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The most frequently occurring cancers are those of the skin, with melanoma being the
leading cause of death due to skin cancer. Breakthroughs in chemotherapy have been
achieved in certain cases, though only marginal advances have been made in treatment of
metastatic melanoma. Strategies aimed at inducing redox dysregulation by use of reactive
oxygen species (ROS) inducers present a promising approach to cancer chemotherapy.
Here we use a rational combination of an oxidant drug combined with a redox or pro-
oxidant drug to optimize the cytotoxic effect. Thus we demonstrate for the first time
enhanced activity of the amino-artemisinin artemisone and novel prenylated piperazine
derivatives derived from dihydroartemisinin as the oxidant component, and elesclomol-Cu
(II) as the redox component, against human malignant melanoma cells A375 in vitro. The
combinations caused a dose dependent decrease in cell numbers and increase in
apoptosis. The results indicate that oxidant-redox drug combinations have
considerable potential and warrant further investigation.

Keywords: artemisinin, artemisone, elesclomol, melanoma, redox dysregulation, prenylated piperazine-
DHA derivatives
INTRODUCTION

The body organ in which neoplasms occur most frequently is the skin, with over one million skin
cancer cases recorded annually (Simões et al., 2015). Accounting for approximately 40% of all
new cancer diagnoses, skin cancer represents a leading public health problem (Bray et al., 2018).
Skin cancers are classified into two main groups based on the cell of origin and clinical behavior,
firstly nonmelanoma skin cancers (NMSC) mainly originating in the keratinocytes, and secondly
cutaneous malignant melanoma skin cancers, originating in the melanocytes (Simões et al., 2015;
Gálvez et al., 2018; Que et al., 2018). Malignant melanoma is the most severe form of skin cancer,
and are notably intractable to current treatment modalities; the average survival rate is 6–10 months
after diagnosis. Furthermore, metastatic melanoma cells tend to disseminate to multiple organs
including brain, bone, liver and lungs, rendering treatment strategies decidedly more challenging
than in the case of NMSCs that often remain at the site of origin (Gálvez et al., 2018; Keung and
Gershenwald, 2018). Surgery remains the standard treatment for melanoma where the bulk of the
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tumor must be excised. However, the peripheral part of the
tumor cannot be eradicated completely and large areas of normal
skin must also be excised (Que et al., 2018). Surgical resection of
malignant melanoma that has metastasized must also be
accompanied with complete lymph node dissection. However,
there is a marked increase in risk of lymphedema due to a
cascade of postoperative events (Jørgensen et al., 2018). Systemic
adjuvant therapy, especially targeted combination therapy, might
offer significant advantages in the treatment of melanoma.

Drastic modulation of intracellular oxidative stress generated
through addition of specially selected xenobiotic agents has
evolved as a strategy for inducing dysregulation in, and
eventual destruction of, cancer cells (Cabello et al., 2009;
Trachootham et al., 2009; Wondrak, 2009; Dharmaraja, 2017;
Galadari et al., 2017; Lee et al., 2017). Oxidative stress is an
imbalance between production of reactive oxygen species (ROS)
that include superoxide, hydrogen peroxide, and hydroxyl
radical, and the ability of the intracellular system to detoxify
these species. Normally, ROS are generated at low steady state
concentrations as by-products of cell metabolism, and are
effectively neutralized by endogenous thiols such as reduced
glutathione (GSH) generated from oxidized glutathione
(GSSG) by NADPH-flavin disulfide reductases glutathione
reductase (GR), thioredoxin reductase (TrxR) and others that
maintain redox homeostasis in nonproliferating cells (Kirshner
et al., 2008). However, the higher metabolic activity of
proliferating cancer cells results in generation of elevated levels
of ROS that requires enhanced turnover of NADPH-flavin
disulfide reductases in order to maintain redox homeostasis.
Thus, under these conditions, addition of any agent that acts to
enhance ROS production will overwhelm the capacity of the
antioxidant systems to control ROS. Normally, feedback results
in enhanced production of NADPH via glucose-6-phosphate
dehydrogenase (G6PD) in the hexose monophosphate shunt
(HMS). Because G6PD is the rate-limiting enzyme, a “choke-
point” is reached wherein demand for NADPH exceeds its
supply. The excess ROS may then induce cell arrest and
apoptosis (Kirshner et al., 2008; Cabello et al., 2009;
Trachootham et al., 2009; Wondrak, 2009; Dharmaraja, 2017;
Galadari et al., 2017; Lee et al., 2017). Overall, the enhanced
oxidative stress due to uncontrollable generation of ROS affects
the three major stages of cancer pathogenesis, namely
proliferation, metastasis and development of resistance
(Galadari et al., 2017).

Our strategy for inducing dysfunction in cancer cells also
relies on the application of agents known to subvert redox
homeostasis. However, here we use combinations that
mutually amplify the effects of individual components. The use
of redox (or “pro-oxidant”) drugs for this purpose is well-
established (Cabello et al., 2009; Trachootham et al., 2009;
Wondrak, 2009; Dharmaraja, 2017; Galadari et al., 2017; Lee
et al., 2017). The redox drug is converted into its reduced
conjugate that is reoxidized by atmospheric oxygen to restore
the original redox drug and thereby generate ROS. The
intracellular reductant that converts the redox drug into its
reduced conjugate may be reduced flavin cofactors either
Frontiers in Pharmacology | www.frontiersin.org 2
associated with the NADPH-flavin disulfide reductases such as
GR or TrxR important for maintaining redox homeostasis, or
other flavoenzymes. The redox drug intercepts electrons via the
reduced flavin cofactor from the flavin disulfide reductase, thus
diverting electron supply required for generation of GSH from
GSSG or other endogenous thiol. Thereby, with loss of
homeostatic control, build-up of ROS involving intracellular
redox processes now occurs. In addition, the redox cycling of
the redox drug that ensues also provides a persistent, relatively
high flux of ROS. The precept is well illustrated by the classic
redox drug methylene blue (MB) that is rapidly reduced by
reduced flavin adenine dinucleotide (FADH2) generated by
NADPH-E.coli flavin reductase to leucomethylene blue (LMB)
(Haynes et al., 2011). LMB in turn is rapidly oxidized by oxygen
to MB with concomitant generation of ROS. MB also is rapidly
reduced by NAD(P)H-flavin disulfide reductases such as TrxR,
GR and lipoamide dehydrogenase (Buchholz et al., 2008a;
Buchholz et al., 2008b; Buchholz et al., 2010) and thereby
enhances oxidative stress both indirectly by diverting electron
supply required for generation of antioxidant thiols from their
disulfide precursors, and directly by oxidation of its reduced
conjugate LMB by oxygen. Intracellular systems other than flavin
disulfide reductases capable of providing electrons for converting
redox drugs to their reduced conjugates also occurs. Thus, the
highly potent antitumor agent deoxynyboquinone (DNQ) (Lee
et al., 2017) generates superoxide via reduction by the cytosolic
flavoenzyme NAD(P)H quinone oxidoreductase 1 (NQO1, DT-
diaphorase that catalyzes metabolism of quinones) followed by
oxidation by oxygen of the reduced DNQ intermediate.
Although not demonstrated for DNQ, it is likely that the
reduced flavin cofactor FADH2 of NQO1 rather than the
primary electron donor NADPH directly reduces the DNQ as
for other quinones (Sollner and Macheroux, 2009). Of relevance
here is that reduced forms of redox active metal ions such as
ferrous [Fe(II)] or cuprous [Cu(I)] ions also directly generate
ROS through oxidation by oxygen. Thus, in principle, such redox
active metal ions may serve as a surrogate of the redox drug –
they have the same effect by generating ROS. However, in the
presence of the metal ion, the immediate product of reduction of
oxygen, namely superoxide, will be converted via hydrogen
peroxide into hydroxyl radical by the Fenton reaction. In this
respect, reduced flavin cofactors such as FADH2 are rapidly
oxidized by transition metal ions such as Fe(III) that is thereby
reduced to Fe(II); the reduction is considerably more facile than
the established reduction of such metal ions by thiols such as
GSH (Woodmansee and Imlay, 2002; Petrat et al., 2003). The
precept is illustrated by the behavior of the bis-thionohydrazide
elesclomol 1 (Figure 1), an anticancer drug which through
sequestration of Cu(II) in situ is converted into the active
elesclomol-Cu(II) chelate 1-Cu that generates ROS via redox
cycling of the chelated Cu (Kirshner et al., 2008; Nagai et al.,
2012). Apoptotic cell death in tumor cells follows from the
enhanced oxidative stress induced by the complex (Blackman
et al., 2012; Nagai et al., 2012). Elesclomol displays improved
efficacy when used in combination with other drugs such as
paclitaxel in human tumor xenograft models (Kirshner et al., 2008),
September 2020 | Volume 11 | Article 558894
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and the combination has been used in a Phase III clinical trial in
patients with melanoma, although progression free survival was
not improved relative to controls (O’Day et al., 2013). Largely
because of its proven mechanism of action and clinical use, and
because of the possibility of establishing lower effective
therapeutic doses through use in rational combinations, we
initially use elesclomol-Cu (II) as the redox component in the
current investigation.

The oxidant drug component is differentiated from a redox
drug through undergoing irreversible reduction to a reduced
but usually inert form. While examples of such drugs that
include aromatic amine N-oxides, nitro-imidazoles, quinones
and others are given elsewhere (Wondrak, 2009), we focus here
on derivatives of the antimalarial drug artemisinin 2. The
second-generation derivative artemisone 4, prepared from
dihydroartemisinin (DHA) 3, itself a derivative of artemisinin
(Haynes et al., 2006; Chan et al., 2018) and the novel prenylated
piperazine derivatives 6 and 7 prepared by direct alkylation by
the prenyl bromide of the amino-artemisinin 5 bearing a
piperazine group at C-10 (Figure 2) are included in this
investigation. The compound 5 is readily obtained in one
Frontiers in Pharmacology | www.frontiersin.org 3
scalable step from DHA and piperazine (Wu et al., 2018;
Wong et al., 2020). Of particular relevance to this work, it
is noted that DHA 3 itself induces apoptosis in cultured
human metastatic melanoma cells (A375, LOX and G361),
with phosphatidylserine (PS) externalization, activation of
procaspase 3 and increased generation of intracellular ROS
(Cabello et al., 2012)

While the mechanism of action of artemisinins is a subject of
considerable controversy, we have shown unequivocally that
these rapidly oxidize reduced flavin cofactors such as FADH2

to the flavin (Figure 3). The reduced flavin in these mechanism
studies is readily generated via use of NADPH-E.coli flavin
reductase that mimics behavior of flavin disulfide reductases
(Haynes et al., 2011). Thus, the oxidant drug artemisinin is itself
incapable of directly generating ROS, but like the redox
component, it intercepts electrons from reduced flavin
cofactors of NAD(P)H-flavin disulfide reductases responsible
for redox homeostasis, and other flavoenzymes (Trachootham
et al., 2009; Haynes et al., 2010; Haynes et al., 2011). Thus, with
the abrupt loss of homeostasis associated with an inability to
generate thiols such as GSH (see above), rapid build-up of ROS
FIGURE 2 | The amino-artemisinin derivative artemisone 4 is obtained from dihydroartemisinin (DHA) 3, that itself is a derivative of the peroxidic antimalarial drug
artemisinin 2. Artemisone, and the novel geranylpiperazine-DHA 6 and farnesylpiperazine-DHA 7 derivatives prepared from DHA-piperazine 5 are the oxidant drug
components of the combinations used in this work.
FIGURE 1 | The bis-thionohydrazide elesclomol 1 and its stable square-planar copper(II) complex 1-Cu, the latter which is the redox-active drug.
September 2020 | Volume 11 | Article 558894
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ensues. However, as the oxidant artemisinin is irreversibly
destroyed, re-establishment of redox homeostasis has to be
suppressed so as to ensure prolongation of the cytotoxic effect.
Thus, the redox drug must be used as a combination partner -
under the combined effect of the two drugs, ROS build-up is now
sustained. Although enzyme feedback results in enhanced
production of NADPH via G6PD, the demand for NADPH
exceeds its supply, and redox homeostasis is lost, resulting
ultimately in cell death. The overall scheme is illustrated in
Figure 4 with artemisinin and the redox drug elesclomol-Cu(II).

