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Myocardial ischemia is a high-risk disease amongmiddle-aged and senior individuals. After
thrombolytic therapy, heart tissue can potentially suffer further damage, which is called
myocardial ischemia-reperfusion injury (MIRI). At present, the treatment methods and
drugs for MIRI are scarce and cannot meet the current clinical needs. The mechanism of
MIRI involves the interaction of multiple factors, and the current research hotspots mainly
include oxidative stress, inflammation, calcium overload, energy metabolism disorders,
pyroptosis, and ferroptosis. Traditional Chinese medicine (TCM) has multiple targets and
few toxic side effects; clinical preparations containing Panax ginseng C. A. Mey., Panax
notoginseng (Burk.) F. H. Chen, Aralia chinensis L., cardioprotection, and other Chinese
herbal medicines have been used to treat patients with coronary heart disease, angina
pectoris, and other cardiovascular diseases. Studies have shown that saponins are the
main active substances in TCMs containing Panax ginsengC. A. Mey., Panax notoginseng
(Burk.) F. H. Chen, Aralia chinensis L., and Radix astragali. In the present review, we sorted
the saponin components with anti-MIRI effects and their regulatory mechanisms. Each
saponin can play a cardioprotective role via multiple mechanisms, and the signaling
pathways involved in different saponins are not the same. We found that more active
saponins in Panax ginseng C. A. Mey. are mainly dammar-type structures and have a
strong regulatory effect on energy metabolism. The highly active saponin components of
Aralia chinensis L. are oleanolic acid structures, which have significant regulatory effects on
calcium homeostasis. Therefore, saponins in Chinese herbal medicine provide a broad
application prospect for the development of highly effective and low-toxicity anti-
MIRI drugs.
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INTRODUCTION

To date, revascularization, such as thrombolysis, is an
effective method for the treatment of ischemic
cardiomyopathy in patients with acute myocardial
infarction (Yang et al., 2018). However, reperfusion can
still cause other damage to the myocardium, which greatly
reduces the advantages of reperfusion therapy (Bell and
Yellon, 2011). Therefore, myocardial ischemia-reperfusion
injury (MIRI) is a current clinical problem that needs urgent
attention. MIRI involves a variety of classical mechanisms,
including oxidative stress, inflammation, calcium overload,
and mitochondrial damage (Turer and Hill, 2010). In recent
years, there has been an increasing number of studies on cell
pyroptosis, ferroptosis, and autophagy during MIRI (Jia et al.,
2019; Li C. Y. et al., 2020). Over the past three decades,
methods to reduce MIRI have been in development and have
been used in clinical treatments (Garcia-Dorado et al., 2014).
The treatment methods mainly include non-pharmacological
interventions (ischemic pre-conditioning) and
pharmaceutical treatments (Ibanez et al., 2015). At
present, several drugs are effective in MIRI animal models,
but their clinical use is not ideal, which may be due to the
complex pathological mechanism of MIRI.

Traditional Chinese medicines (TCM) has a holistic treatment
concept, and has the advantages of multiple targets, multiple
links, and multiple approaches. In the field of TCM, the etiology
of MIRI involves deficiency of qi, blood stasis, and phlegm. The
clinical treatment is often based on TCM and compound
preparations with the effects of replenishing qi and
nourishing yin, warming the heart, promoting blood
circulation and removing blood stasis, and expelling phlegm
(Liu et al., 2013). TCM containing a large amount of saponins
include Panax ginseng C. A. Mey., Panax notoginseng (Burk.)
F.H. Chen, Panax quinquefolium L., Aralia chinensis L., and
Radix astragali (Tu et al., 2013; Aravinthan et al., 2015; Wang H.
W. et al., 2018). In recent years, many studies have shown that
the saponins extracted from TCM has great anti-MIRI effects in
vivo and in vitro; their mechanisms are diverse and mainly
involve regulating energy metabolism and calcium homeostasis,
and inhibiting oxidative stress and inflammation (Zhu et al.,
2017; Wang et al., 2019). Saponins mainly include four-ring
triterpene saponins and five-ring triterpene saponins. Among
the tetracyclic triterpene type saponins, dammarane-type
saponins have been studied in-depth, while among the
pentacyclic triterpene-type saponins oleanane-type saponins
are most widely distributed and studied (Leo et al., 2007; Hu
et al., 2010; Shin et al., 2015; Zebiri et al., 2016). Each saponin
also has its unique protection mechanism for MIRI due to its
structural specificity.

In this review, we discuss the classic mechanisms of MIRI and
a few emerging regulatory mechanisms (Figure 1). Based on the
significant anti-MIRI effect of saponins, we classified and
summarized the saponins with cardioprotective effects and
analyzed their cardioprotective mechanisms. This review aims
to provide potential treatment strategies and drug candidates
for MIRI.

MECHANISMS OF MYOCARDIAL
ISCHEMIA–REPERFUSION INJURY
Oxidative Stress and Myocardial
Ischemia–Reperfusion Injury
MIRI is accompanied by an excess of oxygen free radicals, and
reactive oxygen species (ROS) are the main driving forces for
reperfusion injury (Zhou et al., 2015). ROS and cellular redox
states regulate many critical cellular activities. In presence of
sufficient oxygen supply, ROS and endogenous antioxidants
maintain balance to protect essential activities in the cell
(Cadenas, 2018). MIRI damages the cellular antioxidant
system and promotes oxidative damage. After reperfusion, the
generation of excessive ROS, notably hydroxyl radicals, may
cause the oxidation of proteins, lipids and nucleic acids
(Dongo et al., 2011). This further leads to changes in protein
function, membrane damage, gene mutations, and metabolic
disorders, which generates oxidative stress. Superoxide anion
(O2−), hydroxyl radical (OH−), and hydrogen peroxide (H2O2),
which are the culprits responsible for inducing oxidative stress in
the vascular wall, are mainly produced through xanthine oxidase,
NADPH oxidase, endothelial nitric oxide synthase, and other
enzyme systems (Zhou et al., 2015). In other words, a close
connection exists between endothelial cells and ROS injury. The
enhancement of endogenous antioxidant activity and the
intervention of exogenous antioxidants can effectively inhibit
oxidative stress and reduce damage to cells (Matsushima et al.,
2014; Zhao D. et al., 2017). Therefore, researchers have screened
several natural compounds with antioxidant activity, such as
araloside C, dioscin, etlatoside C, ginsenoside Rb3, and
ginsenoside Rg3 (Xia et al., 2011; Wang M. et al., 2015),
which are expected to protect the heart by inhibiting oxidative
stress.

Inflammatory Response and Myocardial
Ischemia–Reperfusion Injury
The inflammatory response activates during myocardial ischemia
and is significantly aggravated during reperfusion (Vinten-
Johansen et al., 2007). The adhesion and infiltration of
neutrophils are the main pathological changes of coronary
arteries after MIRI. After MIRI, the metabolism of arachidonic
acid on the myocardial cell membrane increases, which leading
the production of large amounts of leukotrienes, prostaglandins,
and thromboxane A2 (Boag et al., 2017). And then the expression
of special adhesion molecules on the surface of microvascular
endothelial cells or leukocytes increases, which promotes the
chemotaxis, adhesion and aggregation of neutrophils, increases
the blood flow resistance of microvascular, and even causes no-
reflow phenomenon, aggravating myocardial ischemic damage
(Arslan et al., 2008). Neutrophils adhere to the endothelial cells of
the blood vessel wall under the guidance of adhesion molecules
and then migrate to the myocardial tissue (Moos and Funk,
2008). During MIRI, the levels of inflammatory factors, including
tumor necrosis factor-α (TNF-α) and IL-1, significantly increase
in the myocardial tissue causing myocardial damage. Anti-
inflammatory factors and pro-inflammatory factors co-exist
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during MIRI, and generally, the pro-inflammatory factors are
more dominant (Singhal et al., 2010).

Endothelial cells are closely related to inflammation, and
endothelial dysfunction and microcirculation injury are
important bases of MIRI. Studies have found that endothelial
cells are more vulnerable to damage than cardiomyocytes during
reperfusion, whereas cardiomyocytes are more vulnerable to
damage during the ischemic phase (Singhal et al., 2010;
Schanze et al., 2019). Therefore, coronary endothelial cells are
critical mediators of myocardial dysfunction post MIRI.
Autophagy of endothelial cells would cause structural and
functional damage that hinders the blood flow to increase
MIRI (Raivio et al., 2009; Russo et al., 2017). The mechanism
of endothelial cells involved in MIRI may be related to the
AMPK/mTOR and nuclear factor κB (NF-κB)-p65-Beclin1
pathways (Moos and Funk, 2008; Singhal et al., 2010). The
role of NOD-like receptors (NLRs) with a pyrin domain 3
(NLRP3) inflammasome in MIRI is a current hot topic.
NLRP3 can be combined with caspase-1 and ASC to form the
NLRP3 inflammasome, which requires NF-κB activation (Wang
Y. et al., 2015; Li et al., 2017). Recent research on the role of NOD-
like receptor (NLR) with a pyrin domain 3 (NLRP3)
inflammasome in MIRI is a hot topic. NLRP3 can be
combined with caspase-1 and ASC to form the NLRP3
inflammasome, which requires NF-κB activation (Sandanger
et al., 2016). NLRP3 inflammatory bodies promote the
increase in IL-1β levels, triggering downstream inflammatory
responses, including leukocyte recruitment and activation.
Studies have shown that during the MIRI process, the
activation of NLRP3 inflammatory bodies has cardioprotective

effects (Vinten-Johansen et al., 2007; Sandanger et al., 2016).
Some natural saponins, such as celastrol, ginsenoside Rb1, and
ginsenoside Rb3, can reduce MIRI by inhibiting inflammation
and restoring endothelial cell function (Wang Y. et al., 2015; Li
et al., 2017).

Calcium Overload and Myocardial
Ischemia–Reperfusion Injury
As the second messenger in the cell, Ca2+ can maintain
cardiomyocyte function, proliferation, division, energy
metabolism and other important processes (Verkhratsky and
Parpura, 2014). During myocardial ischemia, ATP production
decreases, resulting in decreased sarco-endoplasmic reticulum
Ca2+ ATPase (SERCA) activity (Zhu et al., 2017). Thus,
intracellular calcium transport is impaired, causing calcium
overload. On reperfusion, ROS damage the cell membrane,
leading to extracellular Ca2+ influx; NCX transports Ca2+ into
the cells and discharges a large amount of Na+ in the cell,
exacerbating calcium overload (Ohtsuka et al., 2004).
Intracellular Ca2+ regulates the contractile and diastolic
function of cardiomyocytes and plays an essential role in
excitation-contraction coupling (MacLennan and Kranias,
2003). The action potential triggers a small amount of Ca2+ to
enter the cell through L-type calcium channels (LTCC), and a
large amount of Ca2+ is released from the sarcoplasmic reticulum
(SR) through ryanodine receptor 2 (RyR2). Then, calcium and
troponin C combine to cause myocardial cell contraction
(Grueter et al., 2007). SERCA can retake the intracellular Ca2+

to the SR, while NCX in the cell membrane can export Ca2+ from

FIGURE 1 | Graphical summary of MIRI mechanism.
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the cells, leading to relaxation of the cardiomyocytes (Fang et al.,
2016). Therefore, the intracellular calcium level affects the
excitability degree and relaxation rate of cardiomyocytes. The
occurrence of calcium overload is bound to have a non-negligible
effect on the contraction and relaxation of cardiomyocytes (Li
et al., 2013). Calcium overload is closely related to oxidative
stress, and inflammatory response and these factors together
promote MIRI process (Verkhratsky and Parpura, 2014).
Therefore, inhibiting calcium overload is an effective method
to reduce heart damage during MIRI. Some natural ingredients,
such as ginsenoside Re, ginsenoside Rb1, Elatoside C and
Araloside C, can promote the restoration of calcium
homeostasis and thus play a cardioprotective role (Wang et al.,
2014; Wang M. et al., 2015).

Energy Metabolism Disorder and
Myocardial Ischemia–Reperfusion Injury
In the early stage of myocardial ischemia, because the oxygenated
hemoglobin in the ischemic tissue is consumed, the energy
metabolism changes from aerobic oxidation of mitochondria
to glycolysis (Cui et al., 2017; Alegre et al., 2020). So, ATP
produced by glycolysis becomes dominating source of energy
to the maintenance of myocardial cell survival. The enhancement
of glycolysis induces the intracellular lactate increase,
intracellular pH drops, which leading the calcium overload
process is aggravated. In addition, the level of fatty acid
oxidation and metabolism after MIRI significantly exceeds the
level before ischemia, which slows the recovery of heart function
(Li et al., 2018; Tian et al., 2019). Themain reason is that fatty acid
β oxidation accelerates and ATP production increases, but
oxygen consumption also increases (Lesnefsky et al., 2017).

