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Aim: To summarize the evidence on the performance of artificial intelligence vs. traditional
pharmacoepidemiological techniques.

Methods: Ovid MEDLINE (01/1950 to 05/2019) was searched to identify observational
studies, meta-analyses, and clinical trials using artificial intelligence techniques having a
drug as the exposure or the outcome of the study. Only studies with an available full text in
the English language were evaluated.

Results: In all, 72 original articles and five reviews were identified via Ovid MEDLINE of
which 19 (26.4%) compared the performance of artificial intelligence techniques with
traditional pharmacoepidemiological methods. In total, 44 comparisons have been
performed in articles that aimed at 1) predicting the needed dosage given the patient’s
characteristics (31.8%), 2) predicting the clinical response following a pharmacological
treatment (29.5%), 3) predicting the occurrence/severity of adverse drug reactions
(20.5%), 4) predicting the propensity score (9.1%), 5) identifying subpopulation more at
risk of drug inefficacy (4.5%), 6) predicting drug consumption (2.3%), and 7) predicting
drug-induced lengths of stay in hospital (2.3%). In 22 out of 44 (50.0%) comparisons,
artificial intelligence performed better than traditional pharmacoepidemiological
techniques. Random forest (seven out of 11 comparisons; 63.6%) and artificial neural
network (six out of 10 comparisons; 60.0%) were the techniques that in most of the
comparisons outperformed traditional pharmacoepidemiological methods.

Conclusion: Only a small fraction of articles compared the performance of artificial
intelligence techniques with traditional pharmacoepidemiological methods and not all
artificial intelligence techniques have been compared in a Pharmacoepidemiological
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setting. However, in 50% of comparisons, artificial intelligence performed better than
pharmacoepidemiological techniques.
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INTRODUCTION

In the first part of this systematic review (Sessa et al., 2020), we
showed that in the past decade there was increased use of machine
learning techniques in Pharmacoepidemiology, which is defined
by the International Society of Pharmacoepidemiology, as “the
discipline studying the utilization and effects of drugs in large
numbers of people.” In this discipline, machine learning
techniques have been applied mainly on secondary data and
mostly to predict the clinical response following a
pharmacological treatment, the occurrence/severity of adverse
drug reactions, or the needed dosage of drugs with a narrow
therapeutic index. For such purposes, artificial neural networks,
random forest, and support vector machine were the three most
used techniques (Sessa et al., 2020). Based on such observations a
natural question arise or rather “What is the performance of
machine learning when compared to traditional methods used in
Pharmacoepidemiology?” To date, a systematic evaluation of the
performance of machine learning techniques in comparison with
traditional pharmacoepidemiological techniques (Anes et al.,
2012) is missing. Therefore, the objective of the second part of
this systematic review is to provide a detailed overview of articles
performing such a comparison.

METHODS

The protocol of the systematic review has been registered in the
PROSPERO International Prospective Register of Systematic
Reviews database (identifier CRD42019136552). The methods
are described in detail in the first part of this systematic review
(Sessa et al., 2020).

Search Methods for the Identification of
Studies
Ovid MEDLINE (01/1950 to 05/2019) was searched along with
the references listed in the reviews identified with our research
query, which is available elsewhere (Sessa et al., 2020).

Eligibility Criteria for Considering Studies in
This Review
We included observational studies, meta-analyses, and clinical
trials using artificial intelligence techniques having a drug as the
exposure or the outcome of the study. Only studies with an
available full text in the English language were evaluated.

Data Extraction and Management
A data extraction form was developed for this systematic review,
which is available elsewhere (Sessa et al., 2020). For consistency

with the first part of this systematic review, we categorized the
purpose of using machine learning techniques as follows: 1) To
predict clinical response following a pharmacological treatment;
2) To predict the needed dosage given the patient’s
characteristics; 3) To predict the occurrence/severity of adverse
drug reactions; 4) To predict diagnosis leading to a drug
prescription; 5) To predict drug consumption, 6) To predict
the propensity score; 7) To predict drug-induced lengths of
stay in hospital; 8) To predict adherence to pharmacological
treatments; 9) To optimize treatment regimen; 10) To identify
subpopulation more at risk of drug inefficacy, and 11) To predict
drug-drug interactions.

RESULTS

In all, 72 original articles and five reviews were identified viaOvid
MEDLINE of which 19 (26.4%) compared the performance of
artificial intelligence techniques with traditional
pharmacoepidemiological methods. In total, 44 comparisons
have been performed in articles aiming at 1) predicting the
needed dosage given the patient’s characteristics (31.8%), 2)
predicting the clinical response following a pharmacological
treatment (29.5%), 3) predicting the occurrence/severity of
adverse drug reactions (20.5%), 4) predicting the propensity
score (9.1%), 5) Identifying subpopulation more at risk of
drug inefficacy (4.5%), 6) predicting drug consumption (2.3%),
and 7) predicting drug-induced lengths of stay in hospital (2.3%).

Compared artificial intelligence techniques included random
forest (11/44), artificial neural network (10/44), decision/
regression tree (7/44), support vector machine (7/44), LASSO/
elasticNet (4/44), auto contractive map (1/44), Bayesian additive
regression (1/44), hierarchical cluster analysis (1/44), k-nearest
neighbors (1/44), and naive Bayes classifier (1/44).

