIRT1 inhibition linked to
endothelial dysfunction. These findings indicate that SIRT1 can
function as a regulator to improve AMPK activity under oxLDL
stimulation (Hung et al., 2015).

It was very recently shown that Que (70 mg/kg) can reduce
insulin resistance and improve glucose metabolism by reducing
sensitivity to T2D/insulin resistance in ob/ob mice via SIRT1
activation (Hu et al., 2020). In this context, another study showed
that in streptozotocin-induced diabetic rats, Que (100 mg/kg)
inhibits oxidative damage by increasing SIRT1 expression and
decreasing levels ofNF-kB, a SIRT1substrate (Iskender et al., 2017).
Frontiers in Pharmacology | www.frontiersin.org 6
In recent years, the scientific community has focused on the
role of apoptosis in cardiovascular disease, showing that
oxidative stress, myocardial ischemia, hypoxia, and ischemia/
reperfusion injury may induce myocardial apoptosis (Donniacuo
et al., 2019). Tang and colleagues evaluated the effects of Que in
improving myocardial ischemia/reperfusion injury (MI/R)-
induced cell apoptosis both in vitro and in vivo. SIRT1 and
PGC-1a expression levels were decreased in rat MI/R groups, but
were significantly increased after treatment with Que (Tang et al.,
2019). Furthermore, activation of SIRT1/PGC-1a pathway
upregulated Bcl-2 expression and downregulated Bax, exerting
anti-apoptotic effects. The authors hypothesized that Que might
improve MI/R-induced myocardial damage via regulation of
SIRT1/PGC-1a and Bcl-2/Bax pathways (Tang et al., 2019).
Que is also reported to regulate ROS generation and mitigate
mitochondrial dysfunction by promoting their biogenesis.
Specifically, in a study to develop a therapeutic strategy for
osteoarthritis, Que was shown to increase expression levels of
SIRT1, PGC-1a, NRF1 and NFR2, TFAM, and phospho-AMPK
a in osteoarthritis rats, confirming the hypothesis that Que
might act via the AMPK/SIRT1 signaling pathway (Qiu et al.,
2018). Overall, these findings suggest that Que may counteract
cardiovascular disease and oxidative damage.

The growing body of evidence supporting the beneficial effects of
Que has led to its clinical use, as demonstrated by the number of
clinical trials (72 studies on ClinicalTrials.gov). A list of completed
studies using Que in different metabolic and inflammatory
conditions is reported in Table 3. Specifically, a phase 2 clinical
trial (NCT01839344) measured the effect of Que on glucose
tolerance and postprandial endothelial function in subjects with
T2Dcompared to the effect of an alpha-glusidase inhibitor, acarbose.
The administration of 2 g of Que led to a decrease in postprandial
blood glucose (NCT01839344). Given its antioxidative and anti-
inflammatory capacities, this flavonoid was considered a good
candidate for antioxidant therapy in mucositis (NCT01732393),
hepatitis C (NCT01438320), idiopathic pulmonary fibrosis
(NCT02874989), osteoporosis (NCT00330096), uric acid
metabolism (NCT01881919), cytokine release (NCT01106170),
and chronic obstructive pulmonary disease (NCT01708278). In
the latter study, Que supplementation was safely tolerated by
patients with mild-to-severe chronic obstructive pulmonary
disease, opening the way towards the potential use of Que as a
therapeutic agent for this condition.

However, as for RSV and nutraceuticals in general, the results
of molecular studies on Que obtained from in vitro investigations
and animal models are often inconsistent with data from clinical
trials. Concentration factor (dose and timing of administration)
and bioavailability are the two main issues that require further
clarification. Additional studies are needed to identify the
optimal concentration of Que for it to exert a beneficial effect,
for example on insulin sensitivity.