To improve myocardial metabolism during MIRI, it is mainly
to promote glucose metabolism and inhibit fatty acid metabolism.
Optimizing energy metabolism is only a cytoprotective measure,
and the therapeutic effect is limited. The treatment purpose of
improving energy metabolism is to prolong the process of
ischemic myocardial necrosis, buy precious time for
myocardial revascularization therapy, and promote the
recovery of heart function (Paradies et al., 2018). Because
metabolic drugs have no obvious hemodynamic effects, it is
recommended to use them in combination with β-receptor
blockers. At present, there are many studies on trimetazidine
and niacin, but the research progress is relatively slow due to
some side effects (Wu et al., 2018). The saponins in natural
products are safer to be used as medicines, and have the
advantage of multiple targets. It is worth carefully exploring
the effective ingredients of anti-MIRI. Studies have shown that
ginsenosides including total ginsenosides, ginsenoside Rg1,
ginsenoside Rb1 have a significant effect on energy
metabolism (Cui et al., 2017; Li et al., 2018).

Mitochondria are the main organelles that produce ATP.
Cardiomyocytes need to consume large amounts of ATP to
maintain normal function. Oxygen is required for
mitochondrial energy production (Alam et al., 2015). But
during MIRI, the levels of oxygen reduce but those of ROS
increase, which result in reduced ATP synthesis and

mitochondrial permeability transition pores (MPTP) opening
(Paradies et al., 2018). Therefore, MIRI causes energy
metabolism disorders, and MPTP opening further promotes
cardiomyocyte apoptosis and necrosis (Ong et al., 2015). In
the meantime, pathways, including glycogen synthesis kinase
3β (GSK-3β) pathway, protein kinase C (PKC) pathway, signal
transducer and activator of transcription 3 (STAT3) pathway and
apoptosis signaling pathway, are activated successively
(Makhdoumi et al., 2016; Lesnefsky et al., 2017). These
pathways further affect the function of mitochondria, either
promoting or inhibiting cardiomyocyte apoptosis (Zheng et al.,
2017). Saponins, such as Araloside C, astragaloside IV, dioscin,
ginsenoside Rb1, ginsenoside Rd, ginsenoside Rg1 and
notoginsenoside R1, can reduce MIRI by regulating
mitochondrial function (Wang et al., 2012; Li et al., 2018).

Mitochondrial autophagy is a process that selectively removes
damaged mitochondria to reduce cell damage. During MIRI,
PTEN induces mitochondrial autophagy through pathways such
as putative kinase 1 (PINK1)/Parkin, BNIP3/NIX, and FUNDC1
signaling pathway (Ney, 2015). Moderate mitochondrial
autophagy has a protective effect on the maintenance of
mitochondrial membrane potential and the normal structure
and function of cell membranes, thereby reducing MIRI. In
contrast, mitochondrial dysfunction leads to impaired
autophagy function, insufficient clearance, or excessive
activation of mitochondrial autophagy, which can increase
MIRI (Shirakabe et al., 2016; Tong and Sadoshima, 2016).
Exploring mitochondrial autophagy and its regulatory
mechanism during MIRI may help to understand the
relationship between mitochondrial autophagy and MIRI, and
provide new ideas for the clinical treatment of MIRI.

microRNA and Myocardial
Ischemia–Reperfusion Injury
In recent years, the application of microRNA (miRNA) and long
noncoding RNAs (lncRNA) in MIRI treatment has increasingly
become a research focus. miRNA is an endogenous, single-
stranded, non-coding, small regulatory RNA in a variety of
eukaryotic cells (Diaz et al., 2017). Studies have shown that
miR-1275, miR-133, miR-148a and miR-324 interfere with the
process of MIRI by inhibiting myocardial cell apoptosis, reducing
myocardial inflammation, and promoting angiogenesis (Dai
et al., 2020; Jiang et al., 2020; Zong and Wang, 2020). lncRNA
is a heterogeneous non-coding RNA that can directly regulate the
transcription of target genes and the degradation of proteins
(Ruan et al., 2019). lncRNA has the function of competing or
cooperating with endogenous RNA, which can promote or inhibit
the degradation of target gene mRNA by miRNA, thereby
regulating the expression of target gene mRNA and its protein
(Xiong et al., 2019). The main functions of lncRNA include
regulating gene methylation, transcription activation, and
binding to mRNA and miRNA to affect the translation
process (Pei et al., 2020). At present, most researches focus on
the mechanism of lncRNA regulating miRNA. But miRNA can
also regulate lncRNA. lncRNA and miRNA mainly regulate and
treat MIRI through mechanisms such as oxidative stress,
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inflammatory infiltration, mitochondrial dysfunction, autophagy,
and apoptosis (Ruan et al., 2019; Pei et al., 2020). To clarify the
complex and delicate regulatory network of lncRNA-miRNA-
mRNA is important for revealing the interaction between RNA
molecules (Xiong et al., 2019). The role and interpretation of the
complex molecular network regulation between its functions is of
vital importance, providing new therapeutic targets for the
treatment of MIRI.

Pyrocytosis and Myocardial
Ischemia–Reperfusion Injury
Pyroptosis is a new form of programmed cell death that is
accompanied by inflammatory reactions (Bergsbaken et al., 2009).
It is characterized by morphological necrosis and apoptosis.
However, its features are entirely different, for example, nuclear
shrinkage, DNA breakage, and a large number of 1–2 nm-diameter
holes on the cell membrane are observed (Jia et al., 2019). Pyroptosis
mainly depends on caspase-1 and is accompanied by an
inflammatory cascade. During MIRI, ASC combines with pro-
caspase-1 to form a multi-protein complex that activates caspase-
1, which in turn induces the activation of IL-1β and IL-18, recruits
more inflammatory factors, and expands the inflammatory response
(Toldo et al., 2018;Wang Z. et al., 2018). NLRP3 is also an important
factor that initiates cell pyroptosis and mediates the production of
IL-1β and IL-18. In the early stage of MIRI, NLRP3 inflammation is
activated before apoptosis, indicating its participation in the
pathological process of MIRI, and therefore it may be considered
a marker of early MIRI (Allam et al., 2014; Qiu et al., 2017;
Yumnamcha et al., 2019). Hence, understanding the specific role
of NLRP3, ASC, procaspase-1/caspase-1, IL-1b/18, and other
proteins related to the pyroptosis signaling pathway in MIRI is
essential to develop targeted cell pyroptosis and provide new ideas
forMIRI prevention in the future (Yang et al., 2018;Wu et al., 2019).