In 22 out of 44 (50.0%) comparisons, artificial intelligence
techniques performed better than traditional
pharmacoepidemiological methods and in 4 (9.5%) cases they
perform equally (Table 1). Random forest (seven out of 11
comparisons; 63.6%) and artificial neural network (six out of
10 comparisons; 60.0%) were the techniques that in most of the
comparisons outperformed traditional pharmacoepidemiological
methods (Table 1).

Below, we provided a detailed overview of the articles
performing such comparisons for each of the outcomes
listed above.

Predicting the Clinical Response Following
a Pharmacological Treatment
Barbieri et al. (2015) used artificial neural network and linear
regression models to predict hemoglobin levels in patients with
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TABLE 1 | Comparison of the performance of artificial intelligence techniques with standard pharmacoepidemiological techniques. The articles marked in red are considered potential borderline in our broad definition of
pharmacoepidemiology.

Technique Outcome
1

Outcome
2

Outcome
3

Outcome
4

Outcome
5

Outcome
6

Outcome
7

Outcome
8

Outcome
9

Outcome
10

Outcome
11

Artificial neural network ↑ ↑ ↑ ↓ ↓ ↓ ↓↑ ↑ ↑
Auto contractive map ↑
Bayesian additive regression trees �
Bayesian machine learning
Bayesian network learning
Classification, regression and
decision tree

↓ ↓ ↓ ↓ ↓ ↑ ↑

Convolutional neural network
Decision table
Discriminant analysis
Fuzzy-c-means
Hierarchical clustering ↑
Kernel partial least squares
K-means clustering
K-nearest neighbors ↓
Naïve Bayes classifier �
Principal component analysis
Q-learning
Random forest ↓ ↓ ↑ ↓ ↑ � ↑ ↑ ↑ ↑ ↑
Ridge, ElasticNET, and LASSO ↑ ↓ ↑ ↑
Support vector machine ↑ ↑ � ↓ ↓ ↓ ↓

Outcome 1—To predict clinical response following a pharmacological treatment; Outcome 2—To predict the needed dosage given the patient’s characteristics; Outcome 3—To predict the occurrence/severity of adverse drug reactions;
Outcome 4—To predict diagnosis leading to a drug prescription; Outcome 5—To predict drug consumption; Outcome 6—To predict the propensity score; Outcome 7—To predict drug-induced lengths of stay in hospital; Outcome 8—To
predict adherence to pharmacological treatments; Outcome 9—To optimize treatment regimen; Outcome 10—To identify subpopulation more at risk of drug inefficacy; Outcome 11—To predict drug-drug interactions; ↑: artificial intelligence
performed better than standard pharmacoepidemiological methods; ↓: artificial intelligence performed worse than standard pharmacoepidemiological methods; �: artificial intelligence performed equal than standard
pharmacoepidemiological methods.
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end-stage renal disease that received pharmacological treatment
for anemia (e.g., darbepoetin alpha iron sucrose or iron
gluconate). This observational study involved 4,135 patients
undergoing hemodialysis in three different countries (Portugal,
Spain, and Italy) from January 1, 2006 to December 31, 2010.
Considering the heterogeneity of the study population, the
authors claimed the necessity of a reliable model for the
prediction of the response to antianemia therapy. Therefore,
they decided to test both machine learning and the linear
regression models. The artificial neural network has been
modeled to mimic the human physiology by taking into
account red blood cell lifespan, and schedule of drug
administration (i.e., posology). The data source was electronic
healthcare records of Hospital databases. The dataset used for the
analysis was composed of 101,918 observations of 4,135 patients.
The authors divided the dataset into two subsets. One subset
composed of 66% of the data (training subset), that was used to
train the models. The remaining 34% of the data was
subsequently divided into two subsets containing 17% of the
data each. The first subset containing 17% of the data was used for
cross-validation and tuning of the models. The other was used as
completely unseen data to test the performance of the models.
The study outcome was hemoglobin level over time (g/dl,
continuous variable). The variables used for the prediction of
hemoglobin levels over time were 20 continuous variables (e.g.,
known predictors of hemoglobin levels). The variables codifying
for the outcome and the predictors were included in the feed-
forward artificial neural network and in the linear regression
models. To compare the performance of both models, predicted
values of hemoglobin with the observed valued were compared
along with prediction errors for both models. The Mean Error
(ME) was used as a measure of bias, and the Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) were used as
measures of accuracy the model. Prediction results showed
better accuracy and reduced biased estimates of hemoglobin
levels with the artificial neural network model (MAE: 0.574;
RMSE: 0.764; ME: 0.010) when compared to the linear
regression model (MAE: 0.610; RMSE: 0.813; ME: 0.026).
According to the authors, the use of machine learning did not
improve the prediction considerably. They concluded that the
main reason could be that “ a certain accuracy threshold that
could not be surpassed by means of using the same data structure
with different methods.” Additionally, they supposed that the
limited improvement obtained by using machine learning models
“may also be linked to the fact that the systematic error committed
by measuring machines did not give a wide margin of
improvement” (Barbieri et al., 2015).

