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Sexual differences and the composition/function of the gut microbiome are not considered
the most important players in the drug metabolism field; however, from the recent data it is
obvious that they may significantly affect the response of the patient to therapy. Here, we
evaluated the effect of microbial colonization and sex differences on mMRNA expression
and the enzymatic activity of hepatic cytochromes P450 (CYPs) in germ-free (GF) mice,
lacking the intestinal flora, and control specific-pathogen-free (SPF) mice. We observed a
significant increase in the expression of Cyp3al7 in female SPF mice compared to the
male group. However, the sex differences were erased in GF mice, and the expression of
Cyp3al1 was about the same in both sexes. We have also found higher Cyp2c38 gene
expression in female mice compared to male mice in both the SPF and GF groups.
Moreover, these changes were confirmed at the level of enzymatic activity, where the
female mice exhibit higher levels of functional CYP2C than males in both groups.
Interestingly, we observed the same trend as with CYP3A enzymes: a diminished
difference between the sexes in GF mice. The presented data indicate that the mouse
gut microbiome plays an important role in sustaining sexual dimorphism in terms of
hepatic gene expression and metabolism.

Keywords: liver cytochromes P450, gut microbiome, sex difference, germ-free mice, metabolism of drugs

INTRODUCTION

The gut microbiome, an aggregate genome of trillions of microorganisms, provides a wide range of
beneficial functions for the host and has an immense effect on the host’s health status and
predisposition to disease (Kinross et al., 2011). This ecosystem of bacteria, archaea, viruses, and
unicellular eukaryotes is mostly stable in the long run, but transiently they may be affected by many
factors (Schlomann and Parthasarathy, 2019). Among the wide range of factors that influence the
composition of the gut microbiota, diet seems to be the most potent (Wilson et al., 2020). Although
the effect of sex appears to be less influential, some studies highlight sex-based differences in the gut
microbiome (Markle et al., 2013; Haro et al.,, 2016; Org et al., 2016). Also, the interactions between
the diet and gut microbiota tended to be sex-dependent (Bolnick et al., 2014). It is now clear that
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without this bacterial community, the immune system
and other physiological processes would never reach their
full potential (Tlaskalova-Hogenova et al., 1983), and an
imbalance in its composition leads to a broad spectrum of
pathological conditions. Moreover, studies have shown that the
gut microbiota influence the metabolism and toxicity of
xenobiotics (Sousa et al., 2008; Jourova et al., 2016; Wilson and
Nicholson, 2017) with an impact on their oral bioavailability and
pharmacokinetics (Yoo et al., 2014; Jourova et al., 2019).

Cytochromes P450 (CYPs) are key enzymes involved in the
initial metabolism of drugs in humans, including 70-80% of all
drugs in clinical use (Anzenbacher and Anzenbacherova, 2001).
The expression of these enzymes is under the control of specific
nuclear receptors (Hakkola et al., 2018), and their regulation is
influenced by many factors such as genetic polymorphisms,
regulation by cytokines, pathological states, age, etc. (Zanger
and Schwab, 2013). In addition, the gut microbiome mentioned
above has been shown to play an important role in this, and its
effect on the expression of CYP enzymes has been published
recently (Matuskova et al., 2010; Selwyn et al., 2015; Selwyn et al.,
2016; Jourova et al., 2017). Further, sex influences a number of
important pharmacokinetic parameters including the expression
of drug-metabolizing enzymes and transporters (Yang et al,
2012). It has been also found that sex differences together with
circadian rhythmicity influence the CYPs and nuclear receptor
expression in the mouse liver (Lu et al., 2013).

Sexual differences and the composition/function of the gut
microbiome are not considered the most important players in the
drug metabolism field; however, from the recent data it is obvious
that they may significantly affect the patient’s response to therapy.
Deeper knowledge of their combined effect on the function of
CYPs may be helpful for predicting pharmacokinetics and drug
response in a particular patient and avoiding undesirable side
effects, which is especially important for drugs with a narrow
therapeutic index.

Here, we evaluated the effect of microbial colonization and
sex differences on the mRNA expression and enzymatic activity
of hepatic cytochromes P450 (CYPs) in germ-free (GF) mice,
lacking the intestinal flora, and control specific-pathogen-free
(SPF) mice.

MATERIALS AND METHODS

Chemicals
Protease inhibitor cocktail tablets (EDTA free Complete Protease
Inhibitor Cocktail Tablets) were supplied by Roche (Prague,
Roche, Czech Republic). Hydrochloric acid (p.a., 37%) was
supplied by Penta (Prague, Czech Republic), and sodium
chloride and dimethyl sulfoxide were obtained from Lach-Ner
(Neratovice, Czech Republic). Acetonitrile was supplied by VWR
International (Prague, Czech Republic) and was obtained in the
highest purity available.

Substrates of orthologous human CYP forms for the
determination of murine CYP activities (ethoxyresorufin,
diclofenac, diazepam, bufuralol) and their respective metabolites

were supplied by Sigma-Aldrich CZ (Prague, Czech Republic).
Midazolam was purchased from Abcam (Cambridge, UK). Other
chemicals were purchased from Sigma-Aldrich CZ (Prague, Czech
Republic). All chemicals were of the highest purity available.

Animals and Experimental Design

Male and female germ-free (GF) and specific-pathogen-free
(SPF) inbred BALB/c two-month-old mice were used for the
experiment (5 animals per group). GF mice were born and
housed under sterile conditions in Trexler-type plastic isolators
and fed a 50 kGy irradiated sterile pellet diet of Altromin 1410
(Altromin, Lage, Germany) and sterile water ad libitum.
Axenicity was assessed every two weeks by confirming the
absence of bacteria, moulds, and yeast by aerobic and
anaerobic cultivation of mouse feces and swabs from the
isolators in VL (Viande-Levure), Sabouraud-dextrose, and
meat-peptone broth and subsequent plating on blood,
Sabouraud, and VL agar plates. SPF mice were kept in IVC
cages (Tecniplast, Italy) and fed with the same sterile diet as their
gnotobiotic counterparts. SPF mice were regularly checked for
the absence of potential pathogens according to an
internationally established standard (FELASA). Animals were
kept in a room with a 12 h light-dark cycle at 22°C. Two-month-
old mice were used for our experiments.

The mice were euthanized at the age of 8-12 weeks by cervical
dislocation and exsanguination. The livers were aseptically
removed, weighed, frozen in liquid nitrogen, and subsequently
stored at -70°C until further processing.

Preparation of Subcellular Fractions
Microsomal fractions were obtained from the liquid nitrogen-
frozen liver of mice. Microsomes were prepared by differential
centrifugation according to established protocols (Lake, 1987).
The buffer for homogenization was supplemented with protease
inhibitor cocktail tablets (Roche CZ, Prague). Microsomal
fractions were stored at —80°C. Protein concentrations in the
microsomal fractions were assayed using a bicinchonic
acid assay according to the established method (Smith et al.,
1985). The concentration of CYP enzymes in liver microsomes
was determined using difference spectroscopy (Zhang
et al., 2010).

RNA Isolation and Quantitative Real-Time
PCR (qPCR)

Total RNA was isolated from tissue samples stored in RNAlater
(Qiagen, Dynex, Czech Republic) using an RNeasy Plus Mini Kit
(Qiagen). RNA concentration and purity was determined
spectrophotometrically, and the RNA integrity was verified by
gel electrophoresis. First strand cDNA was synthesized from
total RNA with a Transcriptor High-Fidelity cDNA synthesis kit
(Roche, Prague, Czech Republic). Real-time PCR for CYPs
quantification was performed in a LightCycler 1536 Instrument
(Roche, Prague, Czech Republic) using specific TagMan Gene
Expression Assays (Applied Biosystems, Life Technologies,
Prague, Czech Republic). The 1536-well plates were pipetted
using an Automate Labcyte Echo (Dublin, Ireland).
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The calculations were based on the “Delta-Delta Ct method”
(Livak and Schmittgen, 2001). The data was expressed as the fold
change in the treatment groups relative to the control, and
HPRT1 and 18S RNA were used as an internal control.

Enzyme Assays

Enzyme activities were assayed in the microsomal fractions from
the homogenate of mouse liver. The amount of organic solvents
in the final reaction mixtures did not exceed 1% (v/v). The
enzyme activities of selected CYP enzymes were measured
according to the established method (Kronbach et al., 1989;
Phillips and Shephard, 2006). For the determination of murine
CYP activities, substrates of orthologous human CYP forms were
used: CYP1A1/2, ethoxyresorufin (murine CYP1A2); CYP2C9,
diclofenac (murine 2C subfamily); CYP2C19, diazepam (murine
2C subfamily); CYP2D6, bufuralol (murine 2D22) and CYP3A4,
midazolam (murine CYP3A11 and 3A13). All activities were
measured using a Shimadzu LC-20 HPLC system (Shimadzu,
Kyoto, Japan) with UV or fluorescence detection being used for
the determination of metabolites. The measurements were
performed in a LiChrospher RP-18 column or a Chromolith®
High Resolution RP-18 endcapped column (determination of
midazolam substrate) (Merck, Germany).

