:\' frontiers

in Pharmacology

REVIEW
published: 12 August 2020
doi: 10.3389/fphar.2020.01243

OPEN ACCESS

Edited by:

Fidele Ntie-Kang,

Martin Luther University of
Halle-Wittenberg, Germany

Reviewed by:

Wolfgang Sippl,

Martin Luther University of
Halle-Wittenberg, Germany
Simone Carradori,

University “G. d’Annunzio” of
Chieti-Pescara, Italy

*Correspondence:
Antonello Mai
antonello.mai@uniromal.it
Dante Rotili
dante.rotili@uniromal.it

Specialty section:

This article was submitted to
Translational Pharmacology,
a section of the journal
Frontiers in Pharmacology

Received: 13 April 2020
Accepted: 29 July 2020
Published: 12 August 2020

Citation:

Fiorentino F, Mai A and Rotili D (2020)
Lysine Acetyltransferase Inhibitors
From Natural Sources.

Front. Pharmacol. 11:1243.

doi: 10.3389/fphar.2020.01243

Check for
updates

Lysine Acetyltransferase Inhibitors
From Natural Sources
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Acetylation of histone and non-histone protein lysine residues has been widely described
as a critical modulator of several cell functions in humans. Lysine acetyltransferases (KATS)
catalyse the transfer of acetyl groups on substrate proteins and are involved in multiple
physiological processes such as cell signalling, metabolism, gene regulation, and
apoptosis. Given the pivotal role of acetylation, the alteration of KATs enzymatic activity
has been clearly linked to various cellular dysfunctions leading to several inflammatory,
metabolic, neurological, and cancer diseases. Hence, the use KAT inhibitors (KATI) has
been suggested as a potentially successful strategy to reverse or prevent these
conditions. To date, only a few KATi have proven to be potential drug candidates, and
there is still a keen interest in designing molecules showing drug-like properties from both
pharmacodynamics and pharmacokinetics point of view. Increasing literature evidence
has been highlighting natural compounds as a wide source of molecular scaffolds for
developing therapeutic agents, including KATI. In fact, several polyphenols, catechins,
quinones, and peptides obtained from natural sources (including nuts, oils, root extracts,
and fungi metabolites) have been described as promising KATi. Here we summarize the
features of this class of compounds, describing their modes of action, structure-activity
relationships and (semi)-synthetic derivatives, with the aim of assisting the development of
novel more potent, isoform selective and drug-like KATI.

Keywords: lysine acetyltransferases, protein acetylation, natural products, enzyme inhibitors, epigenetics

INTRODUCTION

The acetylation of the e-amino groups of lysine residues is one of the most common post translation
modifications (PTMs) occurring at cellular level to influence the protein function. The equilibrium
between transfer and removal of acetyl groups is regulated by two classes of enzymes: lysine
acetyltransferases (KATs) and lysine deacetylases (KDACs) (Falkenberg and Johnstone, 2014;
Carafa et al., 2016; Fiorentino et al., 2018). KATs catalyse the transfer of an acetyl group from the
co-substrate acetyl-coenzyme A (Ac-CoA) to selected lysine residues of the substrate proteins, while
KDAGC:s catalyse the hydrolysis of the acetyl group (Figure 1).

The targets of the acetylation/deacetylation reaction include different classes of proteins such as
enzymes (for instance kinases), transcription factors, and histones (Falkenberg and Johnstone, 2014;
Carafa et al., 2016; Fiorentino et al., 2018). Recent mass spectrometric studies have shown that
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FIGURE 1 | lllustration of acetylation/deacetylation equilibrium. KATSs transfer
an acetyl group from Acetyl-CoA to the e-amino groups of lysine residues of
the substrate proteins. KDACs catalyse the removal of the acetyl group.

proteins undergoing acetylation are present in approximately all
subcellular compartments (Choudhary et al., 2014). Therefore, it
is not surprising that acetylation is virtually related to every
cellular function, ranging from signal transduction to
metabolism and cell cycle regulation (Ali et al., 2018).

Acetylation prevents positive charges from forming on the
amino group, thus having a significant impact on the
electrostatic properties of the protein and influencing protein-
protein interaction networks, as well as the cellular localisation
and the sensitivity to degradation. In the case of histones, the
neutralization of the positive charge of lysine residues weakens
their interaction with the negatively charged DNA, thus causing
chromatin decompaction and facilitating transcription (Smith
and Denu, 2009). Acetylated lysine residues are also recognized
by domains present in “reader” proteins called bromodomains,
thus translating the acetylation reaction in specific downstream
signals (Filippakopoulos and Knapp, 2014).

KAT FAMILIES AND MECHANISTIC
FEATURES

KAT enzymes have been arranged into three major families
based on their homology to yeast orthologues, as well as
mechanism of catalysis. The families comprise: the p300/
CREB-binding proteins (p300/CBP); the GCN5-related N-
acetyltransferases (GNAT), and the MOZ, Ybf2, Sas2, and
Tip60 (MYST) family. Acetyltransferase activity has also been
found in further proteins not classified in any of the major
families, such as the transcription factor complexes TAF1/TBP
and TFIIIC90, circadian locomotor output cycles protein kaput
CLOCK (KAT13D), and nuclear receptor coactivator-1 (NCoA-
1, also referred as SRC-1).

All KATs are characterised by a similar tertiary structure in
the catalytic domain, consisting of an 0/f fold, essential for co-
substrate binding and catalysis, while the adjacent regions
contribute to the determination of substrate specificity.
Furthermore, KATs are often part of heteromultimeric
complexes, and the interacting protein partners also play a key
role in determining the target specificity and functions (Lee and
Workman, 2007).

The p300/CBP family comprises p300 (KAT3B, Figure 2A)
and its paralog CBP (KAT3A). The two proteins have
interchangeable functions and present high sequence and
structural similarity which reflects the same mechanism of
catalysis (Chan and La Thangue, 2001). The acetylation
reaction follows a “hit and run” (Theorell-Chance) mechanism
consisting of initial binding of acetyl-CoA to the enzyme,
followed by a weak and transient interaction with the histone
substrate essential for acetyl transfer. Interestingly, in this
proposed mechanism the ternary complex is kinetically
irrelevant for catalysis (Liu et al., 2008). Not only p300/CBP
possess KAT activity, but they also have additional domains,
specifically three cysteine-histidine rich domains (TAZ, PHD,
and ZZ) and a bromodomain (BRD), which are critical for
protein-protein interactions.

The main substrates of p300/CBP are the histone proteins
H2A, H2B, H3, and H4, however, given their intricate structures,
they have more than 400 interacting partners. For instance, in

(PDB ID: 1Z4R); (B) p300 (PDB ID: 4PZS); (C) MOF (PDB ID: 6BA4).

FIGURE 2 | Examples of acetyltransferase domain structures from the three main KAT families in complex with the co-substrate Ac-CoA (orange sticks). (A) Gen5
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the context of transcriptional activation, the two KATs may act
as a bridge to connect transcription factors to the transcription
machinery, and acetylates histones and/or transcription factors
in order to enable a transcriptional response (Dancy and Cole,
2015). Consequently, p300/CBP regulates the cellular
localization and activities of a large number of proteins,
particularly transcription factors (Sano and Ishii, 2001; Wang
et al., 2005), thus affecting cell growth and senescence, DNA
damage repair and apoptosis (Kalkhoven, 2004).

The GNAT (Gcen5 related N-acetyltransferase) family
includes the Gen5 (General Control Nonderepressible 5,
KAT2A, Figure 2B) (Brownell and Allis, 1995), PCAF (p300/
CBP associated factor, KAT2B) (Yang et al., 1996), the Elp3
(Elongator complex protein 3, KAT9) (Wittschieben et al., 1999),
Hpa2 (KAT10), Hpa3 (Sampath et al, 2013), the mediator-
complex subunit Nutl (Lorch et al., 2000), and o-tubulin
acetyltransferase 1 (0-TAT1) (Friedmann et al., 2012).

GNAT family members share four conserved 15-33 amino
acids motifs indicated as A, B, C, and D, as well as various
chromo- and bromodomains. The A motif contains the
conserved R/Q-X-X-G-X-G/A sequence, indispensable for
acetyl-CoA recognition and binding (Dyda et al., 2000). The
catalytic mechanism of GNAT proteins, differently from p300/
CBP, involves the formation of a ternary complex composed of
the enzyme, the co-substrate acetyl-CoA, and the target protein.
Following acetyl-CoA and substrate binding to the enzyme, the
acetyl group is transferred to the lysine e-amino group (Tanner
et al., 2000).

Gen5 and PCAF are closely related proteins, sharing 73%
sequence similarity and having H3K14 as main in vitro substrate
(Roth et al.,, 2001). Gen5 acetylation activity has been shown to
regulate cell cycle progression through the acetylation of CDC6
(cell division control protein 6 homolog), a critical factor for the
assembly of the pre-replicative complex in G1 phase (Paolinelli
et al.,, 2009). Similarly, PCAF is involved in cell cycle regulation,
as well as transcriptional regulation and differentiation. For
instance, under conditions of stress, PCAF acetylates H3 on
p21 promoter, thus inhibiting cell growth (Love et al., 2012).

o-TAT1 is structurally similar to Gen5 and acetylates Lys40
of o-tubulin (Kormendi et al.,, 2012; Taschner et al., 2012).
Although the structural similarity to Gen5, a-TAT1 contains a
wider substrate binding pocket and further specific structural
elements that play an essential role in o-tubulin specific
acetylation (Friedmann et al., 2012). Given the specificity for
o-tubulin, o-TAT1 activity is associated to processes such as cell
adhesion, migration, and invasion (Castro-Castro et al., 2012;
Aguilar et al,, 2014).

The MYST family comprises the following enzymes: MOZ
(monocytic leukemia zinc finger protein, KAT6A), MORF (MOZ
related factor, KAT6B), MOF (males absent on the first, KATS,
Figure 2C), Tip60 (Tat-interacting protein, KAT5), and HBO1
(HAT bound to ORC1, KAT?7). Enzymes belonging to this family
possess a highly conserved catalytic region (the MYST domain)
containing the acetyl-CoA binding site and zing finger motifs
(Neuwald and Landsman, 1997; Sapountzi and Cote, 2011). A
characteristic feature of MYST enzymes is the mechanism of

catalysis consisting of a double displacement reaction (Yan et al,
2002; Wapenaar et al., 2015). In brief, the co-substrate acetyl-CoA
donates the acetyl moiety to a cysteine residue, which in turn
transfers it to the lysine of the substrate protein. A key role is played
by a glutamate in the catalytic site that deprotonates the lysine of the
substrate protein, thus facilitating the nucleophilic attack.

MOZ and MORF present high sequence homology and have
the histone H3 as main target. They both form multi-protein
complexes involved in signalling related to transcriptional
activation (Avvakumov and Cote, 2007) and development
processes such as haematopoiesis (Perez-Campo et al., 2009;
Perez-Campo et al.,, 2013) and skeletogenesis (Crump
et al., 2006).

Tip60 is the first described human member of MYST family
and acetylates H4 at different Lys residues and transcription
factors such as p53 (Tang et al., 2006), c-Myc (Patel et al., 2004),
and E2F1 (Van Den Broeck et al., 2012). Given its wide range of
substrates, Tip60 is involved in multiple pathways including
transcriptional activation, apoptosis (Sykes et al., 2006) and
DNA-damage response (Murr et al., 2006).