Buchner et al. (2012) compared artificial neural network and
logistic regression models for the prediction of poor prognosis in
a cohort of 175 patients with advanced renal cell carcinoma who
started a systemic therapy for the disease (interferon alfa and
interleukin-2 s. c. or oral tyrosine kinase inhibitors) between
January 1, 2004 and May 31, 2009. The authors claimed that the
prediction of the prognosis of patients with metastatic renal cell
carcinoma is still an unresolved issue and there is a need for
assessment tools (e.g., machine learning models) with improved
prediction performance. According to the author, artificial neural

network was a suitable technique to recognize complex data
patterns in their dataset and, therefore, improve prediction
accuracy of the prognosis. The data source was a dataset
containing clinical measurements of patients collected in a
hospital setting. The authors divided the dataset into two
subsets. One subset composed of 70% of the data (training
subset) that was used to train the models, and a subset
containing the remaining 30% of the data that was used for
assessing the prediction performance. The study outcome
was overall survival after 36 months (categorical variable).
The variables used to predict the outcomes were four
continuous variables (e.g., age and body mass index) and 12
categorical variables (e.g., sex and type of therapy). The variables
codifying the outcome and the predictors were included in the
Broyden-Fletcher-Goldfarb-Shanno training algorithm to train
the 3-layer multilayer perceptron model (e.g., a type of artificial
neural network). For all input variables included in the artificial
neural network, authors assessed a sensitivity index which
indicated the classification error (e.g., misclassification of
survival) if the specific variable was omitted. The authors
found that the artificial neural network model outperformed
the logistic regression model in prediction accuracy (95%; 166
of 175 patients) vs. 78% (137 of 175 patients)) providing a more
accurate predictions of the prognosis. Furthermore, the authors
compared the mean Area Under the receiver operating
characteristic Curve (AUC) of the artificial neural network
model (AUC: 0.952; 95% CI: 0.878–0.987) with those of the
logistic regression (AUC: 0.794; 95% CI: 0.688–0.877). AUC
represents degree or measure of separability or rather how
much the model is capable of classifying correctly the
prognosis of the patients. When the AUC was compared
between the two models (p-value: 0.002) the artificial neural
network was associated with a staitstically significant better
classification performance than logistic regression (Buchner
et al., 2012).

Podda et al. (2017) used a logistic regression model and several
machine learning models, including the auto contractive map,
random forest, naïve Bayes classifier, sequential minimal
optimization (e.g., support vector machine), K-nearest
neighbors, and meta bagging (e.g., decision tree) to predict the
platelet reactivity (e.g., as a surrogate biomarker for the
effectiveness of the treatment) in clopidogrel-treated patients.
The data source was the subset of the dataset used in the
GEPRESS study. The dataset contains information of 603
patients with non-ST acute coronary syndromes receiving
aspirin and clopidogrel. The original dataset contained fifty-
nine variables recording demographic, clinical and genetic
features of patients of which 23 were evaluated by Podda et al.
(2017) as potential predictors of study outcomes (e.g., platelet
reactivity index and high on-treatment platelet reactivity). This
included six continuous variables (e.g., age) and 17 categorical
variables (e.g., sex and diabetes mellitus). The dataset was divided
into a training subset (302/603) used to train the models and a
testing set (301/603) used to evaluate the performance of the
models. The authors found that auto contractive map (accuracy:
63%; 95% CI: 59–66%) and sequential minimal optimization
models (60%; 95% CI: 53–63%) performed better than the
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logistic regression model (59%; 95% CI: 55–62%) in terms of
accuracy of the prediction. Instead, the random forest (55%; 95%
CI: 51–60%), naïve Bayes classifier (56%; 95% CI: 52–60%),
K-nearest neighbors (50%; 95% CI: 46–54%) and the meta
bagging models (52%; 95% CI: 48–56%) performed worse than
the logistic regressionmodel. According to the authors, even if the
auto contractive map and the sequential miniminal optimizations
models performed better than the logistic regression models in
terms of prediction accuracy for the study outcomes, the overall
prediction accuracy was not satisfactory (Podda et al., 2017).

Waljee et al. (2017) used random forest model and logistic
regression models to predict clinical remission of patients with
inflammatory bowel disease treated with thiopurines. The data
source was electronic health records of 1,080 patients retrieved
from the University of Michigan Health System Data Warehouse
between November 13, 1998, and November 19, 2012. The data
source was split in two subsets containing 70% and 30% of the
data, respectively. These subsets have been used as a testing subset
(70% of the data) and a validation subset (30% of the data). To
predict clinical remission, ten variables were included in the
models of which seven were categorical (e.g., sex and race)
and three were continuous variables (e.g., age and disease
duration). The random forest model was built by making
multiple decision trees which each considered a random
subset of the variables. A total of 1,000 decision trees were
built and combined to build the final model. The AUC was
used to evaluate the classification performance of the model. The
authors found that the random forest model classified correctly
patients with an AUC of 79% (95% CI: 0.78–0.81) which was
significantly superior (p-value: < 0.05) to the logistic regression
model (49%; 95% CI: 0.44–0.54). The authors discussed the
potential limitations of their study. In particular, they stated
that “not all measures of objective remission were used,” which
may have contributed to a “heterogeneity in the objective
remission definition” and therefore “threaten the
generalizability of the results.” The authors have incorporated
the random forest model into the daily clinical use at the
University of Michigan with encouraging results (Waljee et al.,
2017).

Sangeda et al. (2014) used multiple machine learning
techniques including random forest, decision tree, Akaike
information criterion stepwise logistic regression and a boost
stepwise logistic regression models to predict virological failure in
patients treated with antiretroviral drugs for the Human
Immunodeficiency Virus (HIV). The data source was clinical
data collected for 162 HIV-infected adults attending an HIV Care
and Treatment Center in 2010. In the study, 17 variables were
investigated as potential predictors of virological failure of which
13 were categorical and four were continuous variables. In the
article, it was not described how the machine learning models
were set up. The authors used AUC, sensitivity, and specificity to
assess the models performance. The authors found that the
random forest model had an AUC of 0.59 (SD: 0.15) which
was inferior to Akaike information criterion stepwise logistic
regression (AUC: 0.62, SD: 0.14) and boost stepwise logistic
regression (AUC: 0.64, SD: 0.15) models. Analogously, the
random forest model performed worse in term of prediction

accuracy (67.80; SD: 9.11), sensitivity (0.28; SD: 0.19), and
specificity (0.88; SD: 0.10) than Akaike information criterion
stepwise logistic regression models [AIC stepwise: accuracy: 66.79
(SD: 10.10); sensitivity: 0.37 (SD: 0.20); specificity: 0.82 (SD:
0.12)] and boost stepwise logistic regression [accuracy: 67.77
(SD: 9.82); sensitivity: 0.39 (SD: 0.20); specificity: 0.83 (SD:
0.11)] models. Similarly, the decision tree model had an AUC
of 0.55 (SD: 0.12) that was inferior to both logistic regression
models (Akaike information criterion stepwise model AUC 0.62,
SD: 0.14 and boost stepwise model AUC: 0.64, SD: 0.15). The
decision tree model had also lower accuracy (65.72; SD: 8.46),
sensitivity (0.21; SD: 0.21), and specificity (0.89; SD: 0.13) than
both Akaike information criterion stepwise logistic regression
[accuracy: 66.79 (SD: 10.10); sensitivity: 0.37 (SD: 0.20);
specificity: 0.82 (SD: 0.12)] and boost stepwise logistic
regression [accuracy: 67.77 (SD: 9.82); sensitivity: 0.39 (SD:
0.20); specificity: 0.83 (SD: 0.11)] models (Sangeda et al., 2014).

Saigo et al. (2011) investigated the association between
sequences of antiviral pharmacological treatment/virus
genotype changes and the occurrence of treatment failure. The
data source was the EuResist integrated database which contains
the treatment history (e.g., 61,831 different pharmacological
treatments) of 18,467 patients with HIV from four different
countries (e.g., Germany, Italy, Luxembourg, and Sweden)
collected in the period 1987–2007. The database includes both
continuous (the viral load measurements) and categorical (e.g.,
administered drugs and genotypes) variables. The authors used
penalized regression (e.g., LASSO), support vector machine and
logistic regression models to predict the outcome. The models
included 1) drugs and mutations of the current treatment, 2) the
frequencies of the drugs in past treatments, 3) the number of
times a mutation occurred in previous genotypes, and 4) the
number of successes and failures in the past as well as the total
number of treatment changes as potential predictors for the study
outcome. The analyses were performed using three different
datasets: 1) patients with the number of treatment changes ≥
10 (646 patients), ≥ 5 (1830 patients), and ≥ 1 (3,759 patients). 10-
fold cross-validation was used to train, tune and test the
performance of the models. In each fold, 80% of the data were
used for training the models, 10% were used for tuning of the
model, and the other 10% were used for the performance
assessment. The results suggested that LASSO (mean of the
results obtained with the three different datasets—AUC: 0.83;
SD: 0.02) and the support vector machine (AUC: 0.79; SD: 0.02)
had a higher value of AUC than logistic regression (AUC: 0.77;
SD: 0.07). The authors emphasized the LASSO exerted its best
performance especially for patients with many treatment changes
(≥ 10) (Saigo et al., 2011).

Wolfson et al. (2015) used naïve Bayes classifier and Cox
proportional hazard models to predict an increased
cardiovascular risk in real-world data. The data source was the
HMO Research Network Virtual Data Warehouse containing
electronic health care and administrative data. Study subjects
were selected based on enrollment into the insurance plan
between January 1, 1999 and December 31, 2011. The
database contained 87,363 patients. The predictors under
investigation included four continuous variables (age, systolic
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blood pressure, cholesterol markers, and body mass index) and
one categorical variable (sex). The data source was divided into
two subsets. The first subset containing 75% of the data was used
to train the models. The other subset containing 25% of the data
was used to test the models. C-index was used to compare the
models’ performance. The concordance index or C-index is a
generalization of the AUC that can take into account censored
data. The naïve Bayes classifier model had the same performance
of the Cox proportional hazard regression model (c-index 0.79
and 0.79, respectively) for the prediction of the outcome. The
authors claimed that even though the two models had the same
performance, the Cox proportional hazard model assumed
independence and normal distributions on covariates, which
assumption “is unlikely to hold in real-world data.” According
to the authors, the Cox proportional hazard model was not able to
identify non-linear covariate effects and interaction in a
hypothesis-free setting. The naïve Bayes classifier was instead
able to overcome such limitations. However, it did not improve
the prediction accuracy (Wolfson et al., 2015).

