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Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. It
takes some time from chronic gastritis to develop in GC. Early detection of GC will help
patients obtain timely treatment. Understanding disease evolution is crucial for the
prevention and treatment of GC. Here, we present a convolutional neural network
(CNN)-based system to detect abnormalities in the gastric mucosa. We identified
normal mucosa, chronic gastritis, and intestinal-type GC: this is the most common
route of gastric carcinogenesis. We integrated digitalizing histopathology of whole-slide
images (WSIs), stain normalization, a deep CNN, and a random forest classifier. The
staining variability of WSIs was reduced significantly through stain normalization, and
saved the cost and time of preparing new slides. Stain normalization improved the effect of
the CNN model. The accuracy rate at the patch-level reached 98.4%, and 94.5% for
discriminating normal ! chronic gastritis ! GC. The accuracy rate at the WSIs-level for
discriminating normal tissue and cancerous tissue reached 96.0%, which is a state-of-
the-art result. Survival analyses indicated that the features extracted from the CNN
exerted a significant impact on predicting the survival of cancer patients. Our CNN
model disclosed significant potential for adjuvant diagnosis of gastric diseases, especially
GC, and usefulness for predicting the prognosis.

Keywords: histology, whole-slide imaging, deep learning, convolutional neural network, gastric cancer
INTRODUCTION

Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide, especially in
Asia (Van Cutsem et al., 2016; Thrift and El-Serag, 2019). By 2030, deaths from GC globally are
predicted to increase from the 15th to the 10th leading cause of cancer related death (Mathers and
Loncar, 2006). Due to a lack of effective diagnostic methods, early detection of GC is difficult, which
can delay optimal surgical treatment.
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Based on histology, GC is divided mainly into “intestinal” and
“diffuse” types (Lauren, 1965; Liu et al., 2013). In the former, it is
often preceded by several decades of chronic gastritis. The
intestinal type of GC is responsible for ~60% of GC cases (Tan
and Yeoh, 2015). The stomach is an abdominal organ, so the
cancer has often reached an advanced stage or may have
metastasized to a distant location by the time significant
symptoms appear (Orditura et al., 2014). Therefore, studying the
diagnosis and evolution of gastric mucosal lesions is important.

Patients suspected of having GC should undergo endoscopy
first. Abnormal tissue seen upon endoscopy will be sent for
histology to check for cancerous cells. Histology and pathology
reports for biopsies are the “gold standard” in the final diagnosis
of cancer worldwide (Thrumurthy et al., 2013). Pathologists
visually inspect pathology slides to identify abnormalities,
which is a prolonged and tedious process. The human eye is
limited in recognizing subtle changes and rare high-dimensional
features in tissues, which may result in inter- and intra-observer
variability (Raab et al., 2005). Nonstandard subjective judgments
can also lead to low diagnostic concordance (Stoler and
Schiffman, 2001; Elmore et al., 2015). However, the speed,
accuracy and consistency of classification could be improved
by application of artificial intelligence (AI) (Gurcan et al., 2009;
Ghaznavi et al., 2013).

In recent years, models of “deep learning”, especially
“convolutional neural networks” (CNNs) have been shown to
perform exceptionally well in computer-vision and pattern-
analysis tasks, such as image recognition, semantic segmentation,
and object detection (Cruz-Roa et al., 2013; LeCun et al., 2015;
Schmidhuber, 2015; Shelhamer et al., 2017; Ren et al., 2017). CNNs
can “learn” latent representations of one image to capture complex
nonlinear relationships in image data. They can discover more
abstract and useful features that make it easier to extract useful
information for high-level tasks (Bengio et al., 2013; Wang et al.,
2014; Guo et al., 2019).

Research on AI-based cancer histopathology has become an
important branch of “digital pathology”. The increased
availability of many-gigapixel whole-slide images (WSIs) of
tissue specimens has enabled AI to aid detection and
classification of cancer (Litjens et al., 2017). Studies have
shown that various CNN architectures can be implemented
and applied to hematoxylin and eosin (H&E)-stained biopsy
slides, such as mitosis detection for biopsy slides of breast tissue
and automated detection of basal cell carcinoma (Cruz-Roa et al.,
2013; Malon and Cosatto, 2013; Wang et al., 2014). Some
scholars have made preliminary achievements in digital-
pathology images of GC (Sharma, 2017; Sharma et al., 2017a).
A simple CNN architecture for automatic classification of GC
usingWSIs in histopathology has been described by Sharma et al.
(Sharma et al., 2017b), thereby revealing the practicability of AI
in digital-pathology research for GC. However, their work has
rarely focused on how the deep-learning framework identifies
GC lesions, nor how the results might influence the prognosis
(Droste et al., 2019; Iizuka et al., 2020).

In the present study, we undertook detection and
classification of normal mucosa, chronic gastritis, and
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intestinal-type GC, which is the most common route of gastric
carcinogenesis. This was achieved by proposing a method
combining stain normalization, deep CNN, and random forest
(RF) classifier. More importantly, we conducted research on how
the AI program focused on extracting the morphologic
characteristics of gastric mucosal lesions at different stages,
which revealed their evolution. Furthermore, we investigated
the possible clinical improvement our method could facilitate.
We predicted the survival of GC patients by combining the
extracted pathologic features from WSIs with clinical follow-
up data.
MATERIALS AND METