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BACKGROUND

The recent outbreak of the COVID-19 has posed an unprecedented challenge to the health care
system. Effective and immediate therapeutics are urgently required to control SARS-CoV-2
infection, which is manifested by aberrant immunopathology. Hyper activation of macrophages
and neutrophils contributes to acute respiratory distress syndrome, respiratory failure, and
subsequent death of COVID-19 cases. Due to the short life span of neutrophils, tempering
macrophage plasticity is relevant for the management of COVID-19 cases. In this context, we
here propose that either exchange or in situ reprogramming of derailed Th17+ alveolar
macrophages/ Slan+ DC with Th1 programmed counterpart would potentially mitigate or
abolish pulmonary fibrosis. This is a new pathology, and our knowledge about this disease is
limited, therefore, a great deal of work is required before any therapeutics/vaccine could potentially
be launched for its eradication. Several recent and compelling studies have proposed several aspects
of the pathological basis of the disease (Zhou F. et al., 2020), which enhanced have our
understanding of how SARS-CoV-2 is interacting with alveolar and peripheral tissues and
causing the death of some infected patients.
PATHOGENESIS OF COVID-19

SARS-CoV-2 induces pathogenic inflammation, pulmonary fibrosis, acute respiratory distress
syndrome (ARDS), and nephropathy which can lead to the death of some infected patients
within 2-3 weeks (Zhou F. et al., 2020). Hyper-activation of committed macrophages, in what is
termed macrophage activation syndrome (MAS) (Giamarellos-Bourboulis et al., 2020), is associated
with ARDS (Konig et al., 2020), which causes respiratory failure and in some cases the death of
COVID-19 patients. Autopsy reports and single-cell RNA sequencing (Liao et al., 2020) have
revealed the presence of monocyte‐derived FCN1 + macrophages and other immune cells like
neutrophils (Liao et al., 2020; Yao et al., 2020) in the bronchoalveolar lavage fluid (BALF) of
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COVID‐19 patients with severe ARDS. However, due to the
abundance of macrophages over other immune cells and MAS
in COVID 19 patients, these cells seem to be important
for pathogenesis.

Transcriptional analysis of BALF further revealed high levels of
IFN‐ϒ induced protein-10 (IP‐10) and various chemokines like
MCP‐1, CCL2, and CCL7 in BALF of severe COVID-19 patients,
which correlated with increased infiltration of monocyte/
Macrophages (Xiong et al., 2020) in their lungs. Cytokine
profiling of critical COVID-19 patients reflects MAS with high
levels of pro-inflammatory cytokines and chemokines such as IL-
6, IL-7, Tumour Necrosis Factor (TNF-a), CCL2, CCL3, CXCL10,
and IL-2 receptor. This demonstrates dysregulated activation of
the mononuclear phagocyte system, hyper-inflammatory response
(Mehta et al., 2020), and MAS (Schulert and Grom, 2015) which
ultimately leads to the death of patients.

Apart from macrophages, the activation of neutrophils has
also been associated with ARDS and cytokine storm in COVID-
19 patients. Cytokine profiling, blood clots, and MPO activity
in patients reveal infiltration of activated neutrophils in the
lungs, which is indicative of early defense mechanism against
SARS – CoV-2 virus. This was made evident by the presence of
Neutrophils extracellular traps (NET), which are used by
activated neutrophils to trap the pathogens. Excessive
infiltration and activation of neutrophils (Barnes et al., 2020)
are manifested in neutrophilia, which is sufficient to predict
poor outcomes in COVID-19 cases. Furthermore, the
neutrophil-to-lymphocyte ratio has been associated with a
high-risk factor for severe disease (Zhang et al., 2020). The
accumulation of neutrophils in the lungs of COVID-19 patients
was associated with acute capillaritis with fibrin deposition,
extravasation of neutrophils into the alveolar space, and
neutrophilic mucositis (Zhang et al., 2020). These findings
potentially indicate the role of activated neutrophils also in
the pathogenesis of COVID-19 cases.

