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GPR (G protein receptor) 139 and 142 are novel foundling GPCRs (G protein-coupled
receptors) in the class “A” of the GPCRs family and are suitable targets for various
biological conditions. To engage these targets, validated pharmacophores and 3D QSAR
(Quantitative structure-activity relationship) models are widely used because of their direct
fingerprinting capability of the target and an overall accuracy. The current work initially
analyzes GPR139 and GPR142 for its genomic alteration via tumor samples. Next to that,
the pharmacophore is developed to scan the 3D database for such compounds that can
lead to potential agonists. As a result, several compounds have been considered, showing
satisfactory performance and a strong association with the target. Additionally, it is
gripping to know that the obtained compounds were observed to be responsible for
triggering pan-cancer. This suggests the possible role of novel GPR139 and GPR142 as
the substances for initiating a physiological response to handle the condition incurred as a
result of cancer.

Keywords: GPR142, molecular modeling, pharmacophore, 3D quantitative structure-activity relationship, 7TM,
pan-cancer, the cancer genome atlas

INTRODUCTION

Computational biology and immunoinformatic are the multidisciplinary fields that are progressing
rapidly (Wadood et al., 2017). Besides, in vitro, and in vivo techniques are extremely demanding but
still relatively challenging because of various factors such as resources, time of the experiment,
experimental labor, cost, and environmental issues and safety as compared to the computational
approaches. However, combining both these in silico and in vitro/in vivo techniques is highly
essential for addressing a particular biological condition or targets such as the decryption of an
immune response and vaccine design (Korber et al., 2006). The in silico drug designing, often referred
to as Computer-Aided Drug Design is mainly grouped into two classes which are termed as
structure-based and ligand-based. Thus, various techniques are practiced for this to computationally
propose a drug or peptide for a particular biological condition. These techniques could either be for
designing and discovering purposes or validation. For instance, to discover and recommend a drug
for a unique or resistant viral infection, next to the background history and understanding the
mechanism of action, a virtual screening (VS) approach is applied that scans various small
compounds’ databases (i.e. ZINC, PubChem, MAYBRIDGE, etc.) (Shemetulskis et al., 1995;
Irwin and Shoichet, 2005; Kim et al., 2015) to discover those hits that are more likely to be
engaged with the target. In the field of Computer-Aided Drug Design, the word “hits” is a term used
for compounds that are hypothesized that they may have a stronger affinity with the target. Before
this VS technique, a 3D ensemble of chemical and molecular features known as pharmacophore is
designed (Schneider et al., 1999; Wadood et al., 2017). It is crucial because this 3D model can

Edited by:
Defang Ouyang,

University of Macau, China

Reviewed by:
Sudheer Kumar Ravuri,

Steadman Philippon Research
Institute, United States

Shuang-Xi Gu,
Wuhan Institute of Technology, China

*Correspondence:
Xiaofeng Dai

xiaofeng.daii@jiangnan.edu.cn
Dong-Qing Wei

dqwei@sjtu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to
Translational Pharmacology,

a section of the journal
Frontiers in Pharmacology

Received: 18 December 2019
Accepted: 23 November 2020
Published: 19 February 2021

Citation:
Kaushik AC, Mehmood A, Dai X and
Wei D-Q (2021) Pan-Cancer Analysis

and Drug Formulation for GPR139
and GPR142.

Front. Pharmacol. 11:521245.
doi: 10.3389/fphar.2020.521245

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 11 | Article 5212451

ORIGINAL RESEARCH
published: 19 February 2021

doi: 10.3389/fphar.2020.521245

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.521245&domain=pdf&date_stamp=2021-02-19
https://www.frontiersin.org/articles/10.3389/fphar.2020.521245/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.521245/full
http://creativecommons.org/licenses/by/4.0/
https://loop.frontiersin.org/people/752108/overview
https://loop.frontiersin.org/people/545797/overview
https://loop.frontiersin.org/people/1099317/overview
mailto:xiaofeng.daii@jiangnan.edu.cn
mailto:dqwei@sjtu.edu.cn
https://doi.org/10.3389/fphar.2020.521245
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.521245


recognize similar ligands or macromolecules from the enormous
number of drugs like compounds provided in huge databases
during the VS process (Sun, 2008).