Artemisone, like artemisinin and other antimalarial-active
peroxides, also efficiently oxidize the reduced flavin cofactors
(Haynes et al., 2011), but as an amino-artemisinin, is
representative of a class of artemisinin that displays optimum
biological activities on the basis of their oxidant mechanism of
action (Wu et al., 2016). It exhibits both superior activity and
safety in comparison to artemisinin resulting in enhanced
antimalarial efficacy, improved bioavailability, metabolic
stability, prolonged half-life and above all, absence of
neurotoxicity (Haynes et al., 2006; Crespo-Ortiz and Wei,
2012). The compound also exhibits significant antitumor
activity (Gravett et al., 2011; Crespo-Ortiz and Wei, 2012;
Hooft van Huijsduijnen et al., 2013). Artemisone overall
Frontiers in Pharmacology | www.frontiersin.org 4
induces disruption of the cell cycle, resulting in growth arrest
and hindering disease progression (Gravett et al., 2011; Crespo-
Ortiz and Wei, 2012). Additionally, artemisone shows superior
antitumor activity to artemisinin (Gravett et al., 2011). As noted
below, when artemisone is formulated into monostearin solid
lipid nanoparticles, the drug is selectively cytotoxic toward
human melanoma A375 cells (Dwivedi et al., 2015).

We also briefly examine here the effects of adding other drugs
to the artemisinin derivative that in one way or another are also
known to enhance oxidative stress in a manner distinct to that
involving the oxidant-redox drug pair combinations described
above. Sulfasalazine 8 (Figure 5) is under investigation for its
anticancer potential. It inhibits the cystine-glutamate antiporter
xCT, a transmembrane protein that drives uptake of cystine in
exchange for glutamate; with consequent intracellular reduction
to cysteine, and conversion to GSH, xCT plays a critical
upstream role in defense against oxidative stress. Thus,
inhibition of xCT by sulfasalazine decreases cystine uptake and
disrupts GSH production so as to sensitize cancer cells, in this
case triple negative breast cancer cells, to treatment with anti-
cancer agents that disrupt redox balance (Hasegawa et al., 2016).
Likewise, sulfasalazine inhibits xCT in B16F10 melanoma cells,
rendering them sensitive to treatment with hydrogen peroxide or
FIGURE 4 | Conceptual basis for action of combination of oxidant drug artemisinin and redox drug elesclomol-Cu(II). Immediate ROS generation is triggered by the
artemisinin, and is maintained by redox cycling of the metal ion derived from the redox drug. G6PD, glucose-6-phosphate dehydrogenase; NADPH, nicotinamide
adenine dinucleotide phosphate; FAD, flavin adenine dinucleotide; TrxR, thioredoxin reductase; GR, glutathione reductase; Fre, flavin reductase; GSH, glutathione;
GSSG, oxidized glutathione; ROS, reactive oxygen species; O2-, superoxide; SOD, superoxide dismutase; HO,. hydroxyl radical.
FIGURE 3 | Artemisinin acting as an oxidant. Rapid oxidation of the reduced flavins of flavin adenine dinucleotide FAD, flavin mononucleotide FMN, riboflavin RF,
and others takes place on exposure to artemisinin under physiological conditions. The products are the corresponding flavins and a ring opened form of
deoxyartemisinin that undergoes ring closure to deoxyartemisinin (Haynes et al., 2010; Haynes et al., 2011; Haynes et al., 2012; Wu et al., 2016).
September 2020 | Volume 11 | Article 558894
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to X-ray irradiation (Nagane et al., 2018). Etoposide 9 (Figure 5)
exerts antitumor activity by inhibiting DNA topoisomerase II. In
combination with bevacizumab, it is active against A375
melanoma cells (Calvani et al., 2016), but activity against acute
myeloid leukemia cells in combination with the plant alkaloid
homoharringtonine is linked to increased ROS generation and
subversion of redox homeostasis. Interestingly it is etoposide that
mediates ROS damage in the cell line; homoharringtonine alone
does not generate ROS (Zhang et al., 2019). Thus examination of
the effects of each of sulfasalazine and etoposide with our oxidant
drugs is warranted.

Overall, the aim of this study is to investigate the anti-cancer
efficacy of artemisone and aminoartemisinin derivatives toward
melanoma cells A375, using nonmalignant keratinocytes (HaCat)
as controls. The effects of combinations of the oxidant artemisinins
with each of the redox active elesclomol-Cu(II), and the other drugs
sulfasalazine and etoposide, on these cells would then be assessed.
Cytotoxicity is assayed using the Sulforhodamine B and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)
assays. The lactate dehydrogenase (LDH) assay is used to
determine the effects of compounds on cell membrane integrity,
and flow cytometry assays are used to assess apoptosis and necrosis
end-points.
MATERIALS AND METHODS

Materials
Artemisinin 2, m.p. 156°C–157°C, was obtained from the
Kunming Pharmaceutical Corporation, Kunming, Yunnan
Province, China, or from the Dang Quang Trading Company,
Hanoi, Vietnam, and used as received. Artemisone 4 was
prepared from dihydroartemisinin 3 and purified by
recrystallization from isopropanol to give artemisone 4 as
needles, m.p. 152-153°C (Haynes et al., 2006 152.3–152.7°C),
as previously described; analysis by HPLC indicated a purity of
≥99% (Haynes et al., 2006; Chan et al., 2018). Elesclomol 1, 98%
pure, was obtained from Kaixuan Chemical Company,
Changzhou, Jiangsu, China, and used as such and as the
elesclomol-Cu(II) complex 1-Cu. The complex was prepared in
Frontiers in Pharmacology | www.frontiersin.org 5
situ by treating the elesclomol with an equimolar amount of
copper chloride dissolved in H2O (Yadav et al., 2013). Structure
and purity of elesclomol were checked by means of 1H and 13C
NMR spectroscopy; for the latter, the 13C NMR spectrum
recorded in DMSO-d6 contained signals at d 43.5 (CH3), 126
(Ar C-3),127 (Ar C-2), 128 (Ar C-4), 142 (Ar C-1),163 (C=O),
203 ppm (C=S), in agreement with literature data (Yadav et al.,
2013). Sulfasalazine 8b, 97% pure, and etoposide 9, 98% pure,
were purchased from Merck (Darmstadt, Germany) and used
as received.

Synthetic Chemistry
The full details of the reagents, instrumentation and the procedures
used to convert DHA-piperazine 5 into the geranylpiperazine-DHA
derivative 6 and the farnesylpiperazine-DHA derivative 7 (Figure 2)
together with the full characterization data for the products are given
in the Supplemental Materials and Methods - Chemistry Section.