Ferroptosis and Myocardial
Ischemia–Reperfusion Injury
Ferroptosis is a new form of cell death caused by MIRI (Baba
et al., 2018). It is characterized by the generation of ROS through
the reaction of ferritin, which causes the accumulation of lipid
peroxides and manifests in iron ion accumulation, increased lipid
peroxidation levels, smaller mitochondria, and increased
mitochondrial membrane density (Xie et al., 2016; Fang et al.,
2019). Due to its iron-dependent characteristics, ferroptosis is
genetically and biochemically different from other forms of cell
death. Inhibitors of apoptosis, pyroptosis, and autophagy cannot
prevent the occurrence of ferroptosis, but iron-chelating agents
can inhibit cell ferroptosis (Baba et al., 2018; Yumnamcha et al.,
2019). Ferroptosis-induced ERS leads to apoptosis, which is
closely related to MIRI; ferroptosis induces an unfolded
protein response during ERS and subsequently activates the
PERK-eIF2α-ATF4-CHOP signaling pathway, leading to
apoptosis, which plays a vital role in the process of MIRI
(Peng et al., 2020). Moreover, p53 upregulates apoptosis
regulators and participates in the synergy between ferroptosis
and apoptosis (Chen et al., 2019; Sumneang et al., 2020).

However, although ferroptosis is closely related to MIRI, its
precise molecular mechanism and biological function are not
yet fully elucidated. Research on its mechanism is expected to
provide new insights for MIRI treatment.

Interaction Among Myocardial
Ischemia–Reperfusion Injury Mechanisms
Due to ischemia and hypoxia of myocardial tissue, energy
metabolism disorder is the initiation of MIRI (Lesnefsky et al.,
2017). In addition, the ischemic and hypoxic environment creates a
certain material basis for the formation of oxygen free radicals
(Chen and Chow, 2005). With the massive formation of oxygen
free radicals, it directly or indirectly leads to calcium overload in
myocardial cells. Calcium overload can cause damage to
mitochondrial structure and function under the joint
participation of inflammatory (Verkhratsky and Parpura, 2014).
Calcium overload and mitochondrial dysfunction are mutually
causal, forming a vicious circle, and ultimately leading to
irreversible damage to cardiomyocytes. During the MIRI,
pyroptosis is accompanied by inflammation, and ferroptosis is
related to apoptosis caused by ERS (Toldo et al., 2018; Li W. et al.,
2020). In addition, miRNA can regulate the expression of genes
related to oxidative stress, inflammation, energy metabolism
disorder, apoptosis, and calcium overload. Therefore, the
mechanism of MIRI involves multiple factors and multiple
levels, and these factors are interrelated and synergistic, which
together lead to serious myocardial tissue damage.

SAPONINS IN THE TREATMENT OF
MYOCARDIAL ISCHEMIA–REPERFUSION
INJURY

Protective Mechanism of Saponins From
Ginseng Against Myocardial
Ischemia–Reperfusion Injury
Ginsenosides are essential bioactive ingredients of Araliaceae plants,
such as Panax ginseng C. A. Mey., Panax notoginseng (Burk.) F. H.
Chen, and Panax quinquefolium L., as well as Cucurbitaceae plants
such asGynostemma pentaphyllum (Thunb) Makino (Hu et al., 2010;
Shin et al., 2015). Panax ginseng C. A. Mey. and Panax notoginseng
(Burk.) F. H. Chen are the two main plant sources of ginsenosides.
Among them, authentic Panax ginseng C. A. Mey. is mainly
distributed in Southwest China, East Asia and North America, and
authentic Panax notoginseng (Burk.) F. H. Chen is mainly distributed
in Southwest China. Although the proportion of ginsenosides in these
Chinese herbal medicines varies, all of them are excellent TCMs for
anti-tumor, anti-oxidation, anti-aging, anti-fatigue, regulating blood
sugar balance, improving cardiovascular and cerebrovascular, and
enhancing immunity (Chen et al., 2011; Wang et al., 2012).
Xuesaitong, the main active ingredient of Panax notoginseng
saponins, is currently used in the clinical treatment of
cardiovascular and cerebrovascular diseases and activates blood
circulation, alleviates blood stasis, and expands blood vessels (Li
et al., 2019). Studies show that Xuesaitong injection can reduce
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MIRI by promoting pyruvate dehydrogenase-mediated aerobic
metabolism (Zhao X. et al., 2017). Ginseng total saponins can also
enhancemyocardial energymetabolism by regulating the tricarboxylic
acid cycle pathway as well as reduceMIRI by inhibiting inflammation
and oxidative damage (Wang et al., 2012). Panax notoginseng
saponins were found to have a protective effect against rat MIRI
and cardiomyocyte hypoxia-reoxygenation (HR) by regulating
autophagy and apoptosis via the HIF-1α/BNIP3 and PI3K/Akt
pathways (Chen et al., 2011) (Table 1).

Ginsenosides, such as ginsenoside Rb1, ginsenoside Rg1,
ginsenoside Rb3, ginsenoside Rg3, ginsenoside Rd, and
ginsenoside Re, are mainly dammarane-type structures, with
different types and positions of glycosides that result in unique
physicochemical and biological activities (Aravinthan et al., 2015;
Liu X.-W. et al., 2019) (Figure 2). Ginsenoside Rb1, a common
saponin in Panax ginsengC. A.Mey., Panax notoginseng (Burk.) F. H.
Chen, and Panax quinquefolium L., has an excellent therap effect on
MIRI in vivo and ex vivo, mainly by inhibiting apoptosis pathways
and activating mTOR phosphorylation (Li C. Y. et al., 2020).
Moreover, ginsenoside Rb1 as well as ginsenoside Rg1, improved
heart function by improving energy metabolism via the RhoA
signaling pathway, which is similar to the cardiac regulation by
ginseng total saponins (Cui et al., 2017). Ginsenoside Rg1 also
protected H9c2 cardiomyocytes by inhibiting apoptosis, or
activating the PI3K/AKT/mTOR pathway (Deng et al., 2015; Li
et al., 2018; Qin et al., 2018; Yuan et al., 2019). In addition,
ginsenoside Rd restored mitochondrial damage and inhibited
oxidative stress by activating the Akt/GSK-3β and Nrf2/HO-1
signaling pathways (Wang et al., 2013; He et al., 2014; Yu et al.,
2016c). Notoginsenoside R1 reduced MIRI by preventing energy
metabolism disorder and ERS, which was related to the ROCK and
NF-κB signaling pathways.

In summary, total ginsenoside as well as ginsenoside monomer
components can significantly reduce MIRI and HR damage. The
specific regulatory mechanisms of ginsenosides mainly reduce
energy metabolism disorders, inhibit oxidative stress and
inflammatory response, and reduce cardiomyocyte apoptosis (Li
et al., 2016; Zhang et al., 2016). Notably, the regulation of energy
metabolism by ginsenosides, mainly through the Akt/GSK-3β and
RhoA/ROCK signaling and mitochondrial autophagy pathways, is
particularly significant and coincides with the significance of
ginseng’s TCM guidance (Figure 3). Various ginsenosides can
protect against MIRI through the regulation of different signaling
pathways. The clinical efficacy of ginsenosides also encourages
researchers to further explore the mechanism underlying the
treatment of cardiovascular diseases, provide a theoretical basis
for their clinical application, and expand ginseng indications.