To Predict the Needed Dosage Given the
Patient’s Characteristics
Tang et al. (2017) used ANN, Bayesian additive regression trees,
random forest, boosted regression tree, support vector machine,
and linear regression models to predict tacrolimus dose in
patients undergoing renal transplantation. The data source was
electronic clinical records retrieved from two hospital databases
for the time period between October 2012 and September 2014.
In total, 1,045 patients were enrolled in the study population or
rather stable tacrolimus-treated renal recipients with a minimum
age of 18 years old. A total of 26 variables were included in the
models for dose prediction of which nine variables were
continuous and 14 variables were categorical. The data source
was divided into a training subset (80% of the data) that was used
to train the models and a test subset consisting (20% of the data)
that was used to assess the performance of the models. To reduce
overfitting, authors resampled 100 times the patients to be
included in the two subsets. The MAEs of ANN (0.77; 95%
CI: 0.66–0.88) and boosted regression tree (0.74; 95% CI: ≈
0.65–0.83) models were higher than the linear regression
model (0.73; 95% CI: 0.62–0.82). Bayesian additive regression
trees (0.73; 95% CI: 0.64–0.82), random forest (0.73; 95% CI:
0.64–0.82), and support vector machine (0.73; 95% CI: 0.65–0.83)
models performed similar to the linear regression model.
According to the authors, machine learning models had the
best accuracy in the intermediate dosing range of tacrolimus.
However, it did not perform well in “extreme dose ranges” that
following the authors’ argument “are more needed than
intermediate dosing ranges as patients in extreme dose ranges
are more likely to face overdose” (Tang et al., 2017).

Liu et al. (2015) used artificial neural network, random
survival forest, regression tree, LASSO, and linear regression
models to predict warfarin dosage given the patients’ clinical
and demographic characteristics. The data source was the
database of the International Warfarin Pharmacogenetics
Consortium Cohort containing 4,798 patients treated with

warfarin. In total, eight variables were used in the prediction
models of which three continuous and five categorical. The data
source was divided into a training subset with 3,838 randomly
selected patients which is 80% of the data and a testing subset with
the remaining 960 patients. ANN (MAE: 9.40; 95% CI:
8.53–10.26) the random survival forest (MAE: 9.27; 95% CI:
8.42–10.12) modes had an MAE lower than the linear regression
(MAE: 9.60; 95% CI: 8.75–10.45). Regression tree (MAE: 9.75;
95%CI: 8.83–10.68) and LASSO (MAE: 9.62; 95%CI: 8.73–10.47)
models had an MAE higher than the linear regression (Liu et al.,
2015).

Li et al. (2015) evaluated the prediction performance of
artificial neural network, random forest, boosted regression
tree, support vector regression, and linear regression models to
predict pharmacogenetic-guided dosage of warfarin in Chinese
patients. The data source consisted of 261 patients who were
recruited in a hospital between May 2011 and 2014. All patients
were treated with warfarin for at least 6 weeks. Variables used for
the prediction of warfarin’s dosage were categorical (genotype
and age) and continuous (weight and height). The data source
was divided into two subsets. The first set consisted of 80% of the
patients, which was used to train the models. The remaining 20%
was used to assess the performance of the models. Artificial neural
network (MAE: 4.71; 95% CI: 4.23–5.19), random forest (MAE:
4.49; 95%CI: 4.02–4.96), boosted regression tree (MAE: 4.76; 95%
CI: 4.27–5.25), and support vector regression models (MAE: 4.71;
95% CI: 5.56–6.40) performed worse than the linear regression
model (MAE: 4.39; 95% CI: 3.94–4.84) for the prediction of the
outcome. This study only contained Chinese patients and
according to the authors, it is well-known limitation
considering that “Chinese population has a lower incidence of
warfarin resistance” (Li et al., 2015).

Alzubiedi and Saleh et al. (2016) used artificial neural network
and linear regression models to predict warfarin dose for African-
Americans patients. The data source was The International
Warfarin Pharmacogenetics Consortium database. In the data
source, 163 patients were African-American. Twenty-two clinical
and demographical variables were included as potential
predictors of warfarin dose in the models. Of those, 19 were
categorical variables (e.g., diabetes, sex, and smokers) and three
variables were continuous (e.g., age, height, and weight). A feed-
forward neural network model with three layers was used. The
artificial neural network model (MAE: 10.9) performed worse
than the linear regression model (MAE: 10.8) for the outcome
prediction. No confidence intervals for the MAE were provided.
The authors suggested that the similar performance of the models
may be due to the missing “information of more accurate
predictors of warfarin dose in the dataset” and “the limited
sample size” which posed limitations to the study (Alzubiedi
and Saleh, 2016).