MOF is the latest discovered member of the MYST family and
has H4K16 as main substrate, but it is also active towards H4K5,
H4KS8, TIP5, and p53. MOF is the acetylating subunit of two
distinct complexes, MSL (male-specific lethal) and NSL (non-
specific lethal), that modulate its target specificity and thus
downstream effects (Ravens et al., 2014). Interestingly, evidence
shows that MOF is also involved in the transcriptional regulation
of mitochondrial DNA (Chatterjee et al., 2016).

As explained above, further human KATSs are represented by
proteins that are part of transcription factor complexes. For
instance, TFIIIC90 acetylates H3 and is involved in the
recruitment of RNA polymerase III for transcriptional
activation (Hsieh et al., 1999).

CLOCK and NCoA-1 are co-activators of nuclear hormone
receptors with substrate specificity towards H3 and H4. CLOCK
is involved in circadian rhythm regulation (Doi et al., 2006),
while NCoA-1- acetylation is a consequence of steroid-mediated
transcriptional activation (Spencer et al., 1997).

KATS AND DISEASES

Given their wide substrate specificity (including histones,
transcriptional factors, kinases, and tumor suppressors) and
involvement with key cellular processes, KATs play a pivotal
role in cellular physiology and disease (Fiorentino et al., 2018).
The dysregulation of KAT expression or enzymatic activity may
lead to tumorigenesis and be the cause of diseases like
inflammatory disorders, respiratory, cardiovascular, and
neurological pathologies (Delker and Haisma, 2009; Schneider
et al., 2013; Huang et al.,, 2015; Sun et al,, 2015).

For instance, p300/CBP may form chimeric proteins with the
MYST family members MOZ and MOF, or the histone
methyltransferase MLL which are the main cause of acute
myeloid leukaemia (AML). These chimeras present aberrant
catalytic activity given the presence of two active sites, thus
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leading to increased protein expression, particularly oncogenes
(Chaffanet et al., 2000; Sun et al., 2015). Mutations and deletions
of p300/CBP are related to a subset of cancer types such as lung,
colon, and ovarian carcinomas (Gayther et al., 2000; Kishimoto
et al., 2005), but also developmental disorders, like the
Rubinstein-Taybi syndrome. This disease is characterised by
mental and physical anomalies and increased susceptibility to
cancer (Portela and Esteller, 2010). One of the main targets of
p300/CBP is the transcription factor NF-kB. It has been shown
that NF-kB acetylation is correlated to a deceased affinity for the
inhibitory protein IkB, hence facilitating the expression of NF-
kB target genes involved in the inflammation pathway
(Schneider et al., 2013).

Genb5 has been shown to be upregulated in a diverse range of
cancer types. For instance, Gen5 promotes the expression of cell
cycle factors in non-small cell lung cancer (NSCLC) (Chen et al.,
2013), as well as colon cancer, where the expression of the
oncogene c-Myc was increased (Yin et al, 2015). Differently,
PCAF may be up- or down-regulated depending on the cancer
type. Its overexpression is associated with invasive urothelial
carcinoma (Shiota et al., 2010), while PCAF was found to be
down-regulated in oesophageal squamous cell carcinoma (Zhu
et al., 2009), hepatocellular carcinoma (Li et al., 2016), ovarian
and gastric cancer (Ying et al., 2010). Furthermore, Gen5 and
PCAF aberrant activity has been related to type 2 diabetes. Both
proteins acetylate PGC-1a. (peroxisome proliferator-activated
receptor gamma co-activator 1 alpha), a co-activator of hepatic
gluconeogenesis. Acetylation is a trigger for PGC-1la
degradation, and an anomalous Gnc5/PCAF activity leads to a
decrease in blood and hepatic glucose output (Sun et al., 2014).

The MYST family members MOZ and MORF form hybrid
proteins with p300/CBP contributing to the insurgence of AML,
as already discussed. Apart from p300/CBP, MOZ can also form
chimeras with the nuclear receptor co-activator TIF2, and this
event is also implicated in AML (Kindle et al., 2005). Similarly to
PCAF, both MOF and Tip60 have tissue-specific roles in cancer.
For instance, their expression is related to tumor growth in oral
tongue squamous cell carcinoma (MOF) (Li et al., 2015), and
prostate cancer (Tip60) (Halkidou et al., 2003). Conversely, both
proteins are down-regulated in breast cancer (Pfister et al., 2008;
Bassi et al., 2016). MYST family members have demonstrated to
be important for neural development, indeed MORF is highly
expressed in the brain and mutations are associated with
neurodevelopmental disorders in humans such as the
genitopatellar syndrome, a skeletal dysplasia with cerebral and
genital anomalies (Campeau et al., 2012).

Given the extensive association between KATs abnormal activity
and a variety of diseases, many molecules have been developed to
interfere with their activity, as well as clarify their physiopathology
(Fiorentino et al., 2018). To this end, many research groups have
developed inhibitors of KATs (KATi) and a great amount of them
are represented by natural products or their (semi)-synthetic
derivatives. In recent years KATi discovery has finally succeeded
in releasing highly potent and isoform selective inhibitors, along
with their relative co-crystal structures. The p300 inhibitor A-485

(Lasko et al., 2017), and the MOZ/MOREF inhibitors WM8014 and
WM1119 (Baell et al., 2018) represent an important step forward in
the field of KAT drug discovery. However, many other KAT
subtypes still lack good inhibitors, which may be obtained using
natural occurring products as scaffolds for focused drug design and
development projects.

This review will focus on KATi obtained from natural sources
describing their mechanisms of action, structure-activity
relationships and (semi)-synthetic derivatives.