Apart from VS, molecular docking (MD) (Huang et al., 2006)
is a highly acceptable and practiced technique that considers the
3D conformation of a drug and its target in real-time and scores
the performance of the drug along with providing various
physical and chemical properties. Additionally, it explores how
a drug interacts with the target that can be visualized in a 2D or
3D plane. There exists various offline and online software that are
used for VS and MD. Few of the major software and servers are
GOLD (Joy et al., 2006), AutoDock (Trott and Olson, 2010),
PatchDocK (Mehmood et al., 2019; Schneidman-Duhovny et al.,
2005; Khan et al., 2018), Molecular Operating Environment
(MOE) (Roy and Luck, 2007), Schrödinger suite (Bhachoo and
Beuming, 2017), and FireDock (Andrusier et al., 2007). Drugs
that perform satisfactorily are observed to be engaged with their
targets are subjected to another technique that is termed as
molecular dynamics simulation (MDS) which is also a real-
time cellular system with an optimum human body pressure,
temperature, water, and pH that is built inside a computer driven
by a particular forcefield (FF) such as OPLS, AMBER96,
GROMACS 431, etc. in software like AMBER (Junaid et al.,
2019), GROMACS (Wang et al., 2019) or SCHRÖDINGER
(Winstead and Ravaioli, 2003). Nevertheless, the successful
outcomes of all these sophisticated techniques (MD and MDS)
depend on the most crucial step in this whole process which is the
selection of accurate compounds. This selection directly depends
on the classical VS technique whose quality is dependent on the
quality of the pharmacophore model. Similar to this, QSAR
models also bears great importance. It is an approach of vital
importance for chemistry and pharmacy that is created on the
concept that the activity of a molecule can be altered by bringing
amendments into its structural configuration. These structural
amendments may be implemented for virtual computational
operations, intentional in vitro projects such as synthetic
research, or only meant to investigate available substances.
This method involves the mapping of property and chemical
spaces using modeling functions that are associated with a
chemical structure to property or more simply a function that
relates property to molecular descriptors. This allows us to
competently design and propose new potent compounds that
possess the required features and perform the desired function.

Researchers in drug designing areas frequently go for existing
commercial software like the Schrodinger software suite. This
package has in-built modules which are highly demanding like
Phase (Dixon et al., 2006a; Dixon et al., 2006b), ConfGen (Watts
et al., 2010), and MacroModel (Watts et al., 2010) for
Pharmacophore hypotheses generation (Mitra et al., 2010) and
3D QSAR model development (Lee and Briggs, 2001; Kubinyi
et al., 2006; Pissurlenkar et al., 2007; Jiang, 2010; Lauria et al.,
2010; Puzyn et al., 2010; John et al., 2011). The G protein-coupled
receptors (GPCRs) regulate a countless number of physiological
signaling cascades in the body, constituting a rich source of
targets for the pharmacological deterrence of various human
ailments (Atanes et al., 2018). Most of the GPCRs are
expressed in the pancreatic islets are still considered as

“orphan” which are poorly considered functional and or still
have no recommended ligands and have not been used as
promising antidiabetic targets (Amisten et al., 2017). A very
limited quantity of functionally characterized GPCRs in the
human body is the target for greater than 30% of all the
current diseases. This stresses the reputation of the rest of
GPCRs that lacks a functional chart yet in this regard.
Analyses of such targets could reveal innovative ways to treat
several biological conditions such as metabolic syndrome, cancer,
and diabetes. Concerning the current study, the GPR139 and
GPR142 are vital targets for numerous conditions and are
therefore targeted in this work to discover potent compounds
for them using valid pharmacophore and 3D QSAR studies that
may have the ability to prevent us from the situation that is likely
caused by these GPCRS.