Berberine
Berberine (BBR) is an isoquinoline alkaloid reported to have
analgesic, anticancer, anti-inflammatory, and myocardial
protective properties (Cicero and Baggioni, 2016). It was found
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to exert protective antioxidative effects in different physiologic
and pathologic conditions (Huang et al., 2018; Li et al., 2020b).
However, the mechanisms underlying these effects remain
unclear. BBR was described as a potential antitumor agent that
induces cell cycle arrest in G0/G1 phase, increases Cip/p21 and
Kip/p27 protein expression, decreases expression of cyclin D1,
D2, and DE, and the cyclin-dependent kinases Cdk2, Cdk4, and
Cdk6, promoting apoptosis in HL-60 human leukemia cells
(Li et al., 2017). BBR can also deregulate telomerase activity
and promote mitochondria-dependent apoptosis in HepG2
human hepatocarcinoma cells through caspase 8 and caspase 3
activation, PARP cleavage induction, increased expression of
the pro-apoptotic protein Bax through activation of FOXO
transcription factors, and inhibition of Bcl-2 and Bcl-x anti-
apoptotic protein expression (Hwang et al., 2006). BBR was
observed to exert an apoptotic effect by inducing ROS
production and increasing MAPK and JNK activity of p38 in
SW620 human colon carcinoma cells, and by increasing Ca+ and
cytochrome C release in HSC-3 squamous cells (Song et al.,
2020). In addition, BBR inhibits the proliferation of cancer cells
through an anti-inflammatory pathway. In oral carcinoma cell
lines and in SCC-4 cells, BBR inhibits expression of COX2 and
AP-1 bond, decreases prostaglandin E2 (PGE2) production, and
suppresses NF-kB, IKK, ERK, and JNK activities. Furthermore,
BBR can inhibit colon cancer cell growth by activating retinoid X
receptor a (RXRa), which binds RXRa, and promoting b-
catenin degradation (Ruan et al., 2017). However, some studies
highlighted the potential ability of BBR to prevent oxidative
stress-induced senescence by activating AMPK and restoring
NAD+ levels (Song et al., 2020).

Initial research revealed a significant role of SIRT1 signaling
in mediating the antioxidant effect of BBR in diabetes (Pang
et al., 2015) and in lipid metabolism (Hasanein et al., 2017). The
lipid-lowering activity mediated by co-treatment with BBR and
RSV was investigated in mice exposed to a high fat diet (Zhu
Frontiers in Pharmacology | www.frontiersin.org 7
et al., 2018). In vivo data showed that BBR combined with RSV
lowered total cholesterol, triglyceride, and LDL cholesterol levels
in mice. These findings were also confirmed in vitro with 3T3-L1
adipocytes treated with BBR or RSV alone. Specifically, BBR and
RSV co-treatment was able to reduce lipid accumulation more
robustly than single treatments. BBR in combination with RSV
displayed hypolipidemic effects likely mediated by SIRT1
expression regulation. Moreover, BBR pre-treatment seemed to
counteract SIRT1 downregulation (Zhu et al., 2018).

The antioxidant and anti-inflammatory effects of BBR were
also investigated in heart (Yu et al., 2016). BBR-mediated SIRT1
activation reduced MI/R injury by affecting oxidative damage
and inflammation signaling. Specifically, BBR exerted an
antioxidant effect by decreasing the generation of cardiac
superoxide and gp91phox expression, and by increasing SOD
levels (Yu et al., 2016). A previous study had also shown that
SIRT1 activation promotes antioxidant molecule production and
decreases pro-apoptotic proteins through FOXO1 activation,
thus protecting against MI/R lesions (Hsu et al., 2010).

As well as activating SIRT1, BBR is also able to decrease
FOXO1 acetylation, triggering anti-apoptotic signaling pathways
via Bcl-2 expression, and Bax and caspase-3 downregulation (Yu
et al., 2016).

A very recent report described the protective effect of BBR
against doxorubicin-induced cardiovascular damage (Wu et al.,
2019). This effect is mediated by SIRT1/p66Shc pathway (Sampaio
et al., 2016). Data obtained in a rat model and in rat H9c2 cardiac
cells showed thatBBR treatment leads toupregulationof SIRT1and
downregulation of p66shc expression both in vivo and in vitro,
resulting in suppression of ROS production, apoptosis, and
mitochondrial damage, and improving cardiac dysfunction. This
effect did not occur if H9c2 cells were treated with the SIRT1
inhibitor EX-527 (Bai et al., 2018), indicating that BBR action was
dependent on SIRT1 (Wu et al., 2019). Another study investigated
the beneficial effect of BBR in an in vivo diabetic mouse model and
TABLE 3 | Quercetin in clinical trials for metabolic and inflammatory disorders.

