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Fibroblasts are the chief secretory cells of the extracellular matrix (ECM) responsible for
basal deposition and degradation of the ECM under normal conditions. During stress,
fibroblasts undergo continuous activation, which is defined as the differentiation of
fibroblasts into myofibroblasts, a cell type with an elevated capacity for secreting ECM
proteins. Dipeptidyl peptidase-4 (DPP4) is a ubiquitously expressed transmembrane
glycoprotein and exerts effects that are both dependent and independent of its
enzymatic activity. DPP4 has been demonstrated to define fibroblast populations in
human skin biopsies of systemic sclerosis. Shedding of DPP4 from different tissues into
the circulation appears to be involved in the pathogenesis of the diseases. The mechanism
underlying soluble DPP4—-induced dermal fibrosis has not been clearly determined. The
effects of DPP4 on murine 3T3 fibroblasts and human dermal fibroblasts were evaluated
by measuring the expression of fibrotic proteins, such as o-SMA and collagen. Soluble
DPP4 stimulated the activation of fibroblasts in a dose-dependent manner by activating
nuclear factor-kappa B (NF-kB) and suppressor of mothers against decapentaplegic
(SMAD) signaling. Blocking proteinase-activated receptor-2 (PAR2) abrogated the DPP4-
induced activation of NF-xkB and SMAD and expression of fibrosis-associated proteins in
fibroblasts. Linagliptin, a clinically available DPP4 inhibitor, was observed to abrogate the
soluble DPP4-induced expression of fibrotic proteins. This study demonstrated the
mechanism underlying soluble DPP4, which activated NF-kB and SMAD signaling
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through PAR2, leading to fibroblast activation. Our data extend the current view of soluble
DPP4. Elevated levels of circulating soluble DPP4 may contribute to one of the mediators
that induce dermal fibrosis in patients.

Keywords: dipeptidyl peptidase-4, fibrosis, fibroblast, proteinase-activated receptor-2, nuclear factor-kappa B,
suppressor of mothers against decapentaplegic

INTRODUCTION

Fibrotic disorders encompass a wide spectrum of clinical entities
such as systemic sclerosis, a systemic fibrotic disease that induces
fibrosis of the skin and internal organs (Rosenbloom et al., 2017).
Fibrotic disorders involve a complex and multistage process of tissue
injury and inflammation (Lee and Kalluri, 2010). This process is
constituted by extracellular matrix (ECM) expansion that is
orchestrated by a network of cytokines, chemokines, growth
factors, adhesion molecules, and signaling transduction processes
(Lee and Kalluri, 2010). Fibroblasts are the chief secretory cells of the
ECM (Biernacka and Frangogiannis, 2011). They remain quiescent
under normal conditions and are responsible for the basal deposition
and degradation of the ECM as well as the maintenance of the matrix
network (Krenning et al., 2010). Under stress, stimulated by
mediators released from injured and inflammatory tissue,
fibroblasts undergo continuous activation, which is defined as the
differentiation of fibroblasts into myofibroblasts (Kendall and
Feghali-Bostwick, 2014), a cell type with an elevated capacity for
secreting ECM proteins. TGF-f is one of the crucial mediators
(Walton et al., 2017), which activates suppressor of mothers against
decapentaplegic (SMAD), mitogen-activated protein kinase
(MAPK), and nuclear factor-kappa B phosphorylated (NF-xB)
signaling to induce the pathogenesis of fibrosis (He and
Dai, 2015). Myofibroblasts are ultimately responsible for
the replacement of healthy tissues with nonfunctional fibrotic
tissues (McAnulty, 2007), which leads to increased tissue stiffness
and ultimately organ failure (Tomasek et al., 2002). Because of the
lack of effective therapeutic agents and insufficient knowledge
regarding their pathogenesis in fibrotic diseases, identification
of the mediator that regulates fibroblast activation and
differentiation of fibroblasts into myofibroblasts is urgently required.