KATI FROM NATURAL SOURCES AND
(SEMI)-SYNTHETIC DERIVATIVES

The connection between anomalous protein acetylation and the
onset of different diseases has inspired the research on KATi with
the final goal of developing therapeutics, as well as chemical
probes to further investigate KAT function.

Interestingly, over last decades, a great number of drugs and
biological tools have been developed from natural products
with examples including antimicrobial drugs (beta lactam
and glycopeptide antibiotics), but also analgesics (aspirin and
opioids) and cancer chemotherapeutics (paclitaxel and
derivatives) (Dias et al., 2012; Newman and Cragg, 2012).
Therefore, it is not surprising that research groups exploit
natural occurring molecules to develop biologically active
compounds. In fact, natural products represent a valid
alternative to synthetic molecules given their higher chemical
complexity and the different chemical space they occupy. Natural
compounds usually present a preference of oxygen more than
sulphur or nitrogen as heteroatoms, as well as a higher number of
stereogenic centres and fused rings (Cherblanc et al., 2013). On
the other hand, they are usually poorly selective towards their
target given the presence of electrophile or redox centres and
polyphenol moieties. Nevertheless, natural products have always
been crucial for the development of therapeutics, representing
scaffolds for the development of semi-synthetic derivatives, like
in the case of the different generations of penicillin derivatives.
Moreover, natural products may be a start point for ligand-based
drug discovery campaigns, where the initial lead compound may
be modified through (bio)isosteric replacement or may undergo
structural simplification, to remove unnecessary or undesirable
substructures and modulate potency and target specificity. A
classic example of structural simplification are the opioid
analgesics such as levorphanol or fentanyl which represent two
different degrees of simplification of the parent natural molecule
morphine (Wang et al., 2019).

The above-described features also characterise natural
occurring KAT modulators and, although they may show some
drawbacks related to their physicochemical properties, current
efforts are made towards the improvement of their activity and
selectivity. In fact, their optimization into new (semi)-synthetic
derivatives could represent a significant milestone towards the
obtainment of novel selective and potent KATi.

Frontiers in Pharmacology | www.frontiersin.org

August 2020 | Volume 11 | Article 1243


https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Fiorentino et al.

KAT Inhibitors of Natural Origin

Polyphenols

Garcinol (1A) is a polyisoprenylated benzophenone extracted
from Garcinia indica showing inhibitory activity in the low
micromolar range towards p300 and PCAF (ICsy = 7 and 5
UM, respectively) (Balasubramanyam et al., 2004a). Isogarcinol
(1B) is the result of the intramolecular cyclization of garcinol and
can be extracted from Garcinia mangostana (Cen et al., 2013).
Similarly, it shows nonspecific KATi activity towards p300 and
PCAF in the same micromolar range (Mantelingu et al., 2007b).
Different derivatives of 1B were synthesized in order to improve
selectivity and potency, and to decrease toxicity: LTK-13 (1C)
and LTK-14 (1D) are monoaliphatic substituted derivatives,
while LTK-19 (1E) is a bis methyl sulfonyl derivative (Figure
3). The three compounds showed specific inhibition of p300 with
ICso values in the 5-7 UM range. Among these, 1D displayed
higher efficiency in vivo, and impaired reproduction of HIV
through the down regulation of p300-mediated acetylation of
p53; moreover, it was nontoxic towards T-cells (Mantelingu
et al., 2007b). Molecular simplification of 1A led to the
benzylidene barbituric acid derivative 1F which showed
selective p300 inhibition with an ICs, value of 2.1 uM. To
overcome the susceptibly to hydrolysis of compound 1F, two

N” N
1
o | o
— ¥
R
OH
1tg 1g EML425

¢
HO O o

2b Procyanidin B3

methyl groups at the ortho positions of the benzylidene moiety
were inserted, thus leading to EML425 (1G), a selective inhibitor
of p300/CBP active in the low micromolar range [ICs, (p300) =
2.9 uM and ICsy (CBP) = 1.1 uM]. AlphaLISA homogeneous
proximity immunoassays performed by varying either histone
H3 or acetyl-CoA concentration and adding increasing
concentrations of 1G, indicated a non-competitive mode of
action. Despite the presence of an o,f-unsaturation would
make 1G a good Michael acceptor with potential pleiotropic
mechanisms of action, remarkably, tests in human leukaemia
U937 cells showed a 1G-promoted reduction of H4K5 and H3K9
acetylation levels, and the induction of cell cycle arrest in the GO/
G1 phase (Milite et al., 2015).

Epigallocatechin-3-gallate (EGCG, 2A), is a non-selective
KATi active against p300, CBP, PCAF and Tip60 with ICs,
values of 30, 50, 60, and 70 UM, respectively (Choi et al., 2009).
However, polyphenols like 2A are able to interact with an
extensive range of proteins and the optimization of their
activity for every single target is quite challenging (Mai et al.,
2008). Procyanidin B3 (2B, Figure 3) showed up to 90% KAT
activity inhibition in a dose-dependent fashion, as well as 60%
p300 activity following a non-competitive mode of action. In
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FIGURE 3 | Structures and modifications of garcinol (1a-g), EGCG and related derivatives (2a-b), and delphinidin (2c).
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addition, it inhibited p300-mediated androgen receptor
acetylation and acetylation-dependent prostate cancer cell
proliferation (Choi et al., 2011).

Delphinidin (2C, Figure 3), is an anthocyanidin extracted
from pomegranate (Punica granatum), showing specific p300/
CBP inhibition (ICsy = 30 uM). This compound has shown
potential as anti-inflammatory agent as it showed suppression of
inflammatory cytokines expression in MH7A cell through
hypoacetylation of NF-xB, as well as inhibition of cytokine
release in Jurkat T lymphocyte cell lines (Seong et al., 2011).