Predicting the Occurrence/Severity of
Adverse Drug Reactions
Hoang et al. (2018) used artificial neural network, gradient
boosting, decision tree, support vector machine, and logistic
regression models to assess if the sequences of drug
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prescription redemptions were predictive for the occurrence of
adverse drug reactions. The data source was the Pharmaceutical
Benefit Scheme in Australia in the period January 1st,
2013–December 31st, 2016. The database contains information
about dispensed drugs (e.g., 7,294,244 prescriptions redemption;
728 drugs) for 10% randomly selected Australian patients (e.g.,
1,807,159 patients). The authors used subsequent prescriptions to
define patients as having an adverse drug reaction. In particular, if
a patient redeemed a medication used to treat an adverse drug
reaction (drug 2) following the administration of a medication
(drug 1), the patient was defined as having an adverse drug
reaction. The database used for the analyses was split into a
training subset (75% of the data) that was used to train the models
and a testing subset was used for the prediction (25% of the data).
The performance of the models was assessed by looking at their
sensitivity, specificity, positive predictive value, and negative
predictive value. The positive predictive value is the
probability that patients with a positive screening test truly
have the condition under investigation. The negative predictive
value is the probability that a patient with a negative test result is
truly free of the condition under investigation. The gradient
boosting model (sensitivity: 77%; specificity: 81%; positive
predictive value: 76%; negative predictive value: 82%) showed
the best performance for the prediction of occurrence of adverse
drug reactions. Gradient boosting and the decision tree
(sensitivity: 67%; specificity: 67%; positive predictive value:
65%; negative predictive value: 70%) models performed better
than the logistic regression model (sensitivity: 62%; specificity:
72%; positive predictive value: 67%; negative predictive value:
68%) in terms of sensitivity, positive predictive value, and
negative predictive value. Artificial neural network (sensitivity:
59%; specificity: 48%; positive predictive value: 51%; negative
predictive value: 55%) and support vector machine (sensitivity:
61%; specificity: 43%; positive predictive value: 52%; negative
predictive value: 52%) models performed worse than the logistic
regression model in terms of sensitivity, positive predictive value,
and negative predictive value. According to the authors, a major
limitation of the study was the use of only medication dispensing
data to detect adverse drug reactions (Hoang et al., 2018).

Jeong et al. (2018) used artificial neural network, random
forest, support vector machine, and logistic regression models to
predict adverse drug reactions by using laboratory test results as
potential predictors. The data source was electronic health
records data from a hospital in the period June 1, 1994–April
15, 2015. The database had in total data on 475,417 patients,
119,165,743 drug prescription, 34,573,581 laboratory test results,
and 782,190 hospitalizations. The variables included in the
statistical modes were not specified in the article. However, the
authors claimed that variable prioritization was performed by
using the Gini impurity index. Themachine learningmodels were
optimized using the GridSearchCV function from the sci-kit-
learn library in Python and tenfold cross-validation. The
performances of the models ware compared by using
sensitivity, specificity, positive predictive value, negative
predictive value, F score, and AUC. Artificial neural network
(sensitivity: 0.793 ± 0.062; specificity: 0.619 ± 0.061; positive
predictive value: 0.645 ± 0.047; negative predictive value: 0.777 ±

0.052; F score: 0.709 ± 0.037; AUC: 0.795 ± 0.034) and random
forest models (Sensitivity: 0.671 ± 0.054; specificity: 0.780 ± 0.046;
positive predictive value: 0.727 ± 0.050; negative predictive value:
0.732 ± 0.043; F score: 0.696 ± 0.041; AUC: 0.816 ± 0.031)
performed better than the logistic regression model
(sensitivity: 0.593 ± 0.063; specificity: 0.756 ± 0.047; positive
predictive value: 0.679 ± 0.048; negative predictive value: 0.682 ±
0.049; F score: 0.631 ± 0.047; AUC: 0.741 ± 0.041). Support vector
machine (Sensitivity: 0.569 ± 0.056; specificity: 0.796 ± 0.046;
positive predictive value: 0.709 ± 0.053; negative predictive value:
0.680 ± 0.043; F score: 0.629 ± 0.045; AUC: 0.737 ± 0.040) instead,
performed worse than the logistic regression model. According to
the authors, each machine learning techniques showed
differences in performance indexes (Jeong et al., 2018).

Molassiotis et al. (2012) used random forest, hierarchical
cluster analysis, and linear regression models to cluster signs
and symptoms that could predict the occurrence of nausea in
patients receiving chemotherapy. The data source was primary
data collected from a prospective cohort study of 104 patients
aged ≥ 18 that received two cycles of chemotherapy in a hospital
setting. Thirty-two categorical variables (e.g., dry mouth,
vomiting, and itching) were included in the models for the
prediction of the study outcome. The data source was split
into two subsets, one used to train the models (63% of the
data) and one used to assess the performance of the models
(37% of the data). According to the authors, the random forest
model and hierarchical cluster analysis outperformed the linear
regression model in terms of prediction accuracy (results not
provided). The authors highlighted potential limitations of their
study by providing the disclaimer that “the study population was
composed predominantly of breast cancer patients receiving
anthracyclines.” Therefore, the generalizability of the findings
is limited to this population of patients (Molassiotis et al., 2012).

To Predict Drug Consumption
Devinsky et al. (2016) used random forest and logistic regression
models to predict treatment changes (new, add-on or switch) in
patients with epilepsy. The data source was medical, pharmacy,
and hospital electronic healthcare records of 34,990 patients from
the American medical claims database in the period January 1,
2006–September 31, 2011. The study evaluated 5,000 potential
predictors of treatment changes, which were reduced to two
continuous variables (age and number of antiepileptic drugs)
and four categorical variables (sex, region, antiepileptic drugs at
index date and physician prescribing the treatment) after
variables prioritizations. The proportion of testing and training
subsets was not stated. The randommodel outperformed in terms
of AUC (AUC: 0.715) the logistic regression model (AUC: 0.598).
According to the authors, their “model’s recommendation system
could reduce treatment changes and save substantial costs while
providing more stability and better outcomes to patients.”
Additionally, they claimed that “future studies should evaluate
other populations/databases, other therapies (e.g.,, diet, surgery,
neurostimulation), as well as models with more specific outcome
measures (e.g.,, seizure frequency) and perhaps even
prospectively collected electronic medical records” (Devinsky
et al., 2016).
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To Predict the Propensity Score
Setoguchi et al. (2008) used artificial neural network and
logistic regression models to predict propensity score in
two simulated clinical scenarios. The datasets, one
containing 2,000 subjects and the other containing 10,000
subjects, were simulated through Monte-Carlo simulations.
Both datasets contained categorical variables codyfing for
binary exposures and binary outcomes. Furthermore, six
categorical and four continuous covariates were simulated
in both datasets. The comparison of the models’
performance was performed using the c-index. When
compared to the logistic regression model (c-index 0.76,
standard error 0.38; bias of the stimate 6.29%), the artificial
neural network model (c-index 0.86, standard error 0.40; bias
of the stimate 6.57%) provided less biased estimates of the
propensity score in simulated scenarios (e.g., estimates not
provided). According to the authors, the simulated data were
realistic, however, “further studies are needed to assess the
usefulness of data mining techniques in a broader range of
realistic scenarios” (Setoguchi et al., 2008).

Karim et al. (2018) compared the performance of LASSO/
elasticNET regressions and random forest models for variable
prioritization before logistic regression (e.g., hybrid
approaches) and logistic regression only for the computation
of high-dimensional propensity score. According to the author,
this approach was needed because to date, many uninformative
variables are considered for the estimation of the high
dimensional propensity score causing increased complexity
of statistical modeling and long computational time. The
data source was simulated data containing 500 variables
codifying for an hypothetical exposure and outcome, and
demographic and clinical characteristics of the patients. The
500 variables underwent prioritization as previously described.
The prioritized variables were subsequently used for the
computation of the high dimensional propensity score.
The propensity score was used for statistical adjustment for
the computation of the risk estimate for the simulated outcome
between the two exposure levels. To evaluate the model
performance, the authors used the risk difference between
the estimated risk from the models and the true risk. In
particular, they considered a risk difference of zero as the
unbiased estimate. In presence of unmeasured confounding
(bias-based analysis) and covariate effect multiplier of five,
Hybrid-ElasticNet (risk difference 0.39), random forest (risk
difference 0.51), and Hybrid-LASSO (risk difference 0.38)
approaches provided a less biased estimate than logistic
regression only (risk difference 0.55). According to the
authors, “Random forest, Hybrid-ElasticNet, and Hybrid-
LASSO, that further refined the confounder selection from a
chosen high-dimensional propensity score selected variable
pool, performed better than the regular high-dimensional
propensity score approaches performed with logistic
regression.” However, several limitations were identified. In
particular, according to the authors, “LASSO tends to select
only one variable from a group of multicollinear variables and
ignores the rest of them.” They further claimed that “the
exclusion of collinear variables could potentially result in

residual confounding.” In this regard, the authors found
beneficial the use of Elastic-net regression “more stable than
a LASSO even in the presence of severe multicollinearity”
(Karim et al., 2018).

To Predict Drug-Induced Lengths of Stay in
Hospital
Kim et al. (2000) used ANN and logistic regression models to
predict the length of stays in the post-anesthesia care unit
following general anesthesia. The data source was
retrospectively collected data of 592 patients aged 16 or above
undergoing general anesthesia in a hospital setting in the period
March 1998–June 1998. In total, 22 variables were used for
training the models of which two were continuous (age and
duration of anesthesia) and 20 were categorical (e.g., sex,
electrolyte imbalance, and operation site). The ANN model
showed a better classification accuracy (149/183 patients
correctly classified) than the logistic regression model (119/183
patients correctly classified). According to the authors, a major
limitation of the study was the small sample size (Kim et al.,
2000).