Dipeptidyl peptidase-4 (DPP4), also known as CD26
(Morimoto and Schlossman, 1998), is a type II transmembrane
glycoprotein expressed in various cell types that has
multifunctional properties (Rohrborn et al., 2015). DPP4
inhibitors, also commonly called gliptin, are being developed
as a class of drugs for treating diabetes (Neumiller et al., 2010). In
addition to its enzymatic activity, DPP4 itself participates in
other cellular functions. Change in DPP4 expression is associated
with disease progression (Trzaskalski et al., 2020). Increased
DPP4 expression and activity have demonstrated an association

Abbreviations: DCM, Diabetes cardiomyopathy; DPP4, Dipeptidyl peptidase-4; NF-
KB, Nuclear factor-kappa B; PAR2, Proteinase-activated receptor-2; ECM, Extracellular
matrix; TGF-f3, Transforming growth factor-f; 0-SMA, o-smooth muscle cell; ERK,
Extracellular signal-regulated kinase; NF-xB, Nuclear factor- kappa B; SMAD,
suppressor of mothers against decapentaplegic; GAPDH, Glyceraldehyde 3-
phosphate dehydrogenase; TL, Tethered ligand.

with inflammation observed in obesity and metabolic disorders
(Trzaskalski et al., 2020). DPP4 is highly expressed in bronchial
epithelial cells of patients with asthma, and it increased cell
proliferation in airway constitutive cells (Shiobara et al., 2016).
Increased DPP4 levels were observed in fibroblasts isolated from
individuals with systemic sclerosis relative to fibroblasts isolated
from healthy individuals (Soare et al., 2020). Furthermore, the
DPP4-positive fibroblast populations in the skin are highly
proliferative and expand upon tissue injury to promote wound
healing (Rinkevich et al., 2015). The action of DPP4
is complicated.

DPP4 may be released through a nonclassical secretory
mechanism from the membrane that involves proteolytic
cleavage near the flexible region for generating the soluble form
(Rohrborn et al.,, 2014; Nargis and Chakrabarti, 2018). Soluble
DPP4 has also been suggested to be a novel regulator, and elevated
levels are indicative of several disorders in addition to diabetes,
such as obesity, cardiovascular disease, and nonalcoholic fatty liver
disease (dos Santos et al., 2013; Baumeier et al., 2017; Nargis and
Chakrabarti, 2018). Soluble DPP4 is an adipokine (Lamers et al.,
2011) and is positively associated with hemoglobin Alc levels and
the insulin resistance index in type 2 diabetes (Sell et al., 2013;
Nargis and Chakrabarti, 2018). It directly impairs insulin signaling
in adipocytes, smooth muscle cells, and hepatocytes (Wronkowitz
et al., 2014; Baumeier et al., 2017), whereas insulin-stimulated Akt
phosphorylation was observed to be reduced when soluble DPP4
was administered (Baumeier et al., 2017). Soluble DPP4 also
activates the MAPK and NF-xB signaling cascade involving
proteinase-activated receptor-2 (PAR2), resulting in the induction
of inflammation and proliferation of human vascular smooth
muscle cells (Wronkowitz et al, 2014). Reports have suggested
that soluble DPP4 not only possesses catalytic functions but also
activates some receptors and signal pathways. Numerous reports
have been published on membrane-bound DPP4; however, little
information is available on soluble DPP4. The signaling pathway
underlying DPP4 in the pathogenesis of fibrosis is still unclear, and
revealing this mechanism could potentially lead to a greater
understanding of the pathophysiology and treatments of fibrosis
diseases. We hypothesized that soluble DPP4 plays a role in dermal
fibrosis. Using cultured fibroblasts, we examined the mechanism of
how soluble DPP4 enhances fibroblast activation.

MATERIAL AND METHODS

Cell Culture
Murine NIH/3T3 fibroblasts were purchased from the American
Type Culture Collection. Cells were cultured in Dulbecco’s
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modified Eagle’s medium supplemented with 10% fetal bovine
serum (Gibco, Scotland, UK) and antibiotics (100 pg/ml
penicillin and 100 pg/ml streptomycin; Amresco, Solon, OH,
USA), and incubated at 37°C under a 5% CO,/95% air
atmosphere. Fibroblasts were seeded at 5,000 cells/cm” and
incubated overnight to allow attachment in a monolayer for
determining the effect of soluble DPP4 on fibroblast activation.
Cells were treated with either transforming growth factor-f8
(TGF-B; Cayman, MI, USA; 10 ng/ml) or recombinant DPP4
(Cayman, MI, USA; 80 and 200 ng/ml) for 48 h. To explore the
signaling pathway of soluble DPP4, cells were incubated with an
enzyme inhibitor of DPP4 (linagliptin; 30 nM), an antagonist of
PAR2 (GB83; 10 pM), or an inhibitor of NF-kB (Bay11-7082; 1
uM), individually, for 30 min before administering the
recombinant DPP4.