During the early phase of infection in COVID-19 patients,
NETs activate macrophages to secrete IL-1 and TGF beta, further
activating neutrophils infiltration and activation. Therefore, both
macrophages and neutrophils represent potential targets for
interventions. However, due to the sensitive nature of
neutrophils for ROS, RNI mediated death during pneumonitis,
and pulmonary fibrosis, these cells undergo death. In COVID-19
patients, these dead neutrophils are then phagocytosed by the
surrounding inflammatory macrophages, which induce the release
of IL-1 beta and TGF beta, inducing the anti-inflammatory
programming of macrophages (Greenlee-Wacker, 2016) and Th2
programming of the pulmonary compartment. The macrophage
remains active and viable for an extended period over the
neutrophils and is likely to be more proficient than neutrophils
in controlling SARS-CoV-2 infection. Due to this activation and
lack of neutrophils, interventions targeting these cells are
particularly challenging at the moment. Therefore, macrophages
are a prudent target and approach to controlling the infection.

Both activation and increased infiltration of macrophages
(Giamarellos-Bourboulis et al., 2020; Wang et al., 2020) and
neutrophils (Morris et al., 2020; Middleton et al., 2020) during
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infection leads to ARDS and cytokine storm in COVID-19 patients.
During SARS-CoV-2 infection, activated CD4+ T lymphocytes
secrete granulocyte-macrophage colony-stimulating factor which
further stimulates committed macrophage to secrete pro-
inflammatory cytokines, thereby continuing the vicious cycle of
the cytokine storm.

SARS‐CoV‐2 activates alveolar, splenic, and renal macrophages
through angiotensin-converting enzyme 2 (ACE2) and
enhances the secretion of IL‐6, TNF-a, IL‐10, and PD‐1
(Wang et al., 2020). Both ARDS and MAS contribute to the
significant depletion of CD8+ CTLs which are associated with
disease severity (Luo et al., 2020) in COVID-19 patients. SARS-
CoV-2 infects type 2 alveolar cells, epithelial cells, and
podocytes in the lungs and kidney respectively and interacts
with them via ACE2 receptors which facilitate the attachment
and entry of this virus into host cells (Hoffmann et al., 2020;
Wrapp et al., 2020). ACE-2/Angiotensin-II receptors are
known to activate the Sphingosine-1-phosphate receptor 1 (S-
1P receptor 1) which is known to mediate IL-6 induced
myopathy and fibrosis (Ohkura et al., 2017). S-1P R-1
signaling is associated with Th2/17 responses (Schroder et al.,
2011; Schulze et al., 2011), hypoxia, and allergic manifestations
(Saluja et al., 2017), which altogether promote Th2 bias in the
infected patients. Therefore it is rational to presume that the S-
1P receptor 1 signaling would enhance the pathogenesis of
COVID-19 cases. Taking this into account, blocking S-1P
signaling either by application of S-1P lyase (Vijayan et al.,
2017) or FTY-720/Fingolimod (Penuelas-Rivas et al., 2005;
Papadopoulos et al., 2010), could modulate the pathogenesis
of the novel COVID-19 disease. Considering this, FTY-720
is being explored in a Phase-2 clinical trial of COVID-19
patients (NCT04280588, MRCTA, ECFAH of FMU), the
results of which have not yet been published. However, due
to its immunosuppressive nature, FTY-720 is expected to only
lower the hyper- inflammatory response , providing
symptomatic relief in COVID-19 cases but not the clearance
of the SARS-CoV-2 infection (Walsh et al., 2010).
PRE-CLINICAL/ANIMAL MODELS FOR
VALIDATION OF THE PROPOSED
CONCEPT