Status Study Title Conditions Intervention Phase NCT Number

Completed Effect of Quercetin in Prevention and
Treatment of Oral Mucositis

Chemotherapy Induced Oral
Mucositis

250 mg daily for 3 weeks Phase 1/2 NCT01732393

Completed
with results

Beneficial Effects of Quercetin in Chronic
Obstructive Pulmonary Disease (COPD)

Chronic Obstructive
Pulmonary Disease

500 to 2,000 mg daily for 1 week Phase 1 NCT01708278

Completed Q-Trial in Patients With Hepatitis C Chronic Hepatitis C 28 days Phase 1 NCT01438320
Completed Effects of Quercetin on Blood Sugar and

Blood Vessel Function in Type 2
Diabetes.

Diabetes Mellitus, Type 2 250 mg; oral single dose of 2000 mg Phase 2 NCT01839344

Completed Effect of Quercetin Supplements on
Healthy Males: a 4-Week Randomized
Cross-Over Trial

Hyperuricemia, Gout, Kidney
Calculi, Diabetes,
Cardiovascular Disease

500 mg tablet for 28 days with meal (breakfast
preferred.)

Early Phase
1

NCT01881919

Completed Targeting Pro-Inflammatory Cells in
Idiopathic Pulmonary Fibrosis: a Human
Trial

Idiopathic Pulmonary Fibrosis
(IPF)

3 doses administered over 3 consecutive days in
3 consecutive weeks, oral administration of
quercetin (1,250 mg daily)

Phase 1 NCT02874989

Completed Efficacy of Provex CV Supplement to
Reduce Inflammation Cytokines and
Blood Pressure

Blood Pressure 330 mg of Provex CV supplement, by mouth, per
day, for 4 weeks

Phase 1 NCT01106170

Completed Effects of Hesperidin on Bone Mineral
Density and Bone Metabolism of
Postmenopausal Women

Osteoporosis, Osteopenia Phase 3 NCT00330096
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in vitro pancreatic beta cell NIT-1 high glucose treated to induced
diabetic condition. BBR attenuated oxidative stress by increasing
SOD1 levels through activation of SIRT1 and inhibition of miR-
106b expression (Chen and Yang, 2017).

These promising results have paved the way towards the
clinical use of BBR. A list of clinical studies investigating the
beneficial effects of BBR in inflammatory and metabolic diseases is
reported in Table 4. Given the experimental efficacy of the
antidiabetic and antidyslipidemia action of BBR, most of the 18
completed or terminated clinical trials focused on these properties.
Two clinical trials tested the anti-diabetic effect of BBR in patients
with diabetes or diabetes and dyslipidemia (NCT00425009 and
NCT00462046). Several clinical studies investigated its effects on
hyperlipidemia and hypercholesterolemia and relative disorders.
In particular, two phase 4 clinical trials (NCT02422927 and
NCT03470376) tested the ability of a nutraceutical combination
containing 500 mg BBR to ameliorate inflammation lipid profile
and endothelial injury markers in patients with elevated levels of
high-sensitivity C-reactive protein and in HIV-infected patients
receiving stable antiretroviral therapy. In addition, a phase 2
clinical study (NCT03216811) assessed the efficacy of a
nutraceutical compound (3 mg containing fermented red rice)
in terms of cholesterol, and endothelial and inflammatory
parameters in subjects with hypercholesterolemia and low-to-
moderate cardiovascular risk. The findings of a very recent
study suggest that BBR may be effective and safe to reduce
cardiovascular risk associated with metabolic syndrome
(Mercurio et al., 2020).

Curcumin
Curcumin (Cur) or 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione (diferuloylmethane) is a natural bioactive
Frontiers in Pharmacology | www.frontiersin.org 8
polyphenol compound mediating a wide spectrum of biological
functions. The molecular structure of Cur consists of two
aromatic rings containing phenolic O-methoxy groups linked
by a carbon bond, which has a b-unsaturated b-diketone fraction
(Priyadarsini, 2014). Thousands of years ago, Indians and
Chinese described the health-giving effects of this substance,
derived from the turmeric plant (Gupta et al., 2014). Today, Cur
is considered a potential agent with antioxidant, anticancer, and
anti-inflammatory properties (Yu et al., 2019).