Adult normal human dermal fibroblasts (HDF) were
purchased from the Bioresource Collection and Research
Center (BCRC, Hsinchu, TW). HDF cells were maintained
in Dulbecco’s modified Eagle’s medium supplemented with
15% fetal bovine serum (Gibco, Scotland, UK) and antibiotics
(100 pg/ml penicillin and 100 pg/ml streptomycin; Amresco,
Solon, OH, USA), and incubated at 37°C under a 5% C0O2/95%
air atmosphere. HDF were starved in DMEM for 24 h and then
treated with TGF-B (Cayman, MI, USA; 10 ng/ml) or
recombinant DPP4 (Cayman, MI, USA; 200 ng/ml) for
another 48 h.

Detection of Cell Viability

MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide]
assay was used as the assessment of cell viability. MTT was then added
in cell culture in a final concentration of 0.5 mg/ml. After discarding the
supernatant, the purple formazan crystals were dissolved in DMSO.
Solutions were then loaded in a 96-well plate, and determined on an
automated microplate spectrophotometer at 570 nm.

Protein Extraction From Cell Culture

The proteins from cell culture were extracted using RIPA buffer
(Thermo Fisher Scientific Inc., IL, USA) containing protease and
phosphatase inhibitors (Sigma, St. Louis, MO, USA). A BCA
protein assay kit (Thermo Fisher Scientific Inc.) was used to
determine the protein concentration.

Determination of Protein Expression

A Western blotting technique was performed to detect protein
expression. Equal quantities of proteins were first denatured for
10 min in boiling sample buffer (31.3 mM Tris-HCI at pH 6.8,
25% glycerol, 10% sodium dodecyl sulfate (SDS), 10% 2-
mercaptoethanol, and 0.00125% bromophenol blue). Then,
proteins were separated using SDS-polyacrylamide gel
electrophoresis and transferred to polvinylidene difluoride
membranes (Perkin-Elmer Life Sciences, Boston, MA, USA).
The membranes were blocked with 5% fat-free milk dissolved in
Tris-buffered saline with Tween 20 (TBST) and incubated
overnight with the primary antibodies of collagen I (1:1000
dilution; Abcam, USA), elastin (1:1000 dilution; Abcam, USA),
o-smooth muscle actin (ot-SMA; 1:1000 dilution; Abcam, USA),
phosphorylated and total extracellular signal-regulated kinase

(p-ERK and ERK; 1:1000 dilution; Cell Signaling, USA), NF-xB
p65 and p-p65 (1:1000 dilution; Cell Signaling, USA), SMAD2/3
and p-SMAD2/3 (1:1000 dilution; Abcam, USA), and
glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 1:1000
dilution; Santa Cruz Biotechnology, CA, USA) at 4°C.
Subsequently, the membranes were washed three times for
15 min each with TBST, which was followed by incubation
with horseradish-peroxidase-conjugated secondary antibodies
(Santa Cruz Biotechnology, Inc.) for 1 h. After washing three
times for 20 min each with TBST, the protein signals were
detected using an enhanced chemiluminescence system
(Millipore, Bedford, MA, USA). The blots were scanned and
quantified using Imagequant (Molecular Dynamics, Inc.,
Sunnyvale, CA, USA).