Curcumin (3A) is a natural product extracted from the
rhizome of turmeric (Curcuma longa), a common preparation
used in both traditional Indian and Chinese medicines.
Curcumin is a non-competitive p300 inhibitor (ICsq = 25 uM)
(Balasubramanyam et al., 2004b) presenting a mode of action
likely relying on the covalent binding to the target enzyme
through its cinnamoyl moieties serving as Michael acceptors
(Marcu et al,, 2006). Interestingly, curcumin induced down-
regulation of mGlu2 receptor in mouse spinal cord after systemic
administration and decreased the acetylation levels of histones
H3 and H4 in dorsal root ganglia (DRG) (Zammataro et al,
2014). On the other hand, given its covalent mode of action and
its polyphenolic nature, curcumin is not a selective KATi and
several additional targets have been identified so far, including
COX2, protein kinase C, thioredoxin reductase, tubulin, and 5-
lipoxygenase (Anand et al., 2008). Because of its pleiotropic
nature, despite numerous studies indicated the positive effects of
curcumin in various pathologies such as diabetes (Maradana
et al., 2013), cardiovascular diseases (Srivastava and Mehta,

2009) and others, it is hard to attribute them to KAT
inhibition. Curcumin was also shown to have membrane
disruption properties, thus that some of its cellular effects may
be the result of this additional feature (Ingolfsson et al., 2014).
Curcumin has been evaluated in more than 120 clinical trials for
various conditions, however the outcomes of the completed
double blinded, placebo controlled studies (including trials for
conditions such as pancreatic and colon cancer or Alzheimer’s
disease) have highlighted the in vivo inefficacy of curcumin.
Indeed, features like chemical instability, unspecific cross-
reactivity, and low oral bioavailability hampered the translation
of in vitro activity into in vivo effects (Nelson et al., 2017).
However, in order to improve its potency and selectivity, many
research groups developed several synthetic derivatives of
curcumin such as compounds 3B and 3C, where the methoxy
residues were replaced by a carboxylic acid or a bromine atom,
respectively (Figure 4). Both derivatives showed improved
inhibitory activity towards p300, in fact the ICs, values were
33 and 21 UM, respectively, while curcumin showed an ICs,
value higher than 400 uM in the same biophysical assay.
Compound 3D (RC56) is a cyclic ketone derivative of 3C
showing improved potency towards p300 (ICsq = 5 uM) and
represents the scaffold for the development of various analogues,
including 3E and 3F, the iodinated and dibrominated derivatives
of 3D, respectively (Figure 4). While the iodinated analogue 3E
displayed slightly lower potency (ICs, = 8.1 uM), the
dibrominated derivative 3F had an increased p300 inhibitory
activity (IC5o = 2.3 uM) (Costi et al., 2007; Mai et al., 2008).
These data suggest that the presence of electron-withdrawing

MeO l SN = ! OMe
HO OH
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NaOOC

MeO. N-N
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9@ i
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FIGURE 4 | Structures and modifications of curcumin and its derivatives (3a-g), plumbagin (4) and embelin (5).
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substituents in the phenyl ring is favourable for protein-ligand
interactions. Finally, the sodium salt of phenylpyrazolocurcumin
CTK7A (3G, Figure 4) is a water-soluble inhibitor of p300 and
PCAF displaying a mixed type p300 inhibition for acetyl-CoA
and histones. It suppressed H3 acetylation in KB cells (oral
squamous cell carcinoma), being more active towards H3K14
than H3K9 and inhibited tumor proliferation in a related mouse
xenograft model (Arif et al., 2010).

Quinones

Plumbagin (4, Figure 4) is a hydroxynaphthoquinone extracted
from Plumbago rosea roots, which has been shown to inhibit
KAT activity in vitro and in cells with ICs, values for p300 and
PCAF of 20 and 50 uM, respectively, with a non-competitive
mode of action (Vasudevarao et al., 2014). Docking investigations
combined with site-directed mutagenesis of p300 catalytic
domain suggested that the hydroxyl group of 4 forms a crucial
hydrogen bond with Lys1358 in the active site of the enzyme, thus
it is crucial for inhibition, as confirmed by the loss of inhibitory
activity of derivatives where the hydroxyl group was substituted
with other moieties (Ravindra et al., 2009). Compound 4 suffers
from high thiol reactivity due to the presence of a Michael
acceptor, which can be overcome through methylation on C3,
still retaining the KAT non-competitive inhibition (Vasudevarao
et al., 2014).

Embelin (5, Figure 4) is a hydroxybenzoquinone derivative
obtained from Embelia ribes berries. It displayed H3K9
acetylation suppression in mouse models and PCAF in vitro
inhibitory activity (ICso = 7.2 uM). Molecular modelling studies
have postulated that the hydroxyl group and the undecyl chain
are necessary for ligand-protein interaction. Indeed, the hydroxyl
group interacts with the amide backbone through hydrogen
bonds, while the alkyl chain is inserted into a narrow
hydrophobic groove near the binding site of the B-
mercaptoethylamine portion of CoA. Experimental works
further confirmed these findings as the conversion of one
hydroxyl group to methylamine or the shortening of the alkyl
chain to a 10-carbon tail completely eliminates PCAF binding
(Modak et al., 2013).