Cell Cultures
The human cell lines TK10 (human kidney adenocarcinoma),
UACC62 (human melanoma) and MCF7 (human breast
adenocarcinoma) were obtained from the National Cancer
Institute (NCI) as part of a panel widely studied for drug
screening and molecular target identification. Melanoma
(A375) and human embryonic kidney (HEK293) were acquired
from the American Type Culture Collection; ATCC® CRL-
1619™ and ATCC® CRL-1573™ respect ive ly . The
nontumorigenic human immortalized keratinocyte (HaCaT)
cells were a kind donation by the School of Anatomical
Sciences, Faculty of Health Sciences, University of the
Witwatersrand, South Africa. HaCaT cells were chosen as the
nonmalignant control due to their ease of propagation, near
normal phenotype and general use as an A375 control (Dwivedi
et al., 2015; Lewies et al., 2018). The A375 cell line is a melanotic
cells line with the BRAF mutation frequently used for in vitro
drug screening assays for anti-melanoma drugs (Couto et al.,
2019). All reagents were of analytical grade and were obtained
fromMerck (Darmstadt, Germany) unless stated otherwise. Cells
were cultured in Dulbecco’s modified essential medium (DMEM;
Hyclone, GE healthcare, South Logan, UT, USA) containing 10%
FIGURE 5 | Additional compounds sulfasalazine 8 and etoposide 9 used in this work; both compounds are recorded to enhance oxidative stress.
September 2020 | Volume 11 | Article 558894
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fetal bovine serum (FBS), 1% penicillin/streptomycin, 1% 200
mM L-Glutamine and 1% nonessential amino acids (Lonza,
Basel, Switzerland) at 37°C in a humidified atmosphere of 5%
CO2. Stock solutions of the compounds were prepared in
dimethyl sulfoxide (DMSO). All subsequent dilutions were
prepared in serum-free DMEM and vehicle controls were
included in all experiments

In Vitro Cell Viability Assays
The growth inhibitory effects of the compounds were tested in the 3-
cell line panel consisting of TK10 (renal), UACC62 (melanoma) and
MCF7 (breast) cancer cells by Sulforhodamine B (SRB) assay. In
addition, activity was also evaluated against HEK293 cells with the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT) assay (Mosmann, 1983). Compounds prepared in DMSO
were tested at 0.01–100 µM serial dilutions to establish initial
inhibitory concentrations. The results were expressed as half
maximal inhibitory concentrations (IC50) as described before
(Lewies et al., 2018). After 24 h exposure to compounds, growth
medium was removed, cells rinsed twice with 1 ml of phosphate
buffered saline (PBS) and 100 µl fresh serum-free medium
containing 5 mg/ml MTT solution was added MTT solution was
prepared fresh for each analysis). Cells were then incubated for 4 h
at 37°C, after which theMTTwas removed and substituted with 100
µl dimethyl sulfoxide (DMSO) to dissolve the formazan crystals for
an h at 37°C. After incubation, cell viability was determined using a
microplate reader (BioTek®, Vermont, USA) at an excitation
wavelength of 560 nm and emission wavelength of 630 nm with
DMSO measured as a blank. Cell viability was expressed as a
percentage relative to the untreated control, which is assumed to be
100% viable. For a positive control, cells were treated with 0.01%
Triton-X 100 (Sigma-Aldrich, St Louis, MO, USA) for a period of
4 h. Using the MTT assay data, IC50 values were calculated using
GraphPad Prism 8. Data were normalized to the positive (alleged to
be 0% viable) and negative controls (presumed to be 100% viable),
followed by the log-transformation of the concentration values. The
curve was fitted using the log(inhibitor) vs. response function and
the IC50 values calculated (Lewies et al., 2018). A crude therapeutic
index (fold decrease in IC50 value) was calculated as the IC50 of the
noncancerous cell-line/IC50 of the cancerous cell line. The Chou-
Talalay experimental design of drug combinations (Chou and
Talalay, 1984) were employed with drugs combined in a 1:1 ratio.
Drug interactions were evaluated for synergism, additivity or
antagonism using multiple drug effect analysis, based on the
median-principle. Cells were treated with the drug combinations
for 24 h and analyzed. The CompuSyn (ComboSyn, Inc. NJ, USA)
software package was used to generate the median-effect plots and
combination index plots. Based on the most effective compound
combinations, membrane integrity assays and cytometric apoptosis
and necrosis analyses were also performed. All experiments were
performed at least in triplicate and repeated independently.

LDH Assay
In order to determine cell membrane integrity, the CytoTox-
ONE™ Homogeneous Membrane Integrity Assay (Promega,
Madison, WO, USA) was employed. This fluorometric assay
Frontiers in Pharmacology | www.frontiersin.org 6
measures the release of LDH from cells with damaged cell
membranes. Cells were seeded in a 96-well plate at a volume of
50 µl and incubated until cells were ~90% confluent as previously
described (Malik et al., 1983; Wentzel et al., 2017). Cells were
exposed to amounts of each compound and combinations
corresponding to the respective IC50 values for 24 h. The
manufacturer’s instructions were followed to determine the
fluorescence at an excitation wavelength of 560 nm and an
emission wavelength of 590 nm. In order to calculate the
percentage cytotoxicity, the average fluorescent values of the
background medium were subtracted from all average
fluorescent values of the experimental samples and the positive
control. Cytotoxicity is expressed as a percentage relative to the
positive control, which is assumed to be responsible for 100%
LDH release. The fold increase in LDH release was taken as the
indication of the selectivity toward melanoma cell membranes,
calculated as the % LDH release of the noncancerous cells/%
LDH release of the cancerous cells. All experiments were
performed at least in triplicate and independently repeated.
Statistical significant differences were calculated with one-
way ANOVA.

Intracellular ROS Generation
HaCat and A375 cells were seeded at 25,000 cells/well in 96-well
plates (Black plate, Clear bottom, Corning, Costar®, NY, USA)
and incubated until cells were ~90% confluent. Serum-free
DMEM without phenol red (Thermo Fisher Scientific, Gibco,
Carlsbad, CA, USA) was used for all experiments. Cells were
exposed to compounds or H2O2 (500 µM) for 12 h. Cell staining
with ROS fluorescent indicator 2’,7’-dichlorodihydrofluorescein
diacetate (DCFH-DA) was performed 1.5 h before the end of the
12-h exposure time. A kinetic analysis was then performed at
37°C using a microplate reader (SpectraMax® ParadigmTM
Molecular Devices, Sunnyvale, CA, USA) by measuring the
DCF fluorescence (excitation 485 nm and emission 535 nm)
every 10 min for 1 h. Following the analysis, the medium was
removed and cells were gently rinsed twice with PBS. The
Bradford assay (Coomassie blue colorimetric method) was then
performed in order to determine the relative amount of protein
per well, as an indication of cell number per well, and all
fluorescence measurements were normalized relative to the cell
number. The background fluorescence produced by blank
medium controls and unstained but treated cell controls were
subtracted from DCFH-DA stained cells. The DCF fluorescence
measured at the beginning of the analysis (time 0) was subtracted
from the DCF fluorescence at the indicated times for the kinetic
analysis (results not shown). The intracellular ROS accumulation
is also expressed as a fold change relative to the untreated control
(set as 1) for the final measurement. All experiments were
performed at least in triplicate and repeated independently.

Flow Cytometry Detection of Apoptosis
The FITC Annexin V apoptosis detection kit I (BD
Pharmigen™, BD Biosciences, San Jose, CA, USA) was used
for the detection of apoptosis using flow cytometry. FITC
Annexin V emits green fluorescence which indicates apoptosis,
September 2020 | Volume 11 | Article 558894
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whereas propidium iodide (PI) emits red fluorescence and stains
dead cells (Vermes et al., 1995). The assay was performed
according to the manufacturer’s instructions with minor
alterations. In brief, cells were seeded in a 96-well plate and
grown to ~90% confluence. The cells were exposed to amounts of
the prenylated piperazine derivatives and combinations with
elesclomol-Cu(II) 1-Cu corresponding to the IC50 values. After
24 h, cells in each well were washed twice with 200 µl of PBS and
resuspended in 1X binding buffer at a concentration of
approximately 1 x 106 cells/ml. The samples were then transferred
to 12 × 75 mm flow tubes (BD Biosciences) and 5 µl of FITC
Annexin V and 5 µl of PI was added. Samples were then briefly
vortexed and incubated in the dark at room temperature for 20min.
After incubation, 100 µl 1X binding buffer was added to each tube
and then analyzed using the BD FACSVerse™ and BD FACSuite™

Software. For a positive apoptosis control, cells were treated with
1mM staurosporine (Sigma-Aldrich) for 4 h. At least 10,000 cellular
events were analyzed for each sample. A logarithmic amplification
scale was employed and events plotted on forward scatter (FSC),
side scatter (SSC), green fluorescence (FL1) and red fluorescence
(FL2). Gates were applied to these FSC/SSC dot plots to exclude
cellular debris, multi-cell clusters and other background particles.
Unstained negative controls, as well as positive controls, were
included in all analyses. Flow cytometry procedure and gating
strategies were described previously (Wentzel et al., 2017).
Subsequent data analysis was performed using FCS Express 7 (De
Novo Software, Pasadena, CA, USA). All experiments were
performed at least in triplicate and independently repeated.
RESULTS

Efficacies of Amino-Artemisinins Against
Cancer Cells
The in vitro efficacies of the new derivatives were determined
against various cancer cell lines, and expressed as IC50 values
(Table 1). Artemisinin 2 was included in this study as a control
compound. This is the parent compound from which all the
derivatives are obtained; it has been shown to have anti-cancer
properties (Buommino et al., 2009; Crespo-Ortiz andWei, 2012).
Artemisone 4 and farnesylpiperazine-DHA 7 were the most
active compounds against the breast cancer (MCF-7) cell line.
However, the latter derivative displayed potent activities against
Frontiers in Pharmacology | www.frontiersin.org 7
both the melanoma (UACC63) and kidney cancer (TK 10 and
HEK293) cells as well.

Next, the quantitative colorimetric MTT assay was used to
determine in vitro cell viability with A375 (melanoma) and
HaCat (nonmalignant keratinocyte) cells. These were exposed to
the artemisinin derivatives and combinations of these
compounds with each of elesclomol-Cu(II) 1-Cu, sulfasalazine
8 and etoposide 9 for 24 h. In viable cells, NAD(P)H-dependent
cellular oxidoreductase enzymes reduce MTT to formazan, and
thus the amount of formazan produced reflects the number of
viable cells present (Mosmann, 1983). The IC50 values of both
malignant and nonmalignant cells and are summarized in Table
2. Artemisinin 2, artemisone 4, elesclomol-Cu(II) 1-Cu and
etoposide 9 were active against the A375 melanoma cells with
IC50 values comparable to those of obtained from other studies
(Buommino et al., 2009; Blackman et al., 2012; Dwivedi et al.,
2015; Calvani et al., 2016). The IC50 was used to determine a
crude therapeutic index (fold increase or decline in IC50).
Artemisinin 2 was 2.5 fold more active toward melanoma
than toward nonproliferating cells and artemisone 4 and
elesclomol-Cu (II) 1-Cu, were 2.8 fold more active toward the
melanoma cells (Table 2). The anticancer drug etoposide 9
showed exceptionally good selectivity toward melanoma cells
(therapeutic index of >297). Sulfasalazine 8 was the least active
but was still selectively active against melanoma cells. These
results are consistent with those of Nagane et al. (Nagane et al.,
2018). The dose-response curves of the amino-artemisinins
and the amino-artemisinins in combination with elesclomol-
Cu 1-Cu are illustrated in Figure 6A. Geranylpiperazine-DHA
6 was more active against melanoma cells (IC50 of 46.94 µM)
compared to nonmalignant cells (IC50 of 105.57 µM), and
was more active than each of artemisinin 2 and artemisone
4. The combination of geranylpiperazine-DHA 6 with each
of artemisinin 2, artemisone 4, etoposide 9 (Table 2)
and elesclomol-Cu (II) 1-Cu (Figure 6A) also proved to be
more selective toward melanoma cells than nonmalignant
keratinocytes. Of special note is the combination of
geranylpiperazine-DHA 6 with elesclomol-Cu(II) 1-Cu that
led to a >255 fold increase in toxicity toward melanoma cells
based on the IC50 values. Farnesylpiperazine-DHA 7 proved the
most effective of all the single compounds tested in this study
with at IC50 of 32.62 µM against melanoma cells. When
farnesylpiperazine-DHA 7 was combined with these
compounds, a reduction in the IC50 values against melanoma
TABLE 1 | Cytotoxicities of the artemisinins against cancer cell lines in vitro.ab