To Identify Subpopulation More at Risk of
Drug Inefficacy
An et al. (2018) used support vector machine, random forest,
and linear regression models to predict drug-resistant epilepsy
among patients treated with antiepileptics. The data source was
administrative data of 292,892 patients from IQVIA databases
in the period January 1st, 2006–December 31st, 2015. The data
included hospital admission/hospitalization and prescription
redemptions from pharmacies. In total, 1,270 variables were
extracted from the database which codifies for demographics
characteristics, comorbidities, insurance policy, treatments, or
encounters of patients. The database was first divided into three
subsets with ratios 60%/20%/20% of the data. The subset
containing 60% of the data was used to train the models.
The other two subsets were used for validation/calibration
and performance assessment (testing). Evaluation of the
models’ performance was done by using the AUC. The
support vector machine and the random forest models were
built using 50% (635 variables) of the variables with the highest
predictive value for the outcome. The support vector machine
and the random forest models had an AUC of 0.745 (95% CI:
0.740, 0.751) and 0.764 (95% CI: 0.759, 0.770) respectively,
whereas the multivariate linear regression model had an AUC of
0.748 (95% CI: 0.742, 0.753). This indicates that the random
forest and the support vector machine performed better and
worse respectively than the linear regression model. The major
limitation of the study was related to the follow-up period of the
patients that were on average two years. According to the
authors, a major study limitation is the short follow-up
period of the patients (e.g., on average two years) considering
that “it usually takes longer than two years for a patient to
became drug-resistant to the antiepileptic treatment” (An
et al., 2018).
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To Predict Diagnosis Leading to a Drug
Prescription; to Predict Adherence to
Pharmacological Treatments; to Optimize
Treatment Regimen; to Predict Drug-Drug
Interactions
None of the retrieved articles compared artificial intelligence
techniques with traditional pharmacoepidemiological methods
for the aforementioned outcomes.

DISCUSSION

To the best of our knowledge, this is the first systematic review
summarizing available evidence on the performance of artificial
intelligence techniques vs. traditional pharmacoepidemiological
techniques in a pharmacoepidemiological setting. Only 26.4% of
retrieved articles used both approaches and, in several articles, it
was not clearly described how the models were built and/or
trained before the assessment of the prediction performance.
This phenomenon is not new, considering that several concerns
arose after the burst of artificial intelligence in biomedical fields,
which include the risk of poor transparency/reproducibility of the
results related to the incorrect reporting of artificial intelligence
prediction models (Collins and Moons, 2019). We strongly
believe that when artificial intelligence techniques are used, the
deriving results should be replicated using traditional techniques
as also suggested by Collins et al. (Collins and Moons, 2019). It is
crucial that if researchers use artificial intelligence techniques,
they should adhere to the established standards for reporting as
currently done with traditional pharmacoepidemiological
methods. It cannot be excluded that pharmacoepidemiologists
by using artificial intelligence techniques may perform errors
such as over predictions, overfitting, or non-optimal assessment
of the prediction accuracy (Chen and Asch, 2017) that can be
identified by experts during peer-review if the methods used are
properly reported. It should be mentioned that a formal guideline
on the topic has been released in 2015 (Collins et al., 2015).

It should be noted that for many outcomes commonly assessed
in pharmacoepidemiology (e.g., adherence to pharmacological
treatments and drug-drug interactions), a comparison between
artificial intelligence techniques and traditional
pharmacoepidemiological methods is not performed.
Additionally, many promising artificial intelligence techniques
(e.g., LASSO/elasticNet, auto contractive map, Bayesian additive
regression, hierarchical cluster analysis, k-nearest neighbors, and
naive Bayes classifier) have been compared scarcely highlighting
areas for which further research is needed. In cases for which such
a comparison was performed, artificial intelligence techniques
exerted heterogeneity of performance with random forest and
ANN being the techniques that in most cases outperformed
traditional pharmacoepidemiological methods. It cannot be
excluded that this result is due to publication bias. Similarly,
the analytical advantage of using artificial intelligence techniques
in terms of prediction accuracy cannot be overlooked either. In
that sense, the artificial intelligence methods undoubtedly
represent an important class of tools to improve individual

care and to promote innovation in medical research (Chen
and Asch, 2017).

Strenghts and Limitations
The main strength of this systematic review is the extensive and
systematic overview of currently used machine learning techniques
in Pharmacoepidemiology. To the best to our knowledge, this has
been performed for the first time in the scientific literature.
Additionally, the extensive evaluation of each study in terms of
which techniques have been compared and the outcome of these
comparisons are provided. The main limitation is the unavoidable
risk of publication bias which may have led to include more articles
with the superior performance of machine learning techniques over
traditional pharmacoepidemiological methods. Another limitation
is the eclectic description of the findings in each study driven by the
fact that only a few articles performed a statistical test to evaluate
differences in the performance of the models under evaluation. In
this regard, we relied on the point estimates of measures used to
evaluate the performance of the models for claiming superiority,
equity, or inferiority of artificial intelligence techniques and
traditional pharmacoepidemiological methods.

CONCLUSION

Only a small fraction of articles compared artificial intelligence
techniques with traditional pharmacoepidemiological methods
despite the recommendations from experts. Such comparisons
have been not performed for many outcomes routinely assessed
in pharmacoepidemiology as in the case of adherence and drug-
drug interaction. In half of the comparisons, artificial intelligence
performed better than traditional pharmacoepidemiological
techniques with high heterogeneity in the performance among
different artificial intelligence techniques. Many techniques have
been scarcely investigated. Together, these results suggest that
further research is needed focusing on head-to-head comparisons
of traditional pharmacoepidemiological techniques with machine
learning techniques in different research scenarios and with a
variety of different data sources.
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