Anacardic Acid and Derivatives

Anacardic acid (6A) is a 6-pentadecylsalicylic acid extracted
from the cashew nut shells and has been indicated as a non-
competitive and non-selective inhibitor of KAT enzymes with a
broad range of ICs, values, depending on the reports. Indeed,
ICsg values span from 8.5 UM (Balasubramanyam et al., 2003)
and over 1,000 uM (Wu et al., 2009) in the case of p300, and
from 5 uM (Balasubramanyam et al., 2003) to 667.1 pM (Wu
et al.,, 2009) in the case of PCAF. Anacardic acid also showed
inhibitory activity towards MYST family members, in particular
Tip60 (ICs¢s from 64 to 347.6 uM) (Wu et al., 2009; Ghizzoni
et al,, 2012) and MOF (K; and ICs, values of 64 and 43 UM,
respectively) (Ghizzoni et al., 2012; Wapenaar et al., 2015). At
cellular level, administration of 6A induced suppression of NF-
KB signalling as a consequence of the inhibition of the acetylation
of the p65 subunit (Sung et al, 2008). However, similarly to

curcumin, 6A inhibits multiple proteins (Hemshekhar et al., 2012),
thus its cellular effect might be a consequence of interactions with
targets other than KAT enzymes. Furthermore, 6A presents low
cell permeability, thus different derivatives have been synthesized
to reduce the lipophilicity, as well as to improve the inhibitory
potency and isoform selectivity.

Changes in the alkyl chain length and regiochemistry led to
compounds 6B and 6C, which exhibited inhibition towards
MOF (ICsy = 37 and 57 UM, respectively). Compound 6B
possesses a decyl aliphatic chain instead of the pentadecyl
chain of 6A and, while 6C is a 6B derivative where the alkyl
chain position has been switched from ortho to meta with respect
to the carboxyl group (Figure 5). Furthermore, derivatives
bearing shorter alkyl chain lengths completely lost inhibitory
activity, indicating the importance of the hydrophobic contacts
played by the aliphatic chain for the ligand-protein interactions
(Wapenaar et al., 2015). Replacement of the alkyl chain at 6-
position with a substituted phenethyl moiety led to compounds
6D-6H (Figure 5), which were tested against p300, PCAF, and
Tip60, displaying more than 75% inhibition of Tip60 at 200 UM
(Ghizzoni et al., 2010; Ghizzoni et al., 2012). Amongst them,
derivative 6F (MG149) was the most potent [ICs, (Tip60) = 74
uM, 1C5, (MOF) = 47 uM], showing competitive inhibition
towards acetyl-CoA in Tip60 and uncompetitive inhibition
towards acetyl-CoA in MOF (Ghizzoni et al., 2012).
Furthermore, it displayed KAT inhibitory activity in cell based
assays where the acetyltransferase activity was measured in
hippocampus, amygdala and prefrontal cortex nuclear extracts
(Ghizzoni et al., 2012), and inhibited the expression of pro-
inflammatory genes in murine precision-cut lung slices (van den
Bosch et al., 2017).

Compounds 7A (MC1626) and 7B (MC1752) can be
regarded as quinoline analogues of anacardic acid that were
identified through a phenotypic screening in S. cerevisiae.
Indeed, both molecules impaired yeast cell growth resembling
the effects of Gen5 deletion mutants. In particular, 7A also
suppressed acetylation and gene transcription mediated by
Gen5 (Ornaghi et al., 2005). To improve inhibitory activity,
novel 7A derivatives presenting alternative aliphatic/aromatic
chains at the C2-quinoline or additional residues at the C6-
quinoline positions have been designed and synthesized. In
compounds 7C and 7D the 2-methyl group is replaced by n-
propyl (7C) or benzyl (7D) groups, while molecules 7E-G are
derivatives of 7A bearing side chains at C6 (Figure 5). These
changes improved p300 inhibitory activity and selectivity
compared to 7A. Indeed, whilst 7A presented 22.6% p300
inhibition when tested at 100 uM, 7E-G showed 58.5-69.3% of
p300 inhibition when evaluated at the same concentration.
Among the three compounds, the C6 substituted molecule
7G was the most potent (69.3% p300 inhibition at 100 uM,
and ICsy = 57.5 uM). Moreover, both 7C and 7G caused a
massive reduction in H3 and H4 acetylation levels in human
leukaemia U937 cells (Lenoci et al., 2014).

Further quinoline analogues of 6A are compounds 8A
(MC1823), 8B, and 8C. In this case, the three substituents of
the quinoline core retain the same relative positions as in 6A. In
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FIGURE 5 | Structures and modifications of anacardic acid and its derivatives (6a-h, 7a-g, and 8a-c).

compound 8A a linear pentyl tail replaces the pentadecyl chain
(Mai et al., 2006), while 8B is a 2-methyl derivative, and 8C is the
ethyl ester of 8B (Figure 5). Compound 8A displayed 81% CBP
inhibition at 50 uM, while 8B and 8C caused more than 80%
inhibition of both p300 and CBP at 50 uM (Mai et al., 2009).
When compared to 6A in a nuclear extract KAT activity
inhibition assay at the concentration of 50 UM, compound 8A
decreased the total KAT activity by 30%, while 6A by just 15%
(Mai et al., 2006).

Long chain alkylidenmalonates (LoCAMs) are a class of KAT
modulators derived from the molecular simplification of
anacardic acid. SPV106 (9A) is the parent compound of this
series showing p300/CBP inhibition comparable to 6A, as well as
a peculiar PCAF activation (Sbardella et al., 2008). SPV106 has
been subjected to various modifications leading to two
interesting series of compounds (Figure 6): bicarboxylic (9B
and 9C) and acetoacetic derivatives (9D and 9E). Bicarboxylic
derivatives are obtained from the hydrolysis of SPV106 ethyl
esters and differ in the length of the aliphatic tail (14 and 15
carbons for 9B and 9C, respectively). They are both low
micromolar p300 inhibitors (ICs5y = 1.3 and 1.1 uM for 9B and
9C, respectively) and weak PCAF inhibitors. On the other hand,
the acetoacetic derivatives are p300 inhibitors (IC5, = 2.4 and 4.7
UM for 9D and 9E, respectively), but also potent PCAF activators

(Castellano et al., 2015). Considering the activities of LoOCAM
compounds towards p300 and PCAF we can conclude that the
ester hydrolysis improves p300 inhibitory activity, but decreases
affinity towards PCAF, whilst replacement of carboxylic moiety
with an acetyl group is favourable for PCAF activation (Sbardella
et al., 2008; Castellano et al., 2015). Furthermore, variations to
the length of the alkyl chain or introduction of a heteroatom is
detrimental for the interaction with both enzymes (Castellano
et al., 2015).