RNA Extraction and Reverse Transcription
Quantitative Polymerase Chain Reaction
Total RNA was isolated from cells using TRIzol (Thermo Fisher
Scientific,c, MA, USA). Total RNA was reverse transcribed with
Maxima First Strand cDNA Synthesis Kit (Thermo Fisher Scientific,
MA, USA) and SYBR Green was used for performing quantitative
real time PCR. The following are the sequences of the primers
used for amplification. PAR2: CGCACTGTAAAGCAGATGCAA
and AATTCCCATCTGAGGACCTGG; ACTA2: GCCTGAGGG
AAGGTCCTAA and GGAGCTGCTTCACAGGATTC; COLIAL:
CACAGAGGTTTCAGTGGTTTGG and AGTAGCACC
ATCATTTCCACGA; HPRT: CGTCTTGCTCGAGATGTGATG
and GCACACAGAGGGCTACAATGTG.

DNA was amplified for 40 cycles of denaturation for 5 s at 95°C
and annealing for 30 s at 60°C, using the TaKaRa Thermal Cycler
Dice (TP900). The qPCR assays were performed and analyzed
using the Thermal Cycler Dice Real Time System version 4.2
(TaKaRa). The expression level of each individual transcript was
normalized to HPRT gene and expressed relative to the mean
expression values of control samples.

Immunofluorescent Staining

The expressions of a-SMA, p-p65, and p-SMAD in cells were
analyzed by immunofluorescence staining. Cells were cultured
on glass coverslips at the density of 3,000 cells/cm” and treated
with DPP4 with or without GB83 or linagliptin for 48 h.
Following treatment for 48 h, cells in the basement layer were
washed with PBS and fixed in 4% paraformaldehyde. Following
three times washes with PBS for 5 min each, the cells were treated
with 0.5% Triton X-100 for 10 min and blocked with bovine
serum albumin (Sigma-Aldrich; Merck KGaA) for 1 h at room
temperature, and subsequently incubated with o-SMA
antibodies (1:100 dilution; Abcam, USA) at 4°C overnight.
Cells were washed three times for 5 min each with PBS and
then incubated with secondary antibodies (1:200 dilution;
Abcam, USA) for another 1 h. Following washing three times
for 5 min each with PBS, cells were stained with DAPI (Beyotime
Institute of Biotechnology) at room temperature to visualize the
nuclei. Following washing with PBS, the slide was mounted with
anti-fluorescence quenching agent (Abcam, USA) and cover-
slipped; digital images were captured using an inverted
fluorescent microscope (magnification, x400). Digital images
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were captured four fields per sample with the same exposure
time. Three independent experiments were performed.

Lentiviral Transduction for Gene
Knockdown

Lentiviral particles containing shRNAs pLKO.1 (#*TRCN0000006770)
was used to knockdown PAR2 in human dermal fibroblasts.
Lentivirus containing scrambled shRNA, pLKO-shScr
(#TRCNO00001) was used as non-targeting control and served
as wild-type. Human adult fibroblasts were transduced with
lentiviral vectors with MOI of 3, along with 5 ug/ml polybrene
(Sigma Aldrich, MO, USA. Transduced human dermal
fibroblasts were treated with puromycin (2 ug/ml), for
selection of transduced cells.

Statistical Analyses

All values are represented as mean + standard error. The results
were analyzed using one-way ANOVA, followed by Bonferroni
post hoc tests. We considered that p < 0.05 to be significant.

RESULTS

Soluble DPP4 Enhanced Fibroblast
Activation

Fibroblasts are key effector cells in tissue fibrosis (Krenning et al.,
2010). TGF-P has been well recognized as a fibrotic cytokine that
activates fibroblasts and drives their differentiation into
myofibroblasts, leading to organ fibrosis. To determine the
effect of soluble DPP4 on the pathogenesis of fibrosis, murine
3T3 fibroblasts were treated with recombinant DPP4 (80 and 200
ng/ml) or TGF-B (10 ng/ml) for 48 h and examined for the
expression of fibrotic markers. Administration of TGF-f served
as a positive control. Compared with control groups, DPP4
increased the expression of fibrotic markers (Figure 1A), such
as collagen I (Figure 1B), elastin (Figure 1C), and o-SMA
(Figure 1D), in a concentration-dependent manner, indicating
that soluble DPP4 promoted the activation and transformation
of fibroblasts into differentiated myofibroblasts.