METHODOLOGY

All the steps and techniques employed here are described in detail
while the overall workflow of this work is diagrammatically
represented in Figure 1.

Genomic Modifications Summary
The GPR139 and GP142 tumor samples were used to summarize
the genomic alterations. For such analysis, wide-ranging CNA
(amplifications and homozygous deletions) and color tagging
were considered to review alterations in the gene expression. This
was an initial approach to comprehend various forms of gene
signaling in the Pan-cancer. The common exclusivity and co-
occurrence between GPR139 and GPR142 were examined as well.
Events associated with a particular cancer are high time differing
in tumor clusters i.e., only a solitary biological incident is
anticipated to happen in each cancerous sample. An additional
situation is the concurrent existence of changes in several genes in
the same sample. This was a preliminary way to collect
information linked with various gene signaling in the pan-cancer.

GPR139 and GPR142 Mutations in
Pan-Cancer
The locations and frequency of all themutations within Pfam protein
domains were detailed via mutations of GPR139 and GPR142. The
whole extent of GPR139 and GPR142 is represented by colored bars
while the base of every bar stands for the amino acids’ amount.
Colored regions are representing the protein’s domain and the lines
and points signify the location and amount of GPR139 and GPR142.
The frameshift or nonsense mutations, missense mutations, and in-
frames are visually represented in Figure 2.

Overall Survival Inspection
To highlight changes with time for prognosis purposes, the
survival analysis bears great importance. In the current work,
the Kaplan-Meier plots were used to evaluate differences in the
overall survival among samples that were having more or equal to
one alteration as that of the query gene(s). This was applied to
those samples also that exhibits no alteration.
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FIGURE 1 | The overall workflow of the steps taken for the successful pharmacophore’s perception, 3DQSARmodel development, and 3D database screening for
GPR142.

FIGURE 2 | Expression ofGPR139 and GPR142 in pan-cancer from analyzed TCGA data. Panel (A)GPR139 expression breakdown; Panel (B)GPR139 tumor
and normal expression breakdown; Panel (C) GPR142 expression study; Panel (D) GPR142 tumor and normal expression breakdown.
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Ligands’ Preparation
First of all, ligands were prepared before the construction of
pharmacophore along with the development of a 3D Database

using LigPrep (Chen and Foloppe, 2010) which 3D protonates,
convert the 2D structure into 3D, form stereoisomers, neutralize
charged structures, balances the ionization state and pH using the

FIGURE 3 |GPR139 and GPR142 Global modification occurrence in pan-cancer based on the TCGA data Panel (A) GPR139 variation occurrence investigation;
Panel (B) GPR142 variation frequency breakdown; Panel (C) Inclusive modification occurrence study; Panel (D) Ratio of the GPR139 mutations investigation; Panel
(E): Amount of GPR142 mutations breakdown. Panel (F) Amelioration rate, portraying genomic change per patient in the given samples, showing the mediation of
GPR139 and GPR142 signaling in the pan-cancer. Besides, the gene signaling can be facilitated as well upon the instigation or inactivation of cell cycle control
through truncating mutations. Panel (G) This board illustrates the amount of mutations uniqueness vs co-occurrence in the Genome.
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OPLS2005 force field (Jorgensen and Tirado-Rives, 1988;
Jorgensen et al., 1996; Shivakumar et al., 2010).

Common Pharmacophore Hypotheses
Development
A total of 63 compounds (see Supplementary Table S2) from the
available literature (Du et al., 2012; Lizarzaburu et al., 2012) were
chosen, having a particular EC50 value ranging from 0.036 to
33.00. Ligands were prepared; Amide activity property was
selected with all primary properties’ subset. The performance
is given as Activity � −log[1*value]. The ligands and their various
conformers were classified into sets to be used as input data (three
datasets are used in this case). The ligands’ conformer were
generated having activity above 0.02 when Active, and activity
below 0.01 when Inactive. Conformers were generated in such a
way that the number of conformers per flexible bond was equal to
100. The maximum number of conformers per structure was
equal to 1,000.