As an antioxidant, Cur is able to eliminate ROS and RNS by
increasing the expression of antioxidant proteins via induction
of upstream coding genes such as nuclear factor erythroid 2-
related factor 2 (Nrf2), kelch-like ECH-associated protein 1
(Keap1), and antioxidant response element (ARE) (Abdelsamia
et al., 2019). Nrf2 is a transcription factor involved in cellular
stress response. Under normal conditions, the cystine-rich zinc
Keap1 metalloprotein binds Nrf2 inside the cytoplasm,
promoting ubiquitination and consequent proteasomal
degradation and preventing Nrf2 nuclear translocation
(Serafini et al., 2019). In contrast, under stress conditions
Keap1 activity is inhibited by phosphorylation and free Nrf2
moves to the nucleus, where it binds to ARE in the regulatory
regions of cytoprotective proteins and promotes transcription of
antioxidant genes such as SOD, glutathione peroxidase
(GPx), and GSH, and of phase II detoxifying enzymes such as
heme oxygenase-1 (HO-1), glutathione transferases (GST),
nicotinamide adenine dinucleotide phosphate (NADPH), and
NAD(P)H dehydrogenase [quinone] 1 (NQO1) (Serafini et al.,
2019). Cur is able to activate Nrf2/Keap1/ARE signaling
pathway by Michael reaction with thiol residues in Keap1,
inducing the release and activation of Nrf2 and promoting
antioxidant effects (Wafi et al., 2019; Yu et al., 2019).
TABLE 4 | Berberine in clinical trials for metabolic and inflammatory disorders.

Status Study Title Conditions Intervention Phase NCT Number

Completed Therapeutic Effects of Berberine in Patients With Type 2 Diabetes Type 2 Diabetes Phase 1/2 NCT00425009
Completed Efficacy and Safety of Berberine in the Treatment of Diabetes With

Dyslipidemia
Diabetes Mellitus, Type
2, Metabolic Syndrome

1 g daily Phase 3 NCT00462046

Terminated The Therapeutic Effects of Statins and Berberine on the Hyperlipemia Dyslipidemias 500 mg twice daily for
8 weeks

Phase 4 NCT01697735

Completed Efficacy and Tolerability of the Nutraceutical Formulation Coleosoma in
Dyslipidemic Subjects (Coleosoma)

Dyslipidemias Coleosoma 500 mg
daily for 12 weeks

Phase 2 NCT03027336

Completed Combined Effects of Bioactive Compounds in Lipid Profile (ARM-PLUS-
LDL)

Hyperlipidemia, Low-
density-lipoprotein-
type, Elevated
Triglycerides

One tablet per day
during 12 weeks

Phase 2/3 NCT01562080

Completed Long Term Efficacy and Tolerability of a Nutraceutical Combination (Red
Yeast Rice, Policosanols and Berberine) in Low-moderate Risk
Hypercholesterolemic Patients: a Double-blind, Placebo Controlled Study

Hypercholesterolemia 500 mg daily for 24
weeks

Phase 4 NCT02078167

Completed NUtraceutical TReatment for hYpercholesterolemia in HIV-infected
Patients (NU-TRY(HIV))

Hypercholesterolemia
Inflammation
Atherosclerosis

500 mg daily for 3
months

Phase 4 NCT03470376

Completed Nutraceutical Combination in Patients With Low-grade Systemic
Inflammation

Hypercholesterolemia
Inflammation
Atherosclerosis

500 mg for 3 months Phase 4 NCT02422927

Completed Nutraceutical in Cardiovascular Primary Prevention (NIRVANA) Hypercholesterolemia 8-week administration
of nutraceutical
compound
3 mg

Phase 2 NCT03216811
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Cur was also shown to exert immunomodulatory activity by
interacting with elements involved in inflammatory response
including JAK/STAT pathway, suppressor of cytokine signaling
(SOCS) expression, and TLR4/MyD88/NF-kB axis. Cur inhibits
phosphorylation of JAK/STAT by binding with its a,b-
unsaturated carbonyl portion to residue 259 of cysteine in
STAT3 with subsequent activation. It is known that in vitro,
even at 7.5 µM concentration, Cur is able to phosphorylate
STAT3 and attenuate inflammatory response (Serafini et al.,
2019). SOCS is an antagonist of JAK/STAT signaling and is
involved in the regulation of inflammatory proteins and
cytokines. In vitro, Cur restores expression of SOCS1 and
SOCS3, and inhibits expression of IL-6, TNF-a, and PGE2 in
RAW 264.7 macrophages (Guimaraes et al., 2013), while in vivo
it restores immunological balance by acting on JAK/STAT/SOCS
signaling, inhibiting JAK2, STAT3, and STAT6 phosphorylation
and increasing SOCS1, SOCS3, and PIAS3 expression (Zhang
et al., 2016a). Furthermore, some in vitro and in vivo studies
show that Cur can downregulate TLR4, MyD88, and NF-kB
signaling at neuronal level by inducing the release of pro-
inflammatory cytokines (TNF-a, IL-1b, IL-6), producing an
anti-inflammatory effect.