Skin biopsies from patients with systemic sclerosis were
highlighted by a prominent increase in the expression of ECM
transcripts (Chadli et al., 2019). Activated dermal fibroblasts are
considered to play a major role in the development of skin
fibrosis in systemic sclerosis (Chadli et al., 2019). To confirm the
results in human dermal fibrotic disease, primary human dermal
fibroblasts were treated with DPP4 (200 ng/ml) or TGF-3 (10 ng/
ml) for 48 h. Both DPP4 and TGF-f} increased the expression of
fibrotic gene expression, including ACTA2 (Figure 1E) and
COLI1AI (Figure 1F), confirming the role of soluble DPP4 in
human fibrotic disease.

Soluble DPP4 Activated the Transcription
Factor Signaling Pathway in Fibroblasts

To determine the signaling pathway involved in soluble DPP4-
induced fibrosis and to compare it with TGF-B-induced
signaling, we investigated the effect of soluble DPP4 and TGF-

B on protein kinase and transcription factor in murine 3T3
fibroblasts. In our study, after 48 h of DPP4 or TGF-f3 exposure,
only TGF-B but not DPP4 induced ERK phosphorylation
(Figures 2A, B). By contrast, DPP4 enhanced the expression
of NF-xB p-p65 (Figures 2A, C). In addition, both soluble DPP4
and TGF-p increased the expression of p-SMAD?2/3 (Figures 2A,
D). Soluble DPP4 induced a complex signaling pathway in the
induction of the fibrotic signaling pathway.

NF-xB Stimulated by Soluble DPP4 Led to
Fibroblast Activation

To confirm the role of NF-xB in soluble DPP4 signaling, an NF-xB
inhibitor, Bay11-7082, was used in murine 3T3 fibroblasts. Bay11-
7082 at a concentration of 1 UM had no effect on the cell viability of
fibroblasts (Figure 3A); however, it inhibited the DPP4-induced NF-
KB p-p65 expression (Figures 3B, C). Furthermore, NF-xB
inhibition could completely abolish the soluble DPP4-induced
expression of fibrosis-associated proteins (Figure 3B), such as
collagen I (Figure 3D), elastin (Figure 3E), and o-SMA (Figure 3F).

The PAR2 Antagonist GB83 Abrogated the
Soluble DPP4-Induced Response in
Fibroblasts

PAR?2 is a seven-transmembrane domain G protein—-coupled
receptor that is widely expressed in cells and regulates a variety
of physiological and pathophysiological processes including
fibrosis (Soh et al., 2010). To determine whether the DPP4-
induced fibroblast activation is associated with PAR2, murine
3T3 fibroblasts were treated with recombinant DPP4 in the
presence or absence of GB83, a PAR2 antagonist. GB83 at a
concentration of 10 uM did not affect the cell viability of
fibroblasts and was used in the subsequent experiment
(Figure 4A). GB83 inhibited the soluble DPP4-induced
expression of fibrotic proteins (Figure 4B), such as collagen I
(Figure 4C), elastin (Figure 4D), and o-SMA (Figure 4E).
Furthermore, the soluble DPP4-induced activation of
transcription factor signaling pathways, such as NF-xB p-p65
(Figure 4F) and p-SMAD2/3 pathways (Figure 4G), could be
prevented by GB83.

Linagliptin Prevented the Effect of Soluble
DPP4 on Fibroblasts

We also investigated whether linagliptin, a clinically available
enzyme inhibitor of DPP4, prevents DPP4-induced fibroblast
activation. Murine 3T3 fibroblasts were treated with recombinant
DPP4 in the presence or absence of linagliptin (30 nM). The
concentration of linagliptin used in this study was observed to
exert a protective effect that was achieved in the plasma of patients
with type 2 diabetes treated with this drug (Heise et al., 2009). We
observed that linagliptin abrogated the soluble DPP4-induced
expression of fibrotic protein, such as elastin (Figure 4D) and o.-
SMA (Figures 4E, H). DPP4-induced activation of transcription
factor signaling pathways, including NF-xB p-p65 (Figure 4F)
and p-SMAD2/3 (Figure 4G) pathways, was also prevented
by linagliptin.
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FIGURE 1 | Effects of soluble DPP4 on the activation of fibroblasts. Protein expression measured in fibroblasts after their treatment with recombinant DPP4 (80 and
200 ng/ml) or TGF-B (10 ng/mli) for 48 h. (A) Protein expression in NIH-3T3 fibroblasts was determined using Western blotting. Calculated ratios of (B) collagen | to
GAPDH, (C) elastin to GAPDH, and (D) o-SMA to GAPDH were shown. (E) ACTA2, and (F) COLTAT mRNA expressions were measured in human dermal fibroblast