Protective Mechanism of Saponins From
Aralia Against Myocardial
Ischemia–Reperfusion Injury
Aralia chinensis L. is an edible Araliaceae plant with medicinal
value, including Aralia elata (Miq) Seem. and Aralia taibaiensis
(Wang et al., 2014).Aralia elata (Miq) Seem. is mainly distribution
in Northeast China, North Korea, Japan and Russia, and Aralia
taibaiensis is distribution in Midwest China. It contains several

triterpene saponins, flavonoids, coumarins, and alkaloids, of which
saponins are its main active ingredient (Wang R. et al., 2018). Current
research shows that Aralia saponins can regulate the cardiovascular
system and possess anti-tumor and anti-inflammatory effects (Yan
et al., 2015). The total saponin of Aralia elata constitute the main
component of the Longya Guanxinkang capsule, which functions to
nourish qi, promote blood circulation, reduce blood stasis, and relieve
pain; it is suitable for treating coronary heart disease, angina pectoris
with qi deficiency, and blood stasis syndrome (WangR. et al., 2018). In
addition, Aralia Xinmaitong capsules, developed with total saponins
of Aralia elata as ingredients, have obtained drug clinical research
approval for the treatment of angina pectoris caused by qi deficiency
and blood stasis (Wang M. et al., 2015). Our team has previously
proved that total saponins ofAralia elata (Miq) Seem. protects against
MIRI by suppressing ERS-related apoptosis and calcium overload via
the PKCε-dependent signaling pathway (Wang R. et al., 2018). Total
saponins ofA. taibaiensis also showed a protective effect against MIRI
(in vivo) and HR (in vitro), and the protective mechanism was
associated with AMPK pathway-related apoptosis (Yan et al., 2015).

After screening a large number of saponin components, three
components with strong anti-MIRI activity were identified: elatoside
C, araloside C, and calenduloside E (Table 2). The chemical structures
of these saponins have oleanolic acid configurations (Figure 4).
Calenduloside E contains fewer glycosidic bonds than elatoside C
and araloside C, which results in its marginal inferior solubility and
different biological activities. Further, calenduloside E reportedly
reduced H2O2-induced H9c2 cardiomyocyte injury by inhibiting
oxidative stress, apoptosis, and calcium overload (Tian et al., 2017).
Elatoside C protected against rat global MIRI by attenuating oxidative
stress and calcium overload via PI3K/Akt and JAK2/STAT3 signaling
pathway activation and MPTP inhibition (Wang M. et al., 2015).
Araloside C reduced oxidative stress, ERS, and calcium overload by
regulating Hsp90, and improved mitochondrial function and AMPK
activation, which were dedicated to alleviating rat global MIRI and
H9c2 cardiomyocyte HR damage (Wang et al., 2017; Du et al., 2018;
Wang et al., 2019).

In short, Aralia saponins have an excellent effect on the
treatment of coronary heart disease and angina pectoris (Wang
R. et al., 2018). Current studies have shown that the cardioprotective
effect of Aralia saponins is mainly through inhibition of calcium
overload, oxidative stress and ER stress-related apoptosis. Aralia
saponins showed a significant role in maintaining calcium
homeostasis, primarily by activating HSP90, PKCε and JAK2/
STAT3 signaling pathways, inhibiting MPTP opening (Wang
et al., 2014; Wang M. et al., 2015; Du et al., 2018) (Figure 3).
However, the current research on MIRI protective mechanism of
Aralia saponins is not deep enough, and some data on animals in
vivo experiments and clinical studies are insufficient.

Protective Mechanism of Other Saponins
Against Myocardial Ischemia–Reperfusion
Injury
In addition to ginsenosides and aralia saponins, other saponins
also possess anti-MIRI activity (Table 3). Since each saponin has
a different chemical structure, its characteristic cardiac protection
mechanism also differs. Radix Astragali is a known TCM for
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TABLE 1 | Anti-MIRI effects of saponins from ginseng.

Compound Major plant
source

Geographical
distribution
of plants

Dose/
concentration

Models Mechanism

Ginseng total
saponins

Panax ginseng C. A. Mey Southwest China, East
Asia and North America

100, 200 mg/kg, i.g. Guinea pig MIRI model (in vivo)
(Aravinthan et al., 2015)

Anti-oxidative and anti-inflammatory
properties by reducing inflammatory
cytokines and NF-kB

50 mg/L for 60 min Rat global MIRI model (ex vivo)
(Wang et al., 2012)

Modulating TCA cycle protein
expression to enhance cardiac energy
metabolism; reducing oxidative stress

Panax notoginseng
saponins

Panax notoginseng
(Burk.) F. H. Chen

Southwest China 200, 500 μg/ml Neonatal rat MIRI model (in vitro)
(Wang et al., 2019)

Inhibiting oxidative stress via MiR-
30c-5p

30, 60 mg/kg, i.p. Rat MIRI model (in vivo) (Liu X.-
W. et al., 2019)

Regulating the HIF-1a/BNIP3 pathway
of autophagy

30, 60 mg/kg, i.g.;
0.05, 0.25,
2.25 mg/ml

Rat MIRI model (in vivo); H9c2
cardiomyocytes HR model
(in vitro) (Chen et al., 2011)

Inhibiting apoptosis by activating PI3K/
Akt pathway

Gypenoside Panax notoginseng
(Burk.) F. H. Chen;
Gynostemma
pentaphyllum
(Thunb.) Mak

Southwest China; East
Asia and Southeast Asia

50, 100,
200 mg/kg, i.g.; 5,

10, 20 μM

Rat MIRI model (in vivo); H9c2
cardiomyocytes HR model
(in vitro) (Yu et al., 2016a; Yu
et al., 2016b)

Inhibiting ER-stress and apoptosis via
CHOP pathway and PI3K/Akt
pathway; inhibiting NF-kB p65
activation via MAPK signaling pathway

100 mg/kg, i.g. (in
vivo); 10, 20 μM

(in vitro)

Rat MIRI model (in vivo); H9c2
cardiomyocytes HR model
(in vitro) (Chang et al., 2020)

Suppressing miR-143-3p level via the
activation of AMPK/Foxo1 signaling
pathway

Ginsenoside Rb1 Panax ginseng C. A.
Mey.; Panax notoginseng
(Burk.) F. H. Chen

Southwest China, East
Asia and North America;
Southwest China

40 mg/kg, i.g. Rat MIRI model (in vivo) (Xia et al.,
2011; Li et al., 2016)

Enhancing eNOS expression and NO
content and inhibiting p38-MAPK
signaling pathway

20, 40, 80 mg/kg,
i.g.; 1, 5, 10, 20 μM

Rat global MIRI model (ex vivo);
rat MIRI model (in vivo) (Li C. Y.
et al., 2020)

Activating mTOR signal pathway

2.5, 5,
7.5 mg/kg, i.g.

Rat MIRI model (in vivo) (Cui
et al., 2017)

Regulating energy metabolism by
RhoA signaling pathway

Ginsenoside Rb3 Panax ginseng C. A.
Mey.; Panax notoginseng
(Burk.) F. H. Chen

Southwest China, East
Asia and North America;
Southwest China

2, 5 μM H9c2 cardiomyocytes HR model
(in vitro) (Ma et al., 2014)

Inhibiting JNK-mediated NF-kB
activation

5, 10, 20 mg/kg, i.g. Rat MIRI model (in vivo) (Shi et al.,
2011; Liu et al., 2013)

Anti-oxidantive, anti-apoptotic and
anti-inflammatory activity; improving
microcirculatory

Ginsenoside Rd Panax ginseng C. A.
Mey.; Panax notoginseng
(Burk.) F. H. Chen

Southwest China, East
Asia and North America;
Southwest China

50 mg/kg, i.p. Rat MIRI model (in vivo) (Zeng et
al., 2015)

Activating Nrf2/HO-1 signaling
pathway

50 mg/kg,
i.p.; 10 μM

Rat MIRI model (in vivo); neonatal
rat myocardial cells HR model
(in vitro) (Wang et al., 2013)

Activating Akt/GSK-3β signaling
pathway and inhibiting mitochondria-
dependent apoptotic pathway

Ginsenoside Re Panax ginseng C. A.
Mey.; Panax notoginseng
(Burk.) F. H. Chen

Southwest China, East
Asia and North America;
Southwest China

0.3, 1, 3, 10, 20 μM Guinea-pig cardiomyocyte
electrophysiology (in vivo) (Bai et
al., 2004)

NO-dependent modulation of the
delayed rectifier K+ current and the
L-type Ca2+ current

30, 100 μM Rat MIRI model (in vivo) (Lim et
al., 2013)

Ameliorating the electrocardiographic
abnormality and inhibiting TNF-α level

Ginsenoside Rg1 Panax ginseng C. A.
Mey.; Panax notoginseng
(Burk.) F. H. Chen

Southwest China, East
Asia and North America;
Southwest China

5 mg/kg/h,
30 min, i.v

Rat MIRI model (in vivo) (Li et al.,
2018, Yuan et al. 2019)

Inhibiting apoptosis and modulating
energy metabolism through binding to
RhoA; activating HIF-1 α-ERK
signaling pathways

100 μM H9c2 cardiomyocytes HR model
(in vitro) (ZL et al., 2012; Qin et al,
2018)

Inhibiting autophagosomal formation
and apoptosis; activating the PI3K/
AKT/mTOR pathways

Ginsenoside Rg3 Panax ginseng C. A.
Mey.; Panax notoginseng
(Burk.) F. H. Chen

Southwest China, East
Asia and North America;
Southwest China

5, 20 mg/kg, i.g. Rat MIRI model (in vivo) (Zhang
et al., 2016)

Anti-apoptosis and anti-inflammation
properties

60 mg/kg, i.p.;
10 mM

Rat MIRI model (in vivo); neonatal
rat myocardial cells HR model
(in vitro) (Wang Y. et al., 2015)

Regulating Akt/eNOS signaling
pathway and Bcl-2/Bax signaling
pathway

Notoginsenoside
R1

Panax notoginseng
(Burk.) F. H. Chen

Southwest China 5, 10, 20 μM Rat global MIRI injury model (ex
vivo); H9c2 cardiomyocytes HR
model (in vitro) (Yu et al., 2016c)

Inhibiting oxidative stress and ERS

5 mg/kg, i.g.; 10,
100 nM

Rat MIRI model (in vivo); H9c2
cardiomyocytes HR model
(in vitro) (He et al., 2014)

Preventing energy metabolism
disorder via inhibiting ROCK

20, 40,
60 mg/kg, i.g.

Rat MIRI model (in vivo) Regulating vitamin D3 upregulated
protein 1/NF-κB signaling pathway
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nourishing qi and is widely used in prescriptions and health
products. Pharmacological studies have confirmed that Radix
Astragali has a significant effect on the immune as well as
cardiovascular systems (Tu et al., 2013). Huangqi Tongbi
decoction, an ancient prescription for treating coronary heart
disease that has Radix astragali as the main active ingredient, has
been shown to significantly improve MIRI in rats; its cardiac
protection mechanism involves inflammation suppression via the

HMGB1/TLR/NF-κB pathway (Liu K. et al., 2019). In addition,
several studies on the anti-MIRI effect of astragaloside IV have
identified it as the main component of Astragalus responsible for
exerting cardiac protection. The mechanism of cardioprotection
by astragaloside IV mainly focuses on the improvement of energy
metabolism disorders by recovering mitochondrial respiration,
preventing MPTP opening, and decreasing cytochrome C release
(Xu et al., 2008; Han et al., 2011; Tu et al., 2013). The structure of

FIGURE 2 | A schematic representation of mechanisms of saponins from Ginseng exerted cardioprotective effects in MIRI. Glc, glucose; Rha, rhamnose; Xyl,
xylopyranose. ↑means activate relevant pathways. ↓means suppress relevant pathways.

FIGURE 3 | A schematic representation of mechanisms of saponins from Aralia exerted cardioprotective effects in MIRI. Glc, glucose; Gal, galactose; Xyl,
xylopyranose. ↑means activate relevant pathways. ↓means suppress relevant pathways.
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astragaloside IV is similar to that of dammarane-type
ginsenosides, and both possess the same cardiac protection
mechanism, which supports the idea of structure determines
function.

Dioscin is a phytoestrogen that exhibits anti-MIRI activity.
Diosgenin exerts cardioprotective effects by inhibiting

inflammation and oxidative stress by activating mitochondrial
KATP channels and regulating p38-MAPK/JNK pathways
(Badalzadeh et al., 2014; Badalzadeh et al., 2015; Wang H. W.
et al., 2018). Estrogen and its receptors are both critical targets in
theMIRI mechanism; therefore, dioscin can also be used as a drug
candidate for the treatment of MIRI, and its cardioprotective

FIGURE 4 | Mechanism of anti-MIRI of saponins in Chinese Herbal Medicine. The saponins in Panax ginseng, Panax notoginseng, Aralia, Astragalus and other
Chinese herbal medicine can significantly alleviate MIRI. These saponins inhibit oxidative stress, energy metabolism disorder, calcium overload, inflammation and
apoptosis, and thus exert the cardioprotective effect.

TABLE 2 | Anti-MIRI effects of saponins from Aralia.