Cur is able to act on apoptosis and on mitochondrial
biogenesis and dysfunction through SIRT activation by small
molecules (Gupta et al., 2012). Cur can downregulate expression
of growth factor receptors, transcription factors, TNFs, and nitric
oxide synthase, and increase AMPK levels. In vascular smooth
muscle cells, Cur promotes AMPK activation, which enhances
superoxide and ATP production. This event stimulates an
increase in NAD+ levels and SIRT1 activation (Zendedel et al.,
2018). Cur-induced SIRT1 upregulation has beneficial effects
against a range of diseases including cardiac fibrosis, diabetes,
and ischemia/reperfusion injury (Zendedel et al., 2018 #7; Yang
et al., 2013 #5). The involvement of mitochondrial oxidative
damage in several diseases such as MI/R is well known (Yang
et al., 2013). Yang and colleagues investigated SIRT1 action after
Cur treatment and the manner in which Cur might attenuate MI/
R-induced mitochondrial oxidative damage. In vivo and in vitro
experiments on rat heart and cardiomyocytes showed that Cur
pre-treatment had protective effects, decreasing myocardial
infarct size (Yang et al., 2013). Heart injury and mitochondrial
oxidative damage are characterized by ROS overproduction and
a reduction in succinate dehydrogenase or COX activity, leading
to mitochondrial respiratory chain deficiency (Yang et al., 2013).
Cardiomyocytes treated by Cur displayed upregulation of SIRT1,
COX, and succinate dehy-drogenase (SDH), and downregulation
of Bax. These effects were abolished when cardiomyocytes were
treated with SIRT1 siRNA. In these conditions, the levels of
decreased SIRT1 abolished the effects of Cur treatment. These
findings show that Cur-induced cardio-protection was mediated
by SIRT1 (Yang et al., 2013). T2D is a chronic illness requiring
continuing care to prevent long-term and acute complications.
Cur may have positive effects in T2D by mediating the reduction
of NF-kB expression in inflammatory pathway (Zendedel et al.,
2018). NF-kB deregulation can influence other mechanisms in
which SIRT1 and AMPK are involved, such as glucose
Frontiers in Pharmacology | www.frontiersin.org 9
absorption in skeletal muscle. Data obtained in diabetic mice
models showed that supplementation of Cur for 8 weeks might
promote indirect activation of SIRT1 through AMPK (Jimenez-
Flores et al., 2014).

Over time, preclinical studies have shown that Cur can act in
various human diseases including immunodeficiency, virus
infections, rheumatoid arthritis, myocardial infarction,
atherosclerosis, and diabetes (Hsu and Cheng, 2007). A phase I
study was published for the first time in 2001. Patients were
subjected to five different Cur doses (500, 1,000, 2,000, 4,000, and
8,000 mg) every day for 3 months, and data showed that Cur
treatment up to 8,000 mg/day is not toxic (Hsu and Cheng,
2007). Another study investigated Cur-mediated effects in
patients with chronic non-alcoholic pancreatitis, showing that
patients had a strong reversal of lipid peroxidation (Durgaprasad
et al., 2005). The development of new routes of administration
and new formulations of Cur with better bioavailability could be
fundamental for future therapeutic strategies.

A list of completed and terminated clinical trials investigating
the effects of Cur in metabolic and inflammatory diseases is
reported in Table 5. A phase 2 clinical study (NCT01925547)
investigated the effect of Cur micelles on inflammation and lipid
metabolism markers in subjects at risk for metabolic syndrome.
Two other trials, a phase 2 (NCT02017353) and a phase 3
(NCT02099890) study, investigated the effect of Cur on
inflammation induced by endometrial carcinoma and spinal
cord injury, respectively. Interesting results from three phase 2/
3 clinical studies showed that Cur (as capsules or gel) prevents or
reduces radiation-induced dermatitis in breast cancer patients
receiving radiotherapy, enhancing the function of normal tissues
(NCT01246973, NCT01042938, NCT02556632).

Fisetin
The dietary flavonoid fisetin (3,3′,4,7-tetra-hydroxyflavone) is a
natural polyphenol present in plants and fruits such as apples,
persimmons, grapes, onions, kiwi, kale, and strawberries, whose
daily intake is estimated to be about 0.4 mg (Khan et al., 2013).
This human diet constituent is reported to exert some beneficial
anticancer, cardiovascular preventive, anti-inflammatory, and
antioxidant effects that support normal cell homeostasis and
cytoprotection (Chen et al., 2015; Kim et al., 2015). Fisetin was
shown to have neuroprotective activity in various Huntington’s
disease models through ERK activation and to inhibit melanoma
growth by suppressing Akt/mTOR1 pathway (Sechi et al., 2018).
A recent study reported that fisetin reduces myocardial tissue
damage in a reperfusion ischemia model by suppressing
mitochondrial oxidative stress and inhibiting glycogen synthase
kinase 3b (Shanmugam et al., 2018). As a polyphenol, fisetin can
counteract oxidative stress and mediate immune response via
AMPK/SIRT1 and Nfr2 pathways (see Figure 1). Fisetin was
shown to increase SIRT1 expression and enhance SIRT1-
mediated PPAR and FOXO1 deacetylation in 3T3L1 cells (Kim
et al., 2015). Specifically, fisetin enhanced the association
between SIRT1 and the PPARg promoter, leading to a block of
its transcriptional activity, adipogenesis, and lipid accumulation
(Kim et al., 2015). Lipid accumulation is a common feature in
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https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Iside et al. Natural SIRT1 Activators
NAFLD (Liou et al., 2018). Increased fatty acid synthesis and
hepatocyte accumulation is associated with metabolic disorder
(Liou et al., 2018). Fisetin treatment in NAFLD mice reduced
epididymal adipose tissue, hepatocyte steatosis, and fatty acid
synthesis. The data reported by Liou et al. showed an increase in
AMPKa phosphorylation and SIRT1 expression levels, while in
vitro results revealed a reduction in lipid accumulation and an
increase in lipolysis. The beneficial effects of fisetin were also
linked to its action as a caloric restriction mimetic (CRM) (Singh
et al., 2018). Natural compounds such as metformin and
resveratrol display the ability to mimic the effects of caloric
restriction, acting on stress response and metabolic pathways
(Ingram et al., 2006). A recent study investigated the
neuroprotective effects of fisetin as a possible CRM against
apoptosis, oxidative stress, aging, and neurodegeneration
(Singh et al., 2018). The authors showed that aging of rat
brain induced an increase in pro-inflammatory cytokines
and that treatment with CRMs such as metformin can reduce
inflammation (Singh et al., 2019). In an attempt to demonstrate
that fisetin could have beneficial effects against neuro-
inflammation comparable to metformin, Singh et al. showed
that fisetin mediated protective effects via SIRT1 activation,
enhancing NF-kB deacetylation and promoting inhibition of
pro-inflammatory gene expression (Singh et al., 2019). Data
suggested that fisetin may be a suitable therapeutic candidate
for aging and neurological diseases.
Frontiers in Pharmacology | www.frontiersin.org 10
However, there are only six currently available clinical trials
using fisetin, most of which are still recruiting (Table 6). These
pilot studies aim to test the anti-inflammatory efficacy of fisetin in
Frail Elderly Syndrome (NCT03675724 and NCT03430037) and
in symptomatic knee osteoarthritis patients (NCT04210986).
Another phase 2 clinical study (NCT03325322) intends to
evaluate the effects of oral fisetin on adipose tissue-derived
mesenchymal stem/stromal cell function, kidney function,
inflammation, and physical function in subjects with chronic
kidney diseases and diabetes.
CONCLUSIONS

In vitro and in vivo studies as well as clinical trials in humans
show that SIRT-activating compounds derived from natural
sources could preserve human health and might prove
beneficial for the prevention and treatment of a plethora of
human diseases. The fact that many of these natural molecules
are introduced through diet underscores the importance of
dietary intervention to correct predisposition and life-style
disorders. However, it remains unclear whether (or not) the
effects of these compounds are mostly related to SIRT activation
and what drug dose/concentration is required. Since most of the
natural compounds described here exhibit pleiotropic effects,
determining a direct link between SIRT activation and
TABLE 6 | Fisetin in clinical trials for inflammatory disorders.