We employed ConfGen for the MacroModel search method
that practices rapid sampling. Different conformers were used for
Amide bonds which were pre-processed with a minimization step
equal to 100 while the minimization step for high energy and
redundant conformers was 50. The OPLS2005 force field was
employed for this purpose. Amaximum relative energy difference
equal to 10.0 kcal/mol was maintained for the distance-
dependent dielectric that eliminated redundant conformers
using the RMSD of 1.0 Å. Structure cleaning- Stereoisomers
retain specified chirality, meaning different chiral centers.
Thus, the maximum number of stereoisomers kept was 32,

and Ionization states retained the original structure using
phase Schrodinger suite software (Dixon et al., 2006a).

Creating Sites
For a given set of pharmacophoric features, sites of each feature in
the given ligand conformations were identified and marked such
as Acceptor (A), Donor (D), Hydrophobic (H), Negative (N), and

FIGURE 4 | Panel (A) Depicts stage plot of GPR139; Panel (B): depicts the correlation between GPR139 and GPR142 in pan-cancer; Panel (C): depicts stage
plot of GPR142 and Panel (D): depicts survival analysis of GPR139 and GPR142 in pan-cancer.

FIGURE 5 | Positive coefficient represented by dark blue color and
Negative coefficient represented by the red color, Hydrogen bond donor (D),
Hydrophobic/nonpolar (H), Electron-withdrawing (W) shown in the red cube,
where R5 has a common pharmacophoric feature, responsible for the
activity. A2 are in the negative coefficient and other R7, D3P4, and R5 are in
the positive coefficient shown in the supplementary information
(Supplementary Figure S2).
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Aromatic Rings (R). Features in the vector geometry were edited
and a point was selected, in projected acceptor was selected, in
point sp3, sp2, and sp were selected, 1 atom was used with
distance.

First Dataset (High-Affinity EC50 Value)
The first dataset contained a total of sixty compounds. The
activity thresholds were Active and Inactive if the compounds
are above 0.036 and below 0.001 respectively. The maximum
activity in the table was 0.930 while the minimum activity is
observed as 0.036. The higher and lower number of sites were 7
and 3 and respectively that must resemble a minimum of 35
compounds out of 38 inactive or active’s group. The hypotheses
generation scoring, clustering and examined hypotheses, defining
excluded volumes, selection of hypotheses for certain QSAR
methods as well as search for the similarity or matches with
the screened ligands were all carried out.

Second Dataset (Medium Affinity EC50
Value)
The second Dataset also contained the same number of
compounds just like the first one, equal to 60. The activity
threshold was Active and Inactive if the compounds are above
1.060 and below 1.000. On the other hand, the supreme
movement was 6.6000 while a minimum activity of 1.060. The
variants’ list was defined with a total of 7 maximum sites and a
minimum of 4 that must match at least 30 compounds out of 51
actives or in active’s group. Score hypotheses generation scoring,
clustering and examined hypotheses, defined excluded volumes,
selection of hypotheses for certain QSAR methods as well as
searching for similar compounds with screened ligands and
identified best pharmacophoric featured compounds (Kaushik
and Sahi, 2015).

Third Dataset (Low-Affinity EC50 Value)
The third Dataset was also comprised of 60 compounds, having
an activity threshold of >0.036 and <0.035 for Active and Inactive
respectively. The maximum activity in the table observed was
33.000 while the minimum activity score was found to be 0.036
that was maintained. Defined variants’ list- the maximum
number of sites was 7 and the minimum number of sites was
4 that had to resemble a minimum of twenty compounds with
that of the total 60 actives or inactive set. Score hypotheses
generation scoring, clustering and examined hypotheses,
defining excluded volumes, selection of hypotheses for certain
of QSARmethods as well as searching for matching with screened
ligands were performed.