Statistics
The normal distribution of data was tested using Shapiro-Wilk
test. The statistical significance of gene expression was determined
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by two-way ANOVA using software IBM SPSS Statistics for
Windows, Version 23.0 (Armonk, NY: IBM Corp.). Differences
were regarded as statistically significant when the p-value was
lower than 0.05. Software GraphPad Prism 8 (GraphPad Software
Inc., California, USA) was used to create the graphs. Due to the
scarcity of material, the statistical significance of activity assays
could not be determined.

RESULTS

We investigated the role of sex and presence/absence of the gut
microbiome on the gene expression and enzymatic activity of
CYPs in the liver using germ-free (GF) mice, lacking the
intestinal flora and specific-pathogen-free (SPF) mice. SPF
male data were used as a control group.

The Cyp3all mRNA was significantly increased (21 times) in
female SPF mice compared to their male counterparts.
Interestingly, these phenomena were not observed in GF mice,
where the GF female mice have shown rather decreasing
tendency compared to other groups (Figure 1).
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FIGURE 1 | Comparison of estimated marginal mean values of mRNA expression of selected Cyps in relation with microbiome presence and sex in mice liver.
The data represent the mean +SD from 4-5 individual animals. The statistical significance was determined using two-way ANOVA and p-values for the effect of
microbiome (i.e., difference between SPF and GF groups), sex and combined effect of the both are shown in the tables below the respective graphs.
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larger extent in SPF mice. In the case of the Cypla2 and Cyp2c29,
the mRNA expression was significantly decreased in SPF and GF
female mice compared to the control (Figure 1).

The females of both groups (GF and SPF) exhibited a much
greater enzymatic activity of 2C (using diclofenac as substrate)
than the male groups (Table 1). The effect of gut microbiome
was also observed as the GF male and female have shown
increased 2C enzymatic activity compared to their SPF
counterparts (Table 1). The enzymatic activity of CYP3A was
significantly decreased in GF mice compared to SPF mice. In the
female groups, the activity of CYP3A did not differ significantly
from the male groups but had a tendency to decrease (Table 1).
The other selected CYP activities were not significantly changed
by the gut microbiome presence or sex (Table 1).

DISCUSSION

Recent studies clearly show that the gut microbiota plays an
indispensable role in the equation leading to interindividual
variation in response to therapy. For this reason, to reach
the desired goal of “personalized medicine,” in addition to
other factors, we have to take into account our 100 trillion
bacterial inhabitants and their genomes with substantial
metabolic potential.

The effect of the gut microbiota on the hepatic gene
expression of some CYPs in mice has been previously studied
(Claus et al., 2011; Selwyn et al., 2015; Selwyn et al., 2016; Jourova
etal,, 2017). Most of these experiments, however, were only done
with male mice and did not consider sex-specific differences.
However, sex differences were among the main variables
influencing the hepatic drug metabolism in rodents (Corton
et al.,, 2012). Moreover, some animal and human studies pointed
out sex/gender-related differences in gut microbiota composition
(MarKkle et al.,, 2013; Haro et al., 2016; Org et al., 2016). Little is
known about the combined effect of both factors. Thus, we
assumed not only the effect of the microbiome but also sex
differences in the presence/absence of gut microbiota on the
regulation of liver biotransformation enzymes.

In rodents, sex differences are one of the most important
factors influencing drug metabolism in the liver (Corton et al.,
2012). Further, mice females have been shown to have a higher
expression of most Cyp genes (Renaud et al, 2011; Lu et al,
2013). A higher expression of Cyp3all in female mice than males

was reported earlier (Hernandez et al., 2009; Renaud et al., 2011).
Even though in humans the differences are subtler, it is known
that the CYP3A4 activity features apparent sexual dimorphism
with higher activity in women due to differences in growth
hormone patterns (Waxman and O’Connor, 2006). In line
with these data, we observed a significant increase in the
expression of Cyp3all in female SPF mice compared to the
male group. Interestingly, the sex differences were erased in GF
mice, and the expression of Cyp3all was about the same in both
sexes. In other words, there is significant interaction between the
gender and presence of the gut microbiome, which together
influence the Cyp3all mRNA expression. A recent paper has
proposed a possible explanation, showing that the mouse
microbiome is required for sex-specific diurnal rhythms of
gene expression and metabolism (Weger et al,, 2019). The
enzymatic activity of CYP3A (using midazolam as a substrate)
in both the male and female mice lacking the microbiota was
significantly decreased compared to their SPF counterparts.
These results are in line with our previous study on the GF
and SPF male mice (Jourova et al., 2017). Further we have found
that the activity of CYP3A did not differ significantly in female
groups from the male groups, but had a tendency to decrease.
This data suggests that the down-regulation of CYP3A enzymes
may not be sex-specific and, above all, that the gut microbiome is
crucial in the synthesis of CYP3A in both sexes.