Status Study Title Conditions Intervention Phase NCT Number

Recruiting Alleviation by Fisetin of Frailty, Inflammation,
and Related Measures in Older Adults

Frail Elderly Syndrome 20 mg/kg daily orally for 2 consecutive
days

Phase 2 NCT03675724

Recruiting Alleviation by Fisetin of Frailty, Inflammation,
and Related Measures in Older Women

Frail Elderly Syndrome 20 mg/kg daily orally for 2 consecutive
days, for 2 consecutive months.

Phase 2 NCT03430037

Recruiting Senolytic Drugs Attenuate Osteoarthritis-
Related Articular Cartilage Degeneration: A
Clinical Trial

Osteoarthritis, Knee 20 mg/kg for 2 consecutive days, followed
by 28 days off, then 2 more consecutive
days

Phase 1/2 NCT04210986

Recruiting Inflammation and Stem Cells in Diabetic and
Chronic Kidney Disease

Chronic Kidney Diseases,
Diabetes Mellitus, Diabetic
Nephropathies

20 mg/kg daily orally for 2 consecutive
days

Phase 2 NCT03325322
August 2020
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TABLE 5 | Curcumin in clinical trials for metabolic and inflammatory disorders.

Status Study Title Conditions Intervention Phase NCT Number

Completed Micellar Curcumin and Metabolic Syndrome Biomarkers Metabolic Syndrome, Protection
Against

20 mg of curcumin at the
beginning, after 3 and 6
weeks

Phase 2 NCT01925547

Completed Effect of Curcumin Addition to Standard Treatment on
Tumour-induced Inflammation in Endometrial Carcinoma

Endometrial Carcinoma 2 g daily for 2 weeks Phase 2 NCT02017353

Completed The Effect of Diet on Chronic Inflammation and Related
Disorders Following Spinal Cord Injury

Neuropathic Pain, Depression,
Cognitive Impairment

400 mg
Baseline/3 months/6
months

Phase 3 NCT02099890

Completed
with results

Oral Curcumin for Radiation Dermatitis Radiation-induced Dermatitis,
Breast cancer

2 g 3 times daily for 1
week

Phase 2/3 NCT01246973

Completed
with results

Curcumin for the Prevention of Radiation-induced Dermatitis
in Breast Cancer Patients

2 g 3 times daily (~4–7
weeks)

Phase 2 NCT01042938

Completed
with results

Prophylactic Topical Agents in Reducing Radiation-Induced
Dermatitis in Patients With Non-inflammatory Breast Cancer
(Curcumin-II)

Breast Carcinoma, Breast
Carcinoma, Pain, Radiation-
Induced Dermatitis,

Phase 2 NCT02556632
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improvement in human health is very challenging. It is also
evident that a more robust correlation between health effects and
administration of the bioactive compounds needs to be
established in order to understand their biological impact
and their direct association with SIRT activation. An additional
issue is that, although numerous studies have been carried
out, the majority only address the role of SIRT1 and its
pharmacological regulation. Our current knowledge of the
potential pharmacological activation of the expression/activity
of other SIRTs is largely incomplete. A greater insight into the
selectivity and specificity of natural SIRT activators may help
understand the myriad beneficial effects described to date. A
further question is related to the cell/context-specific expression
of some SIRTs, cofactor availability, and context-specific action
of some of the described modulators. Further investigations will
be required to provide a more detailed understanding. In
addition, some natural SIRT modulators, such as Cur, display
poor bioavailability and solubility. Treatment with higher
bioavailable preparations of Cur derivatives may result in
increased SIRT1-activating action, further substantiating the
link between SIRT1, Cur, and therapeutic effects. The fact that
studies indicate that the majority of SIRT activators (or at least
SIRT1-targeting activators) exert both direct activating effects
and indirect effects via modulation of SIRT1 downstream
pathways complicates the interpretation of results and,
particularly, the mining of data specifically dependent on direct
SIRT1 binding and activation. Similarly, the activating effects
resulting from SIRT1 binding are reported to be either
dependent on the catalytic domain or related to different
domains, leaving considerable uncertainty as to the activating
Frontiers in Pharmacology | www.frontiersin.org 11
binding mode and its context specificity upon drug response.
Despite the generally encouraging data from in vitro and in vivo
studies, supporting molecular evidence providing clues to these
unanswered questions is still lacking. A better understanding of
the molecular mechanisms of these natural molecules (or their
derivatives) may lead to further and more focused development
of their preclinical and clinical use.
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