Like any of the other new interventions that have been proposed
since the start of the pandemic, validating a new hypothesis in a
pre-clinical model is essential before its clinical application in
patients. Both inbred Balb/c & C57BL/6 mice represent a suitable
model of testing vaccines, antiviral drugs, and disease pathogenesis
(Subbarao and Roberts, 2006). Furthermore, due to the dependency
of SARS-CoV-2 on Ace-2 (Imai et al., 2005), Tmprss2 (Graham
et al., 2012), and Stat-1 (Zhou P. et al., 2020) protein for manifesting
disease, knockout mice of these proteins also represent potential
models for studying COVID-19 disease. Most interestingly, the
floxed strain of these mice could be used and backcrossed with
LysM Cre mice to address macrophages related phenotype. To
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demonstrate the anti-COVID 19 potentials of M1macrophages, the
most suitable strategy would be to either use clinical isolate of
SARS-CoV-2 or express major spike proteins of this virus in the
VeroE6 cell line and co-culture them with THP/CD14+/CD11b+
macrophages to evaluate the influence of the various adjuvants
(Table 1 and Figure 1) on the innate and adaptive immune
response of both macrophages and CD8+CTL. Several aspects
like maturation, the M1/Th1 programming of macrophages, and
subsequent killing of the virus or expression of Spike proteins can
be used to correlate the M1 programming of RAW, THP, CD14+,
and CD11b+ primary macrophages. T cell response could be
measured by co-culturing T cells with infected epithelial and
macrophages co-culture. Various parameters like TARC/CCL17,
RANTES STAT-1, 6, calcineurin, IRF - 4, and 8 factors Th1 and
Th17 response could be evaluated to address the impact of M1
programmed macrophage on T cell activation and killing off
infected epithelial cells. These preclinical experiments are essential
for validating the anti-COVID-19 impact of M1 and CD8+CTL.
Frontiers in Pharmacology | www.frontiersin.org 3
These approaches represent the most suitable ways of proving the
concept at preclinical levels and need further investigation.
TRANSLATIONAL APPROACH

Given the above facts, mitigating pathogenic inflammation (Th2/17
responses) and pulmonary fibrosis are paramount for the
management of COVID-19 infection. In this context, our previous
studies have demonstrated the potential significance of iNOS+M1
effector macrophages and CD8+CTL in controlling respiratory
pathogens (Schulert and Grom, 2015; Mehta et al., 2020; Xiong
et al., 2020), which are associated with community-acquired
pneumonia. Based on these studies, we believe that tweaking these
effector immune cells may be also sufficient to control the replication
of SARS-CoV2 infection in COVID-19 cases. This could be achieved
through in situ reprogramming of Th2 and Th17 programmed
FIGURE 1 | Schematic representation of augmenting SARS-Co-V2 specific adaptive immunity. Shown here are the most potent immune mediate (perspective) and/or
pharmaceutical/palliative approaches for augmenting adaptive immune responses of derailed Macrophages or Slan DC for tuning effector T cell response for the treatment
and recovery of COVID-19 patients. These approaches are a paramount requirement (in conjunction with other therapies) and are expected to help in managing COVID-
19 disease.
TABLE 1 | Clinical trials targeting Activated macrophages for indicated inflammatory and tumor Diseases.

Clinical Trials TAM Targeting agent Target Clinical
Phase

Disease Impact

NCT03123783 APX005M CD40 I/II/Active NSCLC Macrophages activation
NCT01433172 (GM.CD40L) vaccine with

CCL21
CD40 I/II/Active Lung cancer Targeting CD14+/CD16+ alveolar

macrophages
NCT02637531 IPI-549 PI3Kg I/Active Advanced solid tumor; non-small cell lung cancer;

melanoma; breast cancer
Macrophage plasticity

NCT00397826 Simvastine p38MAPK II/Active COPD Macrophages activation
NCT04280588 FTY 720

(Fingolimod)
S1P II/Active COPD, Multiple sclerosis proposed as a prophylactic agent

against Covid19
NCT01103635 ICINCB7839 ADAM17 I/Active Liver Cirrhosis Dampening Kuffer cells activation
NCT04261075 IPH5201 and IPH5301 CD39 &

CD73
I Cancer Activation of macrophages and T

cells
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macrophages or by exchanging Th2/17 programmed macrophages
with Th1 primed iNOS+CD14+M1 macrophages and CD8+CTL,
which are in the neo-adjuvant setting. Based on our previous studies
(Barnes et al., 2020; Zhang et al., 2020), we also believe that the
exchange of Th17+ macrophages with Th1+ M1 macrophages may
provide protective immunity against SARS-CoV-2 infection in cases
of COVID-19. This approach could improve the prospects of severely
infected patients but needs to be commissioned and explored further
before clinical application.
PROPOSED INTERVENTION