Moreover, we have found a higher Cyp2c38 mRNA
expression in female mice compared to male mice in both SPF
and GF groups. Moreover, these changes were confirmed at the
level of enzymatic activity (using diclofenac as substrate), when
female mice exhibit higher levels of functional CYP2C than males
in both mice groups. Interestingly, we observed the same trend as
with CYP3A enzymes: diminishing the changes between sexes in
GF mice. The increase in Cyp2c38 expression in the female group
compared to the male was almost two times lower in GF mice
than in SPF mice (2 times in the case of enzymatic activity of
CYP2C). In other words, sex differences in Cyp2c38 expression
and the enzymatic activity of CYP2C were less pronounced in GF
mice. Therefore, not only the effect of sex but also the combined
effect of gut microbiome and sex was found significant in
regulation of Cyp2c38 mRNA expression in the liver of mice.
In humans, CYP2C and CYP3A enzymes are abundantly present
in the liver and, completely or partially, metabolize a large
fraction of all prescribed drugs (Anzenbacher and
Anzenbacherova, 2001). The presented data thus highlight the

TABLE 1 | Difference in enzymatic activity of CYPs in liver of SPF and GF male and female mice.

SPF GF
Male (CONTROL) Female Male Female
CYP1A1/2-like 1.000 + 0.023 0.868 + 0.057 1.229 + 0.010 1.124 + 0.045
CYP2C9-like 1.000 £ 0.017 6.254 + 0.086 A 3.076 + 0.081 A 9.950 + 0.010 A
CYP2C19-like 1.000 + 0.016 1.067 + 0.011 0.740 + 0.035 0.624 + 0.006
CYP2D6-like 1.000 + 0.025 1.126 + 0.035 0.947+ 0.011 1.186 + 0.009
CYP3A4-like 1.000 + 0.066 0.710 £ 0.040 V 0.300 + 0.092V 0.242 + 0.046 V

Samples were measured in triplicates in a pooled liver microsomal fraction from 5 animals. Data represent the mean + SD and values significantly increased (A ) or decreased (¥ ) relative to
the control (SPF male mice) are labelled. Significantly changed values are highlighted in bold.

Frontiers in Pharmacology | www.frontiersin.org 4 October 2020 | Volume 11 | Article 01303


https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Jourova et al.

Sex-Differences in Microbiome Effect on Liver CYPs

possible modulation of the response to a broad spectrum of
clinically used drugs by the interaction of gut microbiota and the
sex-based hormonal level.

As mentioned in the Introduction, the regulation of the CYP
expression is very complex and many factors play a role here
(Zanger and Schwab, 2013), and among them, the gut
microbiome is gaining the increasing attention of scientists.
After all, the gastrointestinal tract, with 100 trillion microbes,
is a rich resource of microbial metabolites that may be
responsible for the indirect effect of gut microbiome on whole-
body metabolism (Lee and Hase, 2014). Moreover, novel
potential mechanism of action of the gut microbiome in
regulation of host metabolism was defined recently by Weger
et al. (2019). They have found that the absence of the
microbiome reduces liver sexual dimorphism. In other words,
microbial metabolites contribute significantly to maintaining the
sex differences in gene expression and metabolism by promoting
proper sexual development and growth hormone secretion
(Weger et al,, 2019). These effects are often associated with
activation of nuclear receptors such as aryl hydrocarbon
receptor (AhR) and pregnane X receptor (PXR), which
participate in regulation of CYPs expression (Zhang et al,
2010; Huang et al., 2016). CYP enzymes, however, are not only
involved in detoxification of xenobiotics, but they are involved as
well in the synthesis of steroid hormones, eicosanoids,
prostaglandins, and thromboxanes (Nebert and Russell, 2002).
CYP3A4 contributes to the oxidation of many steroids (Niwa
et al., 2015), and its activity in humans is sexually dimorphic
(Lamba et al., 2010). The exact mechanism for sex differences in
CYP3A4 (and other CYPs) remains elusive but may include
altered growth hormone signalling (Waxman and Holloway,
2009). All data mentioned above open the possibility of an
important involvement of microbiome-derived metabolites in
the signalling pathways regulating hepatic drug metabolism and
sexual dimorphism in gene expression.

In conclusion, the current data and the literature indicate that
the gut microbiome plays an important role in sustaining the
sexual dimorphism in hepatic gene expression and metabolism.
As the concept of modulating the gut microbiome to improve
health may provide promising therapeutic effects, further studies
are needed to explain in more detail the role of the gut
microbiota, along with other factors, in the pathways that
participate in the regulation of CYP synthesis and drug
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