RESULTS

GPR139 and GPR142 Expression in
Pan-Cancer
As a result of the expression analysis of GPR139, it was exposed
that a substantial amount of up and down-regulation that
explains the hotspots which are responsible for the activation
and role in BRCA, GBM, LGG, PCPG, and SARC as shown in
Figure 2 while expression analysis of GPR142 revealed a
substantial amount of up and down-regulation that explains
the hotspots which are responsible for the activation and role
in ESCA, LIHC, LUAD, LUSC, PAAD, STAD, TGCT, THCA,
and UCS as shown in Figure 2.

Genomic Site and Variations Summary
Based on the obtained conclusions, most of the cases were found
to be changing the GPR139 and GPR142. Upon further analysis,
it was revealed that nearly all of the observed variations were
missense mutations. Some deep deletions and few amplifications
have also been noticed. Nevertheless, the remaining of the cases
experienced alterations in GPR139 and GPR142 that are mainly
exhibiting truncating and missense mutations. Examining the
mutual exclusiveness suggests that events happened in GPR139
and GPR142 were responsible to occur again in pan-cancer
(GPR139 exposed in BRCA, GBM, LGG, PCPG, and SARC)
while GPR142 exposed in ESCA, LIHC, LUAD, LUSC, PAAD,
STAD, TGCT, THCA, and UCS) as represented in Figure 3.

Analyzing Survival Rate
To inspect the rate of survival, the Kaplan-Meier approach was
used to plot the complete survival analysis for the pan-cancer.
Based on the global survival analysis, it was observed that
mutations in the cell cycle control were concurrent and were
not associated with the overall decreased survival (p-value �

TABLE 1 | Pharmacophoric variant listing 21 out of 21 were selected, where the highest and lowest amount of positions are 7 and 4 correspondingly.

AAAADDP AAAADDR AAAADPR AADPRRR AAAADRR DDPRRRR AAPRRRR

AAAAPRR AAAARRR AAADDPR AADDRRR AAADDRR ADPRRRR ADDPRRR
AAADPRR AAADRRR AAAPRRR AADDPRR AAARRRR ADDRRRR AADRRRR

The selected variants were used for the generation of a maximum number of pharmacophoric hypotheses derived from a common pharmacophoremodel for the variants among the given
active ligands. All the 7 out of 7 variants accompanying the number of maximum pharmacophoric features were selected.

TABLE 2 | Selected and desired variants finding common pharmacophore for the
variants among the given active ligands, 7 out of 7 selected variants can be
seen in the variants’ column.

Variant Maximum
number of hypotheses

ADRRR 1
AADPR 5
AAPRR 8
APRRR 7
DPRRR 6
ADPRR 22
AADRR 3
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0.0615) as illustrated in Figure 4; while correlation analysis of
clinical features observed GPR139 and GPR142 correlated in the
progression of pathological stages.

Common Pharmacophoric Features
Identification
Maintaining common features in a pharmacophore model is very
important as they are the backbone of the parent molecules on
which the functionality of the drug highly depends. All the
common pharmacophoric features obtained from the 3D
Database of GPR142 using phase Schrodinger suite software
are summarized in the Supplementary Table S1. Out of 1,038
chemical structures fromGPR142 3DDatabase; only 5 are chosen
that are flexible chemical structures with an average reduction of
up to 1.18 Å plus they are having a better common
pharmacophoric match for pan-cancer target pharmacophore
shown in Figure 5.

Common Pharmacophore Identification
To identify a common pharmacophore model, the selected and
desired variants were used for the given active ligands (Tables
1,2).

Score Hypotheses
Score hypotheses generation was created by 30 out of 51. Apart
from this, clustering and examination of the hypotheses, defining
excluded volumes, and the selection of hypotheses for certain
QSAR methods as well as the search for features with screened
ligands were carried out. Score Actives; vector and site filtering
maintained only those variants’ that are having RMSD below
1.200 Å, vector score above 0.500 Å, and be the top 10%. The
quantity should be in the range of 10 (minimum) and 50
(maximum). The survival score formula for vector score is
1.000, +1.000 for site score, +1.000 as volume score, −0.000
for the reference ligand relative conformational energy, +0.000
as selective score, +1.000 for the number of matches, and +0.000
in case of the reference ligand activity. All the values are listed in
Table 3.

Building QSAR Model
In QSAR (Quantitative structure-activity relationship) model
building, the predicted structure-activity relations for the
matching ligands are investigated. The training set where the
random seed was 0, keeping actives and inactive in the training
set. The 3D QSAR model parameters were kept as standard. For
example, the Grid sampling was 1.00 Å, the maximum PLS factor
was 1, and the model type was atom-based (Table 4).

Model Validation
The model validation phase of the 3D QSAR models uses distinct
training and testing sets for the cross-validation approach. The
3D QSAR models estimate outcome which is derived from the
training set shown in Figure 5. The highly stable models are
preferred as they don’t rely completely on the training set.
Regarding the statistical parameters for the training set, the m
represents the number of PLS factors in the model, n represents
the number of molecules in the training set, dʄ1 �m+ 1 represents
the degrees of freedom in the model, dʄ2 � n – m – 2 denotes the
degree of freedom in the data, y represents the detected
movement for a training set molecule i, ŷi signifies the
predicted activity for training set molecule i and R2 � 1–σ2/σ2
is the R-squared or coefficient of determination. Test set
prediction was performed by phase defined parameters, where
T signifies the test set of molecules, nT denotes the number of
molecules in T, Yj is the observed activity for molecule j ε T, ŷj
means the predicted activity for molecule j ε T, and Q2 � R2 (T)
represents the Q-squared. The necessary parameters for the
ADPRR are given in Table 5; Figures 5,6.

Screened Ligands and Known Compounds’
Pharmacophore Analysis
The common pharmacophore using screened and known EC50
compounds was found along with a pharmacophore for those
variants which are among the given active ligands. The variants’
list was defined while the higher and the lower quantity regarding
the sites were kept as 7 and 4 correspondingly, matching at least
20 compounds out of 137 active or inactive groups as shown in
Figure 7. The variant list 269, after the identification of common
pharmacophore, the ADHPRRR.35 was considered having
maximum hypotheses as 16 with a survival rate of 2.960. The
site score was 0.58, a vector was equal to 0.939, volume was 0.442,
selectivity was 3.858 and the number of matches was 22. After the
alignment of ADHPRRR.35 hypotheses, its fitness value turned
out to be 2.02 and the number of site matches was 7 listed in
Table 6; Figures 7,8.

TABLE 3 | Score hypotheses of ADPRR.18 where site, volume, and matches are listed with alignment for a hypothesis of ADPRR.18 where compound number 25 is
observed to be a more valid and suitable one.

Site Vector Volume Selectivity Match Survival Energy Activity

ADPRR.18 0.71 0.913 0.611 2.273 31 3.237 0.000 3.300
Activity Pharm set Fitness Site matched Relative energy
3.300 Active 3.00 5 0.000

TABLE 4 | Training set where the random seed was 0, keeping actives and
inactive in the training set where grid sampling is equal to 1.00 Å, maximum
PLS factor was 1 and the model type is atom-based.

QSAR set (Training) QSAR set (Test)

66, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 53 54, 14, 13, 7, 6, 5, 4, 3, 2
51, 48, 45, 43, 42, 40, 39, 35, 34, 33, 32, 31
30, 29, 27, 26, 24, 23, 22, 21, 20, 19, 18, 17
16, 15, 52, 50, 49, 46, 41, 36, 28, 25, 11, 10, 9, 8, 1
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New Pharmacophore Hypotheses
Generation Using Glide Docking Score
The compounds were docked and scored by the newly identified
common pharmacophore to find common features for the
variants present among the given active ligands. Defining the
variants’ list and the highest and lowest number of spots as 7 and
4 correspondingly that must resemble a minimum of 95
compounds out of 137 active/inactive groups was done and
maintained. After the identification of a common
pharmacophore model, the variants’ list was 24 where R8 is
common in all pharmacophoric analysis and is observed to be
responsible for the native activity of compounds, given in the
supplementary information (Supplementary Figure S1).

Building QSAR Model
The QSAR model was build and examined for the predicted
structure-activity relations concerning the matching ligands. The
random seed in the training set was 0, keeping both the actives
and inactive in the training set, sampled uniformly over the
activity coordinates. The random training set was only 50%, 3D
QSAR model parameters Grid sampling was 1.00 Å, maximum
PLS factor was 1, and the model type was atom-based. After the

alignment, Compound6 alignment score was observed to be
0.089967, vector score was equal to 0.996997, volume score
was given as 0.428221, fitness value of 2.350246 and phase
predicted score was -4.86423, Compound7 alignment score
was 0.095122, vector score as 0.936649, volume score was
observed to be 0.37549, fitness value was given as 2.232871
and phase predicted score was equal to −5.10154. Similarly,
the Compound8 alignment score was 0.298618, vector score
was 0.989711, volume score turned out to be 0.427929, fitness
value as 2.168791 and phase predicted score equal to −5.16605 as
shown in Figure 9.

Advanced Pharmacophore Screening of
GPR142
Various hypotheses assisted in the identification of new matches
and the conformers were generated automatically. For the
conformer’s generation and refinement, existing conformers
were discarded, the number of structures per adjustable bond
was kept as ten, the highest number of conformers per assembly
was 100 with rapid sampling. The relative energy window was
equal to 10.0 kcal/mol. Conformer’s generation was skipped in
case of rotatable bonds greater than fifteen. The matching
tolerance was 2.0 Å in the inter-site and must match on at
least 4 site positions out of 4. For the hit treatment purposes,
hits were sorted out by decreasing fitness, that returned 1,000 hits

TABLE 5 | 3D QSAR model parameters for ADPRR.18 pharmacophoric hypotheses, where R-squared value is 0.6478 which is considered a more favorable
pharmacophoric feature in this case.

ID SD R-squared F P Stability RMSE Q-squared Pearson-R

ADPRR.18 1.0282 0.6478 90.1 1.097e-12 0.9449 26.7754 -7.674 0.0504

FIGURE 6 | Automatically generated regression plot of 3D QSAR EC50
value and phase predicted activity, where the X-axis signifies the EC50 score
and Y-axis denotes the phase predicted activity of the chemical structure.

FIGURE 7 | Represents the common pharmacophore hypotheses using
screened ligand and Known Compounds, where R10 has the most important
common pharmacophoric feature that inhibits cancer.
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in total, i.e. 1 hit per molecule. Fitness of hit treatment was equal
to 1.0 (for alignment score/1.2) + 1.0 (for vector score) and + 1.0
volume score. All hits with < −1.0 vector score and <0.0 volume
score were rejected.The Compound1, Compound2, and
Compound3 were obtained after screening from the 3D
database of GPR142, having the same pharmacophoric
features that inhibit cancer.

Advanced Pharmacophore Screening of
Known EC50 Compounds and Screened
Compounds
Advanced pharmacophoric screening of known EC50
compounds and Screened Compounds was done using the
default parameters. The existing conformers were discarded,
the number of structures per adjustable bond was kept ten.
The highest number of conformers apiece structure was kept
as 100 with rapid sampling. The relative energy window was
10.0 kcal/mol, skipping conformer generation for structures with
>15 rotatable bonds. Matching in inter-site distance matching
tolerance was maintained at 2.0 Å and must match on at least 4
site positions out of 4. For the case of hit treatment purpose, hits
by decreasing fitness turned out 1,000 in total which is equivalent
to 1 hit per molecule. Fitness of the hit treatment was 1.0 (for
alignment score/1.2) + 1.0 (for vector score) + 1.0 volume score.
All hits with < −1.0 vector score and < 0.0 volume score were
totally rejected. Compound4 and compound5 were obtained
after screening the 3D Database of GPR142, which has the same
pharmacophoric features and common chemical structures that
can inhibit cancer.