Compound HEK293 MCF-7 UACC62 TK 10

IC50 µM

Artemisinin 2 120.70 ± 1.07 ND ND ND
Artemisone 4 86.72 ± 1.09 2.75 ± 0.79 32.7 ± 3.47 >100
Geranylpiperazine-DHA 6 24.26 ± 1.15 ND ND ND
Farnesylpiperazine-DHA 7 35.46 ± 1.09 1.56 ± 0.51 2.15 ± 0.79 3.00 ± 0.67
S
eptember 2020 | Volume 11 | Ar
aHEK293 human embryonic kidney; MCF-7 breast; UACC62 melanoma; TK10 renal cancer cell lines.
bResults are reported as inhibitory concentrations IC50 from three independent biological replicates, each performed as technical replicates ± standard deviation (SD).
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cells was generally observed (Figure 6A). The elesclomol-Cu(II)
1-Cu combination again proved to be the most selective toward
melanoma cells, resulting in a >371 fold increase in toxicity.

Synergism Analysis
In order to establish if combining the various compound types
described here would result in lower effective therapeutic doses,
we determined the efficacy of fixed dose combinations of various
compounds according to the Chou-Talalay method (Chou and
Talalay, 1984). The results are presented in Figure 6B and Table
2 as the combination indices (CI). This method provides a
quantitative assessment of synergism between two or more
compounds. A value of CI less than 1 indicates synergism;
while CI>1 indicates antagonism (Chou and Talalay, 1984;
Chou, 2010). Compound effects are more prominent the
farther a CI value is from 1. The geranylpiperazine 6 and
farnesylpiperazine 7 derivatives were combined with other
compounds in a 1:1 ratio. The CI was calculated at the IC50

value (also referred as the fraction affected or Fa of 0.5) (Chou
and Talalay, 1984; Chou, 2010). Artemisone and elesclomol-Cu
(II) proved synergistic with a combination index of 0.30, well
below 1. Geranylpiperazine-DHA 6 and farnesylpiperazine-
DHA 7 and combinations with artemisinin, artemisone and
sulfasalazine proved to be antagonistic or additive at the 50%
Fa concentrations (Supplementary Figures S1, S2). However,
the combination of etoposide 9 with elesclomol-Cu(II) indicated
synergistic interactions against melanoma cells. Notably, the
combination of farnesylpiperazine-DHA 7 with elesclomol-Cu
(II) elicited the most prominent synergism, as reflected in the
very low CI value of 0.2.

Cell Membrane Integrity Assay
In order to determine whether cytotoxicity is caused by physical
cellular membrane damage, the LDH assay (Malik et al., 1983)
was employed. Results are expressed relative to the untreated
control and the maximum release sample, which was set as
Frontiers in Pharmacology | www.frontiersin.org 8
having 0% and 100% LDH release respectively. The LDH
released from the nonmalignant HaCat cells and the A375
melanoma cells was then used to deduce the selectivity of the
compounds against melanoma cell membranes. Exposure to each
of artemisinin 2, artemisone 4, sulfasalazine 8, etoposide 9 and
elesclomol-Cu (II) 1-Cu did not significantly increase the release
of LDH (Table 3). On the other hand, exposure of the melanoma
cells to the prenylated piperazine-DHA derivatives dramatically
increased the LDH concentrations, indicating significant
membrane damage (Figure 6C). Interestingly, none of the
combinations with the prenylated piperazine-DHA derivatives
had such a pronounced effect on LDH release as these derivatives
on their own. This is an indication that the synergism of these
compounds observed with each of etoposide 8 and elesclomol-
Cu(II) is likely not attributable to membrane interaction
or damage.

Detection of Intracellular ROS
The levels of intracellular ROS were determined using the
DCFH-DA assay. This assay provides a measure of ROS as a
global metric in conjunction with other efficacy screenings
(Aranda et al., 2013; Nault et al., 2016; Ribou, 2016). Over a
12-h treatment period with the aminoartemisinins, DCF
fluorescence did not markedly increase compared to the
untreated control in the HaCat cells (Figures 7A, B).
Treatment with elesclomol-Cu (II) 1-Cu also resulted in
no significant increased intracellular ROS in HaCat cells.
Compared to the normal keratinocytes, geranylpiperazine-
DHA 6 induced formation of higher levels of intracellular
ROS (Figure 7C). However, these were not significantly
higher when compared to the untreated control. Geranylpiperazine-
DHA 6 in combination with elesclomol-Cu(II) 1-Cu induced
statistically significantly higher ROS levels when compared to
the control. The levels of ROS induced by farnesylpiperazine-
DHA 7 alone and in combination with 1-Cu was also higher in
the melanoma cells , when compared to the normal
TABLE 2 | Cytotoxicities of the compounds and 1:1 combinations against melanoma (A375) and normal keratinocytes (HaCat).a

Compounds and 1:1 Combinations A375 IC50 µM or nMb HaCat IC50 µM or nMb TIc CId

Artemisinin 2 149.7 ± 3.61 381.3 ± 5.36 2.5
Artemisone 4 95.73 ± 2.31 268.8 ± 1.97 2.8
Elesclomol-Cu(II) 1-Cu 1.72 ± 0.23 nM 4.88 ± 0.56 nM 2.8
Sulfasalazine 8 569.80 ± 2.95 2223 ± 5.37 3.9
Etoposide 9 43.66 ± 1.37 >12970 >297
Artemisone 4 + Elesclomol 1-Cu 2.40 ± 0.47 nM 8.04 ± 0.49 nM 3.4 0.30
Geranylpiperazine-DHA 6 46.94 ± 0.89 105.57 ± 3.99 2.2
6 + Elesclomol 1-Cu <0.01 nM 2.55 ± 0.41 nM >255 0.20
6 + Sulfasalazine 8 30.77 ± 0.27 134.3 ± 1.23 4.3 1.60
6 + Etoposide 9 20.88 ± 0.84 102.23 ± 2.67 4.8 0.74
Farnesylpiperazine-DHA 7 32.62 ± 1.08 70.64 ± 1.07 2.1
7 + Elesclomol 1-Cu <0.01 nM 3.71 ± 0.12 nM >371 0.16
7 + Sulfasalazine 8 30.43 ± 1.14 61.43 ± 1.12 2 0.92
7 + Etoposide 9 10.87 ± 0.91 48.91 ± 1.01 4.5 0.42
September 2020 |
 Volume 11 | Article 55
aResults are reported as inhibitory concentrations IC50 in µM or nM from three independent biological replicates, each performed as technical replicates ± standard deviation (SD).
bResults from elesclomol-Cu(II) are reported in nM.
cTherapeutic index (TI) calculated as the fold decrease in IC50 of HaCat cells/IC50 of A375 cells.
dCombination index (CI): CI<1=synergism; CI=1 additive effect; CI>1=antagonism(Chou and Talalay, 1984; Chou, 2010). The drug interaction is more pronounced the farther a CI value is
from 1.
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keratinocytes, but not significantly higher than the untreated
control (Figure 7D).

Detection of Apoptosis and Late
Apoptosis/Necrosis With Flow Cytometry
Flow cytometry was employed to establish if the observed
decrease in cell viability in melanoma cells was of necrotic or
apoptotic origin. Cultured melanoma and keratinocyte cells were
exposed to predetermined IC50 concentrations of the prenylated
piperazine-DHA derivatives and analyzed using the FITC
Annexin V/PI flow cytometry assay. Annexin V is a Ca2+-
dependent phospholipid binding protein with a high affinity
for phosphatidylserine (PS). In early apoptosis this phospholipid
is translocated from the outside of the plasma membrane. PS
translocation precedes the loss of membrane integrity, a hallmark
characteristic of late apoptosis or necrosis (Vermes et al., 1995). The
representative flow cytometry dot-plots are illustrated in
Supplementary Figure 3. For keratinocyte cells, the assay
indicates that 84.1 ± 3.6% of the cells exposed to 45 µM
geranylpiperazine-DHA 6 were still viable (FITC-Annexin V
negative and PI negative). A slight decrease in cell viability was
TABLE 3 | Membrane integrity of normal keratinocyte HaCat and melanoma
A375 cells after exposure to artemisinin derivatives.a

Compounds and
Combinationsb

HaCat
(% LDH release)

A375
(% LDH release)

Fold
increase in
LDH release

Artemisinin 2 18 ± 0.84 24 ± 0.96 1.3
Artemisone 4 19 ± 0.79 27 ± 0.81 1.4
Elesclomol-Cu(II) 1-Cu 16 ± 0.79 21 ± 0.94 1.3
Sulfasalazine 8 35 ± 1.02 21 ± 0.96 0.6
Etoposide 9 7 ± 0.31 11 ± 0.56 1.5
Artemisone 4 +
Elesclomol 1-Cu

20 ± 0.87 28 ± 0.87 1.4

Geranylpiperazine-DHA 6 17 ± 0.95 68 ± 0.91 4.0
6 +Elesclomol 1-Cu 24 ± 0.67 61 ± 1.12 2.5
6 +Sulfasalazine 8 59 ± 1.03 55 ± 1.03 0.9
6 + Etoposide 9 26 ± 0.56 64 ± 1.12 2.4
Farnesylpiperazine-DHA 7 18 ± 0.67 57 ± 1.21 3.1
7 +Elesclomol 1-Cu 31 ± 0.37 83 ± 1.24 2.6
7 +Sulfasalazine 8 48 ± 0.50 49 ± 0.64 1.0
7 + Etoposide 9 31 ± 0.65 26 ± 0.61 0.8
aResults are reported as %LDH release from three independent biological replicates, each
performed as technical replicates ± standard deviation (SD).
bCompounds were administered at their IC50 concentrations. All combinations were
administered in a 1:1 ratio.
A B

DC

FIGURE 7 | The intracellular reactive oxygen species (ROS) determined with the DCFH-DA assay, presented as DCF fluorescence fold change compared to the
untreated control. (A) Normal keratinocytes (HaCat) cells and (C) melanoma (A375) cells treated with geranylpiperazine-DHA 6, elesclomol-Cu(II) 1-Cu and the
combination 6:1-Cu. (B) Normal keratinocytes (HaCat) cells and (D) melanoma (A375) cells treated with farnesylpiperazine-DHA 7, elesclomol-Cu(II) 1-Cu and the
combination 7:1-Cu. *Notes statistical significant difference when compared to the control.
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observed when the HaCat cells were exposed to farnesylpiperazine-
DHA 7 (74.2 ± 2.6%). Exposure to combinations of the prenylated
piperazine-DHA derivatives with elesclomol-Cu(II) did not result in
drastic increase in apoptosis or necrosis and the majority of cells
could still be considered viable (6 and 1-Cu 76.4 ± 3.9%, 7 and 1-Cu
70.2 ± 4.0%).

A considerably larger cell population (37.7 ± 2.1%) of
melanoma cells exposed to 45 µM geranylpiperazine-DHA 6
underwent late apoptosis/necrosis (FITC-Annexin V positive
and PI positive) than their keratinocyte counterparts (Figures
8A, B). A dramatic and significant increase in apoptosis (30.5 ±
3 .7%) i s observed in melanoma ce l l s exposed to
farnesylpiperazine-DHA 7. Exposure to the combination of 6
and 1-Cu resulted in a dramatic decrease in cell viability (36.6 ±
2.2% viable cells) with more than half of the cell population
undergoing apoptosis (51.2 ± 2.8%). The combination of 7 and 1-
Cu proved even more potent with 84.0 ± 4.3% of the melanoma
cells undergoing apoptosis (Figure 8B). These results confirm
the cytotoxicity data indicating that the prenylated piperazine-
DHA derivatives are more selectively toxic toward melanoma
cells. The combinations of the derivatives with 1-Cu showed
significant increases in apoptosis compared to the individual
treatments and this indicates that the cell death observed in these
Frontiers in Pharmacology | www.frontiersin.org 11
cells is most likely due to the activation of an apoptotic
pathway/mechanism.
DISCUSSION