Compound Major plant
source

Geographical
distribution
of plants

Dose/
Concentration

Models Mechanism

Total saponins of
Aralia elata (Miq)
Seem

Aralia elata
(Miq) Seem

Northeast China, North
Korea, Japan, Russia

25, 50,
100 mg/kg, i.g.

Rat MIRI model (in vivo) (Wang R. et al.,
2018)

Alleviating calcium homeostasis
imbalance and endoplasmic reticulum
stress-related apoptosis

30, 60 mg/kg; 1.25,
2.5 and 5 mg/ml

Dog hemodynamic indexes (in vivo), Ca2+

transients and sarcomere shortening
detection (in vitro) (Wang et al., 2014)

Positive inotropic effect by maintenance
of calcium homeostasis and increase of
PKCε-dependent signaling pathway

Total saponins of
Aralia taibaiensis

Aralia
taibaiensis

Midwest China 60, 120, 240 mg/kg,
i.g.; 25, 50 μg/ml

Rat MIRI model (in vivo); H9c2
cardiomyocytes HR model (in vitro) (Yan
et al., 2015)

Suppressing apoptosis via the AMPK
pathway

Elatoside C Aralia elata
(Miq) Seem

Northeast China, North
Korea, Japan, Russia

2, 10, 50 nM Rat global MIRI injury model (ex vivo)
(Wang M. et al., 2015)

Attenuating oxidative stress and calcium
overload through the activation PI3K/Akt
and ERK1/2 and JAK2/STAT3 signaling
pathway and inhibiting the opening of
mPTPs

12.5, 25, 50 μM H9c2 cardiomyocytes HR model (in vitro)
(Wang et al., 2014)

Activating STAT3 signaling pathway and
reducing ER stress-associated
apoptosis

Araloside C Aralia elata
(Miq) Seem

Northeast China, North
Korea, Japan, Russia

0.5, 1, 2.5 μM; 3.125,
6.25, 12.5, 25 μM

Rat global MIRI injury model (ex vivo);
H9c2 cardiomyocytes HR model (in vitro)
(Wang et al., 2017; Du et al., 2018)

Reducing oxidative stress, ER stress
and calcium overload by regulating
Hsp90

6.25, 12.5, 25 μM H2O2-induced H9c2 cardiomyocyte injury
(in vitro) (Wang et al., 2019)

Reducing oxidative stress by regulating
mitochondrial function and AMPK
activation

Calenduloside E Aralia elata
(Miq) Seem

Northeast China, North
Korea, Japan, Russia

0.02, 0.1, 0.5 μg/ml H2O2-induced H9c2 cardiomyocyte injury
(in vitro) (Tian et al., 2017)

Inhibiting oxidative stress, apoptosis
and calcium overload
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TABLE 3 | Anti-MIRI effects of other saponins.

Compound Major plant
source

Geographical
distribution
of plants

Dose/concentration Models Mechanism

Astragaloside IV Astragalus
membranaceus
(Fisch.) Bge.

Northern China 1, 10 mg/kg, i.g. Rat MIRI model (in vivo) (Tu et al.,
2013)

Regulating energy metabolism

3, 10, 30 μM Neonatal rat myocardial cells HR
model (in vitro) (Xu et al., 2008)

Improving intracellular calcium
handling via regulating SERCA

5 mg/kg, i.g.; 10, 20,
40, or 80 μM

Rat global MIRI injury model (ex
vivo); H9c2 cardiomyocytes HR
model (in vitro) (Luo et al., 2019)

Recovering mitochondrial
respiration, preventing mPTP
opening, decreasing cytochrome
C release and preventing
apoptosis; regulating KATP
channel

0.1, 1, 10, 100 μM H9c2 cardiomyocytes HR model
(in vitro) (Yang et al., 2018)

Regulating PI3K/Akt/HO-1
signaling pathway

80 mg/kg, i.g.; 60 μM Rat MIRI model (in vivo); H9c2
cardiomyocytes HR model (in vitro)
(Yin et al., 2019)

Inhibiting CaSR/ERK1/2 and the
related apoptotic signaling
pathways; regulating energy
metabolism

Betulinic acid Syzygium jambos (L.)
Alston; Betula
platyphylla Suk.

China, Indochina,
Malaysia, Indonesia;
China, Russia, Mongolia

50, 100, 200 mg/kg, i.g. Rat MIRI model (in vivo) (Xia et al.,
2011)

Preventing cardiomyocyte
apoptosis by reducing the release
of LDH and CK

5, 10, 20 μM H9c2 cardiomyocytes HR model
(in vitro) (Wang D. et al., 2018)

Inhibiting oxidative stress and
apoptosis by Nrf2/HO-1, p38 and
JNK pathways

Celastrol Tripterygium wilfordii
Hook.F.

East Asia 50 nM H9c2 cardiomyocytes HR model
(in vitro) (Li et al., 2017)

Inhibiting the activation of NF-κb

0.01, 0.1, 1 μM H9c2 cardiomyocytes HR model (in
vivo); rat global MIRI injury model (ex
vivo) (Aceros et al., 2019)

Modulating HSP90 activity

2, 4, 6 mg/kg, i.g. Rat MIRI model (in vivo) (Tong et al.,
2018)

Suppressing apoptosis,
inflammatory and oxidative stress
via PI3K/Akt pathway activation
and HMGB1 inhibition

Clematichinenoside Clematis chinensis
Osbeck

China, Vietnam 1, 10, 100 μM H9c2 cardiomyocytes HR (in vitro)
(Ding et al., 2016)

Inhibiting apoptosis through
mitochondrial mediated apoptotic
signaling pathway

0.001, 0.01, 0.1 mg/ml;
8, 16, 32 mg/kg, i.g.; 1,

10, 100 μM

Rat global rat MIRI injury model (ex
vivo); rat MIRI model (in vivo);
neonatal rat myocardial cells HR
(in vitro) (Zhang et al., 2013)

Restoring an antioxidant effect by
restoring the balance between
inducible NO synthase and
endothelial NO synthase

Dioscin Dioscorea
oppositifolia L

China, Japan, South
Korea

0.1, 1 nM Rat global MIRI injury model (ex vivo)
(Badalzadeh et al., 2014;
Badalzadeh et al., 2015)

Activating mitochondrial KATP

channels and NO system,
attenuating oxidative stress

50, 100 mg/kg, i.g. Rat MIRI model (in vivo) (Wang H.
W. et al., 2018)

Inhibiting inflammation by
regulating p38-MAPK/JNK
pathways and NF-κb pathways

Glycyrrhizin Glycyrrhiza uralensis
Fisch.