Soluble DPP4-Induced p-p65 and p-SMAD
in HDF

To determine the signaling underlying soluble DPP4 in HDF, p-
p65 (Figure 5) and p-SMAD (Figure 6) were determined
through immunofluorescence at different time points. Both
DPP4 and TGF-f induced the activation of p-p65 and p-
SMAD in 6 h and had a plateau effect in 24 h. TGF- induced
a more rapid activation than DPP4 did.

Knocking Down PAR2 Abrogated the
Soluble DPP4-Induced Response in HDF
To determine whether PAR2 plays a role in human dermal fibrotic
disease, PAR2 was knocked down in HDF. To confirm PAR2
expression in knocked-down HDF, the mRNA expression of PAR2

was measured using RT-qPCR (Figure 7A). PAR2 mRNA
expression was lower in knocked-down HDF than that in wild-
type HDF. To investigate whether DPP4-induced fibrotic gene
expression in HDF is mediated by PAR2, ACTA2, and COLIAI
mRNA expression in HDF was measured after DPP4 exposure
(Figures 7B, C). DPP4 induced ACTA2 and COLIAI mRNA
expression in HDF, whereas gene knocked-down PAR2
abrogated DPP4-induced fibrotic gene expression (Figures 7B, C).

To confirm whether NF-kB and SMAD cause downstream
signaling of PAR2, the expression of NF-«kB p-p65 (Figures 7D,
E) and p-SMAD (Figures 7D, F) was investigated after DPP4
exposure in HDF. DPP4 induced NF-xB p-p65 and p-SMAD
expression in HDF, whereas gene knocked-down PAR2
abrogated DPP4-induced signaling pathways.
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FIGURE 2 | Effects of soluble DPP4 on protein kinases and transcription factors in fibroblasts. Protein expression measured in NIH-3T3 fibroblasts after their
treatment with recombinant DPP4 (80 and 200 ng/ml) or TGF-B (10 ng/ml) for 48 h. (A) Protein expression determined using Western blotting. Calculated ratios
of (B) p-ERK to GAPDH, (C) p-p65 to GAPDH, and (D) p-SMAD2/3 to GAPDH were shown. (n=4) *p <0.05 vs. control.

o

B C
Collagen |
120 = 100
£ 100 EIastln E 80 *
2 (- =
Z . 60
E 60 a-SMA % . #
S 40 g
S pos [ e ] B
o S
0 & o
W S o px®
ot DPP4 + + °
Bay 11-7082 +
D
E F
g - -
% K30 R *
a0/ L2 5 e0 ”
5 @ 20 o
220 Ss # &0
3 10 | £ 2
4 B 5 %
3o i o s 0
© W& gob o W& oob oo SR
™ |« o b‘,(% S R X
& &° o°

FIGURE 3 | Effects of NF-xB inhibition on the activation of fioroblasts. Cell viability and protein expression were measured in NIH-3T3 fibroblasts after their treatment
with recombinant DPP4 (200 ng/ml) in the presence or absence of Bay11-7082 (1 puM), a NF-kB inhibitor. (A) Cell viability of fibroblasts exposed to Bay11-7082.
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DISCUSSION