Another reported anacardic acid derivative presenting both
KAT inhibitory and activating properties is compound 10A
which inhibits MOF and Tip60 with ICs, values of 47 and 64
UM, respectively, and exhibits PCAF activation (Ghizzoni et al.,
2012). Differently, the anacardic acid benzamide derivative 10B
(Figure 6) displays p300 activation as confirmed by the observed
p300-dependent transcriptional activation (Balasubramanyam
et al., 2003; Mantelingu et al, 2007a). The removal of CTPB
long alkyl chain (compound 10C, TTK21, Figure 6) does not
impair the p300/CBP activating ability (Chatterjee et al., 2013).
Remarkably, compound 10D, presenting an octyl chain and a
nitrile group replacing the chlorine has a reversed activity,
showing 50% p300 inhibition at 100 UM in vitro. It also
inhibited p300 KAT activity and induced apoptosis in
immortalized HEK cells (Souto et al., 2008). Further
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derivatives replacing the alkyl chain with a long chain inverted
amide (10E-H, Figure 6) displayed inhibitory activity against
PCAF and were active in several human cancer cell lines (Park
and Ma, 2012). Compound 10E showed 79% PCAF inhibition at
100 uM, which was higher than 6A, used as a positive control for
the experiment. When translated to cytotoxic assays, ICs, values
of compounds 10E-H were ranging from 25 to 80 uM in HCT,
A549, HT-29, Hep3B, MDA- 231, and HeLa cancer cell lines
(Park and Ma, 2012).

Alkaloids

Alkaloids are plant-derived compounds containing multiple
cycles and nitrogen atoms. A structure-based virtual screening
identified four alkaloids (11A-D, Figure 7) possessing inhibitory
activity against p300 in the low micromolar range, and against
PCAF in the medium micromolar range [p300: ICso (11A) = 0.69
UM, ICs (11B) = 1.05 UM, ICs (11C) = 0.58 UM ICs, (11D) =
4.85 UM; PCAF: ICs, (11A) = 14.13 uM, ICs, (11B) = 10.0 M,
1Csp (11C) = 27.1 uM ICs; (11D) = 7.16 uM]. When docked on
p300, these compounds share a similar binding mode, consisting
on the formation of hydrogen bonds with key residues Argl410,

Thr1411, and Trp1466, similarly to acetyl-CoA. However, none
of these compounds showed activity on cancer cell lines, apart
from 11D, although the authors of the paper do not exclude off-
target effects in this case (Guo-Bo et al., 2016).

Compound 11B (also indicated as Palmatine) has been used
as source of inspiration to design B-homo palmatine (12A-F)
and B-homo berberine derivatives (12G-K) all endowed with a
central dihydroazepine B ring (Figure 7). Amongst them, B-
homo palmatine derivative 12B showed the best potency towards
p300 (ICso of 0.42 M) with a 10-fold increase compared to its
parent compound 12A (ICsy = 4.5 uM). Similarly, the B-homo
berberine derivative 12H showed a better inhibitory activity than
its parent compound 12G (ICs, = 9.2 and 1.8 uM for 12G and
12H, respectively). The SAR evaluation indicates that generally
B-homo berberine derivatives are less active than the palmatine
ones, and the shift of the methoxy group from R; to R, position
improves the inhibitory activity. Moreover, the replacement of
methoxy groups with bulky substituents such as benzyloxy
moieties does not affect or even decreases the activity of these
compounds against p300 [ICs, (12C) = 4.7 uM, ICs, (12D) = 9.4
UM, ICsq (12I) = 2.5 uM], and the addition of a benzyl group to
the quaternary amine massively decreases the inhibitory activity
in both series [ICso (12E) = 4.7 uM, ICsq (12F) = 7.4 uM, ICs,
(12]) = 34 uM, IC5, (12K) = 44 uM] (Yang et al.,, 2018).

Prostaglandins

Some cyclopentenone prostaglandins (CyPGs) were shown to
possess p300 inhibitory activity (Ravindra et al., 2012). In
particular, A12-PGJ, (13A) and PGJ, (13B) (Figure 8)
displayed ICs, values of 0.75 uM and > 2 UM, respectively.
Docking studies suggest that 13A assumes a conformation such
that the electrophilic carbon of the o,B-unsaturation in the
cyclopentenone ring is close enough to Cys1438 of p300 to
form a covalent Michael adduct. Further experiments involving
site-directed mutagenesis of the p300 KAT domain, peptide
competition assays, and mass spectrometric analysis validated
the hypothesis of the covalent interaction of A12-PGJ, with
Cys1438. Both A12-PGJ, and PGJ, were found to inhibit H3
histone acetylation in cell-based assays. In addition, A12-PG]J,
also inhibited acetylation of the HIV-1 Tat by recombinant p300
in vitro. This effect was translated in UI/HIV cells (human
monocytic cells chronically infected with HIV-1), contributing
to the reduction of HIV viral gene expression (Ravindra
et al., 2012).

Peptides

The peptide metabolites of Penicillium species 14A (NK13650A)
and 14B (NK13650B) (Figure 8) are potent and selective
inhibitors p300 with ICs, values of 11 and 22 nM, respectively.
Remarkably, they suppress the transcriptional activation
mediated by the oestrogen and androgen receptors and reduce
the cell viability in tumor cell lines, including prostate cancer
cells (Tohyama et al.,, 2012). Their peptide nature is the main
cause of low cell absorption and metabolic instability, however
given their high potency and selectivity these compounds
represent a good starting point for the development of
optimized peptidomimetic drugs.
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CONCLUSIONS AND PERSPECTIVES

Over the past decades, KAT aberrant activity has been connected
to a vast range of diseases, particularly cancer. Thus, it is not
surprising that great efforts have been made towards the
discovery of KAT modulators. Natural compounds have always
been a valid starting point for the development of small molecule
drugs and, as we have described in this review, a great number of
KATi have been obtained from or are indeed (semi)-synthetic
derivatives of plant extracts or other natural sources (Table 1).
However, many reported naturally derived KATi present
poorly understood mechanism of action and have many oft-
target effects. Therefore, often further structure-activity
optimization efforts are necessary to obtain the desired potency,
selectivity, and in cell activity. This would be particularly beneficial
not only for the obtainment of clinically active drugs, but also for
the development of biological tools to further understand the

B-homo berberine derivatives
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MeO 07 07
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FIGURE 7 | Structures and (semi)-synthetic derivatives of alkaloids with KAT inhibitory activity (11a-d and 12a-k).

intricate and multifaceted roles of the various KAT isoforms in the
context of cellular homeostasis. In fact, while targeting different
proteins may be useful to obtain the desired phenotypic effect (for
instance, decreased expression of oncoproteins), especially in the
epigenetics field (Tomaselli et al., 2020), a biological probe must
have a specific target in order to correlate the observed phenotypic
effect to a specific molecular interaction.

The release of the co-crystal structures of the recently
discovered p300 inhibitor A-485 (Lasko et al, 2017), and the
MOZ/MOREF inhibitors WM8014 and WM1119 (Baell et al.,
2018) have paved the way for the development of novel highly
potent and selective KATi. Nonetheless, may other KAT isoforms
remain untargeted and natural products represent an ideal starting
point for the development of novel therapeutics using both
structure-based and ligand-based drug discovery approaches.

We envisage that the impact of natural products in the
development of KATi, and more in general in drug discovery,

Frontiers in Pharmacology | www.frontiersin.org

August 2020 | Volume 11 | Article 1243


https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Fiorentino et al. KAT Inhibitors of Natural Origin

13a A"2-PGJ, 13b PGJ,
HooC
14a \j o NH
NK13650A Py E% HO
HO N
HOOC H oHo (0] o QOOH HN B \/\HJJ\NHZ
NH
\J R N >0 =
14b H o
NK13650B HO

FIGURE 8 | Structures of prostaglandins (CyPGs) and Penicillium peptide metabolites with KAT inhibitory activity (13a-b and 14a-b).

TABLE 1 | Most significant KAT modulators from natural sources.

Compound Structure In vitro activity Cell based activity References

1a
Garcinol

p300 ICs50 = 7 uM Histone Balasubramanyam et al., 2004a
PCAF ICs5p = 5 uM hypoacetylation &

induction of

apoptosis in various

cancer cell lines.

1d
LTK-14

p300 ICsp = 5-7 UM In-vivo impairment of  Mantelingu et al., 2007b
HIV reproduction
through inhibition of
p300-mediated
acetylation of p53

p300 ICs0 = 2.9 uM Decrease of H4K5 Milite et al., 2015
CBP IC50=1.1 uM and H3K9 acetylation

levels and cell cycle

arrest in GO/G1

phase in

human leukaemia

OH U937 cells.

2a OH p300 ICs50 = 30 uM Disruption of NF-kB  Choi et al., 2009

Epigallo-catechin-3- i OH CBP ICs0 = 50 uM signalling.

19
EML425

gallate (EGCQG) PCAF IC50 = 60 uM
OH Tip60 ICs = 70 uM

3a Curcumin OH O p300 ICsp = 25 UM Inhibition of p300- Balasubramanyam et al., 2004b
MeO SN P OMe dependent
O O acetylation of histone
HO OH H3/H4 & p53.
5 o PCAF ICs0 = 7.2 uM Reduction of PCAF-  Modak et al., 2013
Embelin OH mediated MyoD

acetylation in
HO HEK293T cells.

(Continued)
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TABLE 1 | Continued

Compound Structure In vitro activity Cell based activity References
6a OH O p300/CBP ICso = 5-1,000 uM Repression of NF-kB  Wapenaar et al., 2015
Anacardic acid PCAF IC50 = 5-667.1 uM signalling through Wu et al., 2009
OH Tip60 IC5o = 64-347.6 M inhibition of p65 Balasubramanyam et al., 2003
MOF ICs = 43-64 uM subunit acetylation. Ghizzoni et al., 2012
14

p300 ICso = 57.5 pM

p300/CBP 74% inhibition @50

PCAF 137% activation @100 uM

Decrease in H3 & H4
acetylation in human
leukaemia U937
cells.

Apoptotic effect and
block of cell cycle in
S phase in human

Hemshekhar et al., 2012
Lenoci et al., 2014

Sbardella et al., 2008
Castellano et al., 2015
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PCAF 79% inhibition @100 uM

p300 ICsp = 11 NM

leukaemia U937 cell
line.

Cytotoxic effect in
various cancer cell
lines with ICsq values
ranging from 25 to
80 uM

Park and Ma, 2012)

Repression of
transcription
mediated by
androgen and
estrogen receptors &
cell viability reduction
in various cancer cell
lines.

Tohyama et al., 2012

will continue to be central. The continuous improvements in
protein purification, bioanalytical technologies (Johnson et al.,
2011), and structural biology approaches such as cryo-electron
microscopy (Poepsel et al., 2018) and structural mass
spectrometry (Mehmood et al., 2015; Fiorentino et al., 2019),
will further facilitate the evaluation and the employment of these
molecules in research.
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