While the application of antiviral drugs like Remedesvir and
Tocilizumab is sufficient to control the infection, it is still
questionable whether these drugs are adequate to augment
immunogenic inflammation and clear infected cells from the
infected organ. In this context, we propose the potential role of
Ceramide-1 phosphate as immune adjuvants for promoting the Th1
programming of infected cells/tissue and subsequent clearance of
virus infected cells from the tissue. Given the potential involvement
of S-1P in fibrosis and Th1 bias, FTY-720 based interventions are
presently under Phase-2nd clinical trial (NCT04280588) based on
trapping effector T cells in the lymph node for effective control of
the infection and mitigating cytokine storm. However, due to its
immunosuppressive nature, we believe that FTY-720 may not help
patients. Other studies have also highlighted the significance of the
BCG vaccination and dexamethasone on increased resistance to the
infection (Escobar et al., 2020) and reduced mortality (Lammers
et al., 2020) in COVID-19 patients. Since these interventions are
targeted to reduce the inflammatory score and are anticipated to
provide only symptomatic relief, other more robust and stable
interventions are required for managing the disease.

Several of the reports mentioned above have provided
compelling evidence that hyper-activated macrophages are critical
for ARDS and in causing the subsequent death of patients. It is
worth considering combining macrophage directed strategies with
other available approaches (as adjuncts), which may be decisive for
the effective management of severely infected cases. Out of several
available options, the most relevant strategy would be to promote in
situ reprogramming of Th2/17 macrophages toward M1 by
employing various neo adjuvants, summarized in Table 1.

In the past, we have identified several neo adjuvants, such as
PDE4b and ACmimetic, which are capable of modulating the Th17
response in human CD14+ monocyte and Slan DC (Oehrl et al.,
2017). This reflects the results of another study (Konig et al., 2020),
which highlighted the potential of androgenic receptors in
modulating cytokine storm. This indicates that PDE4/AC
modulators (Maier et al., 2017) could also potentially modulate
and mitigate macrophage activation syndrome and help in
COVID-19 cases.

Apart from these, we have validated several other immune
adjuvants, such as low dose Gamma Radiation (Klug et al., 2013;
Prakash et al., 2016), S-1P (Nadella et al., 2019), and Smac
mimetics (Nadella et al., 2017), which indicate the potential of
the Th1 programming of macrophages in a pre-clinical model
Frontiers in Pharmacology | www.frontiersin.org 4
system. These adjuvants are likely to create immunity against
SARS-CoV-2 infection in the animal models discussed above.
Various other adjuvants are included in Table 1, each of which
targets refractory macrophages that can also potentially be
utilized for tempering macrophage plasticity and could
effectively control SARS-CoV-2 infection.
MACROPHAGES/MSC AS PALLIATIVE
REGIMES FOR COVID-19

Since macrophages are a relatively plastic component of the body
and could help with tissue regeneration and homeostasis after
completion of therapy. These aspects are critical for the expected
outcome of the proposed immune and pharmacological
interventions against infection. M2 or refractory macrophages
are also known to promote the activity of fibroblast and
mesenchymal stem cells and fibroblasts (Yu et al., 2016; Zhang
et al., 2018), which can potentially neutralize any potentially
adverse impacts of therapy. Both MSC and macrophages secrete
various factors (Boxman et al., 1996; Broughton et al., 2012) that
are involved in wound healing. On account of the regenerative
potential of macrophages (Chamoto et al., 2012; Hoegl et al., 2016)
and their close association with mesenchymal stem cells (Spiller
and Koh, 2017; Myneni et al., 2019), these cells can potentially be
utilized in a palliative approach (Granata et al., 2010; Almatroodi
et al., 2014) for the accelerated recovery of patients. This warrants
the use of macrophages and MSC as whole-cell infusions or their
products as palliative components for enhancing the recovery of
COVID-19 patients after therapeutic interventions.
MAJOR PERSPECTIVE

The proposed interventions depicted in Figure 1 are candid
approaches to tuning pathogenic inflammation, including the
Th1 reprogramming of derailed Macrophages and enhancing the
MHC-I dependent presentation of the viral antigens CD8+ CTL.
These approaches provide potential means of augmenting the
adaptive immunity of the host in fighting SARS-CoV-2 infection:
a novel immunotherapeutic approach that is translationally viable.
The approach harbors the potential for the effective management of
SARS-CoV-2 infection in severely infected COVID-19 patients. We
anticipate that it could be employed as a potential adjunct to placid/
antiviral therapies in effectively managing COVID-19 disease, both
prospective and therapeutic, in patients and which requires
immediate further investigation for its clinical efficacy.
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