Several growth factors and cytokine signaling molecules have
been reported to be critical to the activation of cellular
mechanisms in fibrotic diseases and the regulation of ECM
protein production (Wynn, 2008; Rockey et al., 2015). Soluble
DPP4 has physiological and pathological relevance beyond
glycemic control. The concentrations of recombinant DPP4
protein used in this study were in the pathological range (Lee
et al., 2013). This study observed that soluble DPP4 induced the
expression of fibrosis-associated protein in fibroblasts, especially
in primary human dermal fibroblasts, suggesting that soluble
DPP4 induces the activation of dermal fibroblasts. This result
coincides with that of a previous study, which demonstrated that
DPP4-positive human dermal fibroblasts express higher levels of
myofibroblast markers and collagen in systemic sclerosis (Soare
et al., 2020). DPP4 is a functional requirement for fibroblast
activation and tissue fibrosis and may serve as an activation
marker (Soare et al., 2020).
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FIGURE 4 | Effects of PAR2 antagonist or DPP4 inhibition on the activation of fibroblasts. Cell viability and protein expression measured in NIH-3T3 fibroblasts after
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Studies on the key signaling pathways that regulate fibrosis
diseases have reported the following noteworthy findings. TGF-3
was observed to be a profibrotic factor and acts as a crucial
mediator in fibrogenesis (Walton et al.,, 2017). The SMAD2/3
intracellular pathway was heavily implicated in TGF-B-induced
fibrosis and is known as the canonical pathway (He and Dai,
2015). Targeting the SMAD signaling pathway is a novel
therapeutic approach to treating tissue fibrosis (Wojcik et al.,
2013; He and Dai, 2015; Liu et al., 2016; Tee et al., 2018; Zhang
et al, 2018). In addition to activating the SMAD-dependent
pathway, TGF-B can signal in a noncanonical manner, as
exemplified in MAPK and NF-kB signaling, which together
induce a complete TGF-f response (Wu et al., 2019). The
inhibition of a complete TGF-3 response may exert beneficial
effects that prevent myofibroblast formation and synthesis of
ECM components (Luedde and Schwabe, 2011; Madala et al,
2012). NF-xB is the signaling molecule other than SMAD
downstream of soluble DPP4. NF-xB acts as a double-edged
sword, and the pronounced inhibition may negatively affect cell
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viability (Gieling et al., 2010). The concentration of the NF-xB
inhibitor used in this study did not affect cell viability but
abrogated the soluble DPP4-induced fibrotic response. The
activation of SMAD and NF-xB signaling may contribute to
the fibrotic response of soluble DPP4. Soluble DPP4 and TGF-f3
exerted different patterns in the activation of the signaling
pathway in fibroblasts. In an experimental setting of NIH/3T3
fibroblasts, soluble DPP4 stimulated SMAD and NF-xB
signaling, whereas TGF-f stimulated SMAD and ERK
signaling. In HDF, both TGF-3 and soluble DPP4 induced the

DPP4 TGF-B

FIGURE 5 | Effects of DPP4 on p-p65 activation in human dermal fibroblast. Human dermal fibroblast were treated with recombinant DPP4 (200 ng/mL) or TGF-B
(10ng/mL). Immunofluorescent staining of p-p65 was determined after (A) 6 h, (B) 24 h, and (C) 48 h of DPP4 or TGF- exposure.

activation of p-NF-kB and p-SMAD; in addition, TGF-f3 induced
a more rapid signaling than DPP4 did. The key implication of
our findings is that TGF-[3 possesses stronger and higher potency
than soluble DPP4 does on inducing SMAD phosphorylation. To
activate SMAD signaling in NIH/3T3 fibroblasts, the requisite
concentration of soluble DPP4 is approximately 80-200 ng/ml,
whereas the requisite concentration of TGF-f is less than 10
ng/ml.

PAR?2 plays crucial roles in tissue hemostasis, thrombosis,
wound healing, inflammation-associated disorders, fibrosis, and
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cancer (Ungefroren et al, 2018). PAR2 activation involves
receptor cleavage by different serine proteases and exposure to
an N-terminal tethered ligand (TL) that binds to and activates
the cleaved receptor (Hollenberg et al., 1997). The activating
sequence of PAR2 could be found in the cystein-rich region of
DPP4 responsible for binding (Wronkowitz et al.,, 2014).
Therefore, soluble DPP4 can activate PAR2 with its TL
sequence and act as an agonist of PAR2 (Wronkowitz et al.,
2014). PAR2 has been reported to be involved in soluble DPP4-
induced inflammation and dysfunction (Wronkowitz et al,
2014). The blockade of PAR2 prevented soluble DPP4-induced
proliferation and inflammation of vascular smooth muscle cells

FIGURE 6 | Effects of DPP4 on p-SMAD activation in human dermal fibroblast. Human dermal fibroblast were treated with recombinant DPP4 (200 ng/mL) or TGF-B
(10g/mL). Immunofluorescent staining of p-SMAD was determined after (A) 6 h, (B) 24 h, and (C) 48 h of DPP4 or TGF-B exposure.

DPP4 TGF-B

o N

(Wronkowitz et al., 2014) as well as the dysfunction of
endothelial cells (Romacho et al.,, 2016). In addition, PAR2 is
expressed on the surface of fibroblasts and has been suggested to
play a role in tissue repair processes (Grandaliano et al., 2003;
Wygrecka et al., 2011). PAR2 activation induces collagen
synthesis and 0-SMA expression (Asokananthan et al., 2015).
Our results demonstrated that the PAR2 antagonist or knocking
down PAR2 can prevent soluble DPP4-induced fibrotic marker
expression in fibroblasts, indicating that PAR2 is a receptor of
soluble DPP4 and participates in the stimulation of fibroblasts.

The signaling molecules downstream of PAR2 are complex.
After being stimulated by soluble DPP4, PAR2 activated the ERK
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FIGURE 7 | Effects of PAR2 knocked down on the activation of fibroblasts in human dermal fibroblast. Wild-type (WT) and PAR2 knockdown (KD) human dermal
fibroblast were treated with recombinant DPP4 (200 ng/ml). Gene expression was determined by RT-qPCR. (A) PAR2, (B) ACTA2, and (C) COL1A1T mRNA
expression were determined. (D) Protein expression was determined using Western blotting. Calculated ratios of (E) NF-xB p-p65 to GAPDH, (F) p-SMAD2/3 to

and NF-xB signaling cascades, consequently increasing the
secretion of proinflammatory cytokines and stimulating the
proliferation of vascular smooth muscle cells (Ervinna et al.,, 2013;
Wronkowitz et al., 2014). Our results indicated that after PAR2
activation, soluble DPP4 stimulated SMAD and the NF-«xB pathway
to induce a complete response in the activation of fibroblasts
because blocking PAR2 using pharmacological inhibitors or
genetic knockdown of abolished DPP4 induced SMAD and NF-
KB signaling as well as the expression of fibrosis-associated proteins.
Membrane-bound DPP4 is essential for TGF-B-induced receptor
heterodimerization and subsequent intracellular signal transduction
(Shi et al., 2016). The stimulation of cultured dermal fibroblasts with
TGF-B induced the upregulation of membrane-bound DPP4
expression (Soare et al., 2020), and the inactivation of DPP4
blocked the TGF-B-induced differentiation of fibroblasts into
myofibroblasts and reduced the release of collagen in vitro (Soare
et al, 2020). Further investigation is required for understanding
whether soluble DPP4/PAR2/TGF-f induces a co-activation axis.
Studies have reported that inhibition of DPP4 by pharmacological
inhibitors alleviated fibrotic responses, such as in bleomycin-

induced dermal and pulmonary fibrosis (Soare et al., 2020), CCl-
induced liver fibrosis (Kaji et al., 2014; Wang et al,, 2017), and a
high-salt-diet-induced cardiac failure and fibrosis (Esposito et al,
2017). In our studies, we observed that linagliptin prevented the
effect of soluble DPP4 in fibroblasts. Linagliptin can block the
interactions between DPP4 and ECM components, receptors, or
plasma membrane components (Hasan and Hocher, 2017), thus
ameliorating ECM and intracellular signal transduction. The effects
of soluble DPP4 on fibroblast activation may be independent of its
enzymatic activity.

CONCLUSION

We characterized the mechanisms underlying soluble DPP4, which
activated NF-xB and SMAD signaling through PAR2, leading to the
activation of dermal fibroblasts (Figure 8). Our data extended the
current view of the effect of soluble DPP4 on dermal fibrosis.
Elevated levels of circulating soluble DPP4 may contribute to one of
the mediators that induce dermal fibrosis in patients.
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