Advanced Pharmacophore Screening and
Analysis of New Pharmacophore Model
Advanced pharmacophoric screening of the newly identified
pharmacophore model was performed by the glide docking
scoring system. The number of conformers was set per rotatable
bond as 10, a maximum number of conformers per structure was
100 with rapid sampling. The relative energy window was 10.0 kcal/
mol. All the conformers’ generation in case of structures with >15
rotatable bonds were skipped. The matching in inter-site distance
matching tolerance was kept as 2.0 Å and must match on four sites
position out of 4. Hits were sorted by decreasing fitness returning at
its most equal to1000 hits in total that is 1 hit per molecule. The
fitness of hit treatment was 1.0 (for alignment score/1.2) + 1.0 (for
vector score) + 1.0 volume score. Reject hits with < −1.0 vector score
and < 0.0 volume score. In all the considered compounds,
Compound6, compound7, and Compound8 were chosen after
screening the 3D Database of GPR142. They all were having the
same pharmacophoric features and can inhibit cancer.

Advanced Pharmacophore Screening of
GPR139
The Paralog of the GPR142 gene is GPR139, and the similarity gene
and protein betweenGPR139 andGPR142 is 50%, sharing suggested
ligands. The advanced pharmacophoric screening was carried out by
these protocols such as; findingmatches from the generated features’
search during conformers exploration that were automatically
generated. All existing conformers were discarded, the
conformers apiece adjustable bond was chosen to be 10. On the
other hand, the maximum amount for conformers apiece structure
was chosen to be 100, the relative energy window was equal to
10.0 kcal/mol. Similarly, conformers’ generation for structures with
greater than 15 rotatable bonds was skipped. Matching in inter-site
distance matching tolerance was 2.0 Å and must match on at four
site positions out of the total 4. All hits were sorted decreasing the
fitness value, returning at themost given hits which are 1,000 in total
that is 1 hit per molecule. Fitness of hit treatment was 1.0 (for
alignment score/1.2) + 1.0 (for vector score) + 1.0 as the volume
score. Hits were rejected with < −1.0 vector score and < 0.0 volume
score. The Compound9 and Compound10were selected as a result

TABLE 6 | 3D QSAR model parameters for ADHPRRR.35 pharmacophoric hypotheses where grid sampling was 1.00 Å, maximum PLS factor was 1, and the model type
was an atom-based pharmacophoric analysis.

ID SD R-squared F P Stability RMSE Q-squared Pearson-R

ADHPRRR.35 8.5856 0.3407 30 9.84e-07 0.931 7.6838 0 0

FIGURE 8 | Automatically generated regression plot of 3D QSAR known
EC50 value and phase predicted activity, where X-axis signifies the EC50
score activity and Y-axis signifies the phase predicted activity of chemical
structure.
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of screening from the 3D Database of GPR139, which contains
similar pharmacophoric features like GPR142 target compounds.
Compound9 and Compound10 might be helpful in the proteins’
dimerization activity and neuropeptide receptor activity as provided
in the supplementary data (Supplementary Table S3).

CONCLUSION

Computational drug design mainly emphasizes structure-based
techniques. The in silico screening of small compounds in large
databases using developed pharmacophoric features is a good way
to discover and identify the best chemical compounds by using
common pharmacophoric hypotheses generation and 3D QSAR
models. However, extra care should be taken during the
development of such a model as the performance of the
predicted compounds depends on the features considered. It is
a more feasible, robust, and flexible way to use such models. The
current study reports on genomic alterations of GPR139 and
GPR142 through tumor samples, assisting in the identification
of common drug compounds for GPR142 target by 3D database by
scanning common pharmacophoric features and experimental
EC50 value which might be useful in the inhibition of cancer.
We intend to subject these compounds to explore their interactions
with the target and stability in the host region via long term
molecular dynamics simulation and in vitro analysis.
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