In this study, the efficacies of the novel aminoartemisinins
geranyl- and farnesyl piperazine-DHA derivatives 6 and 7 in
comparison with artemisinin 2 and artemisone 4 against cancer
cells were evaluated. The farnesylpiperazine-DHA 8 is active
against breast, kidney and melanoma cancer cell lines (Table 1).
These results coupled with those from our previous study
(Dwivedi et al., 2015), caused us to focus in more detail on
melanoma cells. We thereby confirmed the anti-melanoma
efficacies of artemisone 4 and elesclomol-Cu(II) 1-Cu against
A375 melanoma cells. The IC50 values of the individual drugs
(Table 2) are consistent with values obtained against other
melanoma cell lines (Petrat et al., 2003; Kirshner et al., 2008;
Hooft van Huijsduijnen et al., 2013; Dwivedi et al., 2015). For
elesclomol-Cu(II) 1-Cu, the data confirm the necessity of copper
for elesclomol to exert cytotoxicity (Nagai et al., 2012). The
concentration of copper used in this study, 10 µM copper sulfate
per 20 nM elesclomol, displayed similar toxicity relative to 10 µM
A

B

FIGURE 8 | Apoptosis measured by FITC Annexin V/PI assay. (A) A375 cells were treated with elesclomol-Cu(II) 1-Cu (2 nM), geranylpiperazine-DHA 6 (45 µM) and
farnesylpiperazine-DHA 7 (30 µM). Combinations in a 1:1 ratio were also included. Cells were double stained with Annexin V-FITC and PI for flow cytometry analysis
and representative plots are shown. The flow cytometry plots are divided in the four quadrants with subpopulations of live (Annexin V and PI negative), early
apoptotic (Annexin V positive and PI negative), late apoptotic (Annexin V and PI positive), and dead (Annexin V negative, PI positive) cells are indicated. (B) The bar
graph illustrates the percentage cells of each grouping.
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copper chloride, used in other studies of elesclomol-Cu(II)
(Yadav et al., 2013). Both artemisinin 2 and artemisone 4
demonstrated selectivity toward melanoma cells with
therapeutic indices of 2.5 and 2.8 respectively. However, the
anticancer drugs sulfasalazine 8 and etoposide 9 were more
selective with etoposide having a therapeutic index of >297.
These results are consistent with those of other studies involving
these drugs on melanoma cells (Calvani et al., 2016; Nagane et al.,
2018). The proposal to combine the oxidant artemisone 4 and
the redox active elesclomol-Cu(II) 1-Cu to target proliferating
cancer cells based on the susceptibility of cancer cells to oxidative
stress was evaluated. The results (Table 2) indeed indicate the
viability of the hypothesis of combining the oxidant drug
(artemisone 4) with the redox-active drug elesclomol-Cu(II) 1-
Cu (cf. Figure 4). In addition, strong synergism of the drugs at
the concentrations tested was confirmed. The novel prenylated
piperazine-DHA derivatives also displayed strong synergism
with elesclomol-Cu(II) 1-Cu. Notably, the combinations of the
aminoartemisinin derivative with etoposide also displayed
synergism, and this important aspect will be further
investigated elsewhere.

It was important to establish how the drugs induce cell death,
as a prelude to understanding overall drug mechanism of action.
Firstly, we establish if necrosis is the mode of cell death by using
the LDH assay. The release of LDH from cells is a classic marker
of plasma membrane damage (Malik et al., 1983), which is in
turn a classic feature of necrosis. The progressive loss of plasma
membrane integrity is also a feature of apoptosis described as
secondary necrosis. It is hypothesized to occur in vivo, especially
in tumor cells from patients undergoing chemotherapy (Zhang
et al., 2018). Thus we find that artemisinin 2 and artemisone 4
did not induce significant LDH release. On the other hand, the
prenylated piperazine-DHA derivatives 6 and 7 induced
significantly higher levels of LDH release in melanoma cells
with high selectivity toward the A375 cells compared to the
HaCat cells. Whereas elesclomol-Cu(II) 1-Cu on its own did not
induce LDH release, the combination thereof with both of the
prenylated aminoartemisinin derivatives produced high levels of
LDH release, with farnesylpiperazine-DHA 7 inducing 83 ±
1.24% LDH release. This finding cannot exclusively prove
apoptosis via secondary necrosis as the mechanism of cell
death, but it does give a clear indication of the extent of cell
death after treatment with the compound.

The flipping of membrane phosphatidylserine (PS) is
considered a classic feature of apoptosis, functioning as the
“eat-me” signal to aid apoptotic cell recognition and clearance
by phagocytes (Zhang et al., 2018). Both of the prenylated
piperazine-DHA derivatives induced high levels of Annexin V
positive staining as analyzed by flow cytometry and low levels of
PI staining. This was indicative of PS flipping occurring after
treatment with these compounds, relating to apoptosis as a
mechanism of cell death occurring. When the compounds
were combined with elesclomol-Cu(II) 1-Cu, the percentage
apoptotic cells increased significantly with farnesylpiperazine-
DHA 7 producing 84 ± 4.3% apoptotic cells. The derivatives were
also selective toward melanoma cells, with higher percentages of
Frontiers in Pharmacology | www.frontiersin.org 12
apoptosis when compared to the HaCat cells. Levels of
intracellular ROS were also increased in the melanoma cells
relative to the HaCat cells. Additional studies to clarify the exact
mechanism of action of these derivatives in combination with
elesclomol-Cu(II) 1-Cu are planned.

In conclusion, redox directed combinations were investigated
in which aminoartemisinins and elesclomol-Cu(II) 1-Cu were
combined in order to potentiate activities against proliferating
cancer cells based on the susceptibility of cancer cells to oxidative
stress. The combination of artemisone 4 and elesclomol-Cu(II)
1-Cu was potently active against melanoma cells. In addition, we
quantified the drug interaction between these two drugs and
synergism was confirmed. The efficacy of novel prenylated
piperazine-DHA derivatives 6 and 7 against melanoma cells in
vitro was established, with the farnesylpiperazine-DHA 7 having
a lower IC50 value. Combinations of the prenylated piperazine-
DHA derivatives with sulfasalazine 8 and etoposide 9 did not
significantly improve efficacy against melanoma cells. However,
combinations of sulfasalazine 8 and etoposide 9 with elesclomol-
Cu(II) 1-Cu significantly improved the selectivity and efficacy,
with highly synergistic effects. Increased apoptosis in melanoma
cells was demonstrated, but additional studies are needed to
clarify the exact mechanism of apoptosis. Overall, the results
described here indicate that the proposal for combining an
oxidant drug with a redox-active drug appears to be successful
in enhancing cytotoxicity against melanoma cells.
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