China, Russia 2, 4, 10 mg/kg, i.g. Rat MIRI model (in vivo) (Han et al,
2011; Zhai et al., 2012)

Inhibiting oxidative stress, iNOS
and inflammatory, via HMGB1 and
MAPK expression

5, 10, 20 mg/kg, i.g. Rat MIRI model (in vivo) (Wu et al.,
2015)

Prolonging APD, inhibiting Ica-L and
Ito; blocking phospho-JNK/Bax
pathway

Ilexsaponin A Ilex pubescens Hook.
et Arn.

China 10, 40 mg/kg, i.g.; 10,
50, 250 μM

RatMIRI model (in vivo); neonatal rat
myocardial cells HR model (in vitro)
(Zhang et al., 2017)

Inhibiting apoptotic pathway

Ophiopogonin D Ophiopogon japonicus
(Linn. f.) Ker-Gawl.

China, Japan, Vietnam,
India

20 mg/kg, i.p. Rat MIRI model (in vivo) (Huang
et al., 2018)

Antioxidant and anti-apoptotic
effects

Sasanquasaponin Camellia oleifera Abel Southern China 0.1, 1, 10 μM Neonatal rat myocardial cells HR
model (in vitro) (Chen et al., 2007)

Inhibiting oxidative stress via
attenuating ROS generation and
increasing antioxidant activities

0.1, 0.2, 0.4 mg/kg,
i.g.; 0.1 μM

Mouse MIRI model (in vivo); adult
mouse myocardial cell HR model
(in vitro) (Lai et al., 2004)

Modulating intracellular Cl-
homeostasis and anti-arrhythmia
effects
(Continued on following page)
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mechanism needs further research. Celastrol, another anti-MIRI
saponin, can interact with HSP90, which is similar to Aralia
saponins. The structure of celastrol has more unsaturated bonds
than oleanolic acid, which indicates its superior antioxidant
activity (Aceros et al., 2019). Previous studies have also
confirmed that cardiac heart protection mechanism of celastrol
involves suppression of oxidative stress, inflammation, and
apoptosis via the PI3K/Akt and HMGB1 pathways (Li et al.,
2017; Tong et al., 2018). Some studies have suggested that high-
mobility group box 1 (HMGB1) plays a role in early MIRI,
activates the inflammatory response, and promotes
cardiomyocyte apoptosis (Tong et al., 2018). Glycyrrhizin, the
main active compound in licorice, is a natural HMGB1 inhibitor.
Studies have also shown that glycyrrhizin reduces rat MIRI by
inhibiting oxidative stress and inflammation (Zhai et al., 2012;
Wu et al., 2015).

Furthermore, anti-MIRI saponins also include betulinic acid,
clematichinenoside, ilexsaponin A, ophiopogonin D,
sasanquasaponin, and withaferin A. Their cardiac protection
mechanisms are different, and mainly involve suppression of
oxidative stress, inflammation, and apoptosis (Huang et al., 2018;
Yan et al., 2018). Based on the current research progress, it can be
concluded that the signaling pathways involved in the regulatory
mechanism of each saponin are different and that one saponin
may affect one or more signaling pathways, indicating the
diversity of their therapeutic targets. Saponins with different
structures regulate various signaling pathways to achieve
cardioprotection. However, the current research on the anti-
MIRI effect of saponins is not comprehensive, requiring
researchers to continue their exploration so as to provide a
more theoretical basis and reliable drug candidates for MIRI
treatment.

CONCLUSIONS AND PERSPECTIVES

The targets and anti-MIRI mechanisms of saponins are diverse
and mainly include inhibition of oxidative stress, calcium
overload, inflammation, and mitochondrial dysfunction. In
brief, saponins have a strong antioxidant effect, which in turn
helps restore mitochondrial function and intracellular calcium
homeostasis, reduces the production of inflammatory factors, and
inhibits cardiomyocyte apoptosis, thereby exerting a
cardioprotective function (Zhang et al., 2016; Zhang et al.,
2017; Yin et al., 2019). Recent studies have revealed the

important roles of pyroptosis and ferroptosis in the
pathogenesis of MIRI (Wang Z. et al., 2018; Li W. et al.,
2020). However, there is no relevant research on the effects of
saponins on pyroptosis and ferroptosis. Therefore, the regulatory
role of saponins on these new MIRI mechanisms needs to be
further studied to completely elucidate the protective mechanism
of saponins against MIRI.

Structurally, saponins with vigorous biological activity are
mainly oleanolic acid saponins and dammarane-type saponins.
Studies have shown that oleanolic acid saponins have a significant
regulatory effect on calcium homeostasis (Wang M. et al., 2015),
whereas dammarane-type saponins have a more substantial
regulatory effect on energy metabolism (Cui et al., 2017). In
addition, ginsenosides are more active in dammarane-type
saponins, while Aralia saponins are more active in oleanolic
acid saponins, which further proves that the unique
characteristics of TCM are determined by the structure of its
key active components. The occurrence of MIRI is a multi-factor
interaction and an extremely complicated process; therefore,
multi-target therapy will be the future direction for drug
development. Saponins in TCM can act on multiple pathways
simultaneously and effectively reduce MIRI (Figure 4). Thus,
saponins provide a broad application prospect for the
development of highly effective and low-toxicity anti-MIRI drugs.

At present, the study of saponins is still in its initial stage of
new structural saponin discovery and data accumulation.
Research on the structure–activity relationship of saponins
against MIRI, at home and abroad, is still in its infancy.
Although the different biological activities and mechanisms
of saponins have been gradually elucidated at the molecular
level, their clinical applications and saponin-treatment studies
for MIRI are limited. Therefore, the systematic summary of the
anti-MIRI mechanism of saponins can potentially lay a
foundation for detailed study of the anti-MIRI effect and
structure–activity relationship of saponins, and thereby aid
the development of new anti-MIRI drugs with new
mechanisms or targets. A detailed study of the
structure–activity relationship of saponins against MIRI
would enable the identification of active components or
monomers of TCM saponins. This would finally aid the
development of drugs with more active and less adverse
reactions through chemical modification and artificial
synthesis. Thus, the study of saponins will become an
important research direction in the development of anti-
MIRI drugs.

TABLE 3 | (Continued) Anti-MIRI effects of other saponins.

Compound Major plant
source

Geographical
distribution
of plants

Dose/concentration Models Mechanism

Withaferin A Withania Somnifera India 1, 5 mg/kg, i.g. Rat MIRI model (in vivo) (R. et al.,
2019)

Upregulating AMP-activated
protein kinase-dependent B-cell
lymphoma2 signaling

0.1, 1 μM Neonatal rat myocardial cells HR
model (in vitro) (Yan et al., 2018)

Inhibiting apoptosis via activated
Akt-mediated oxidative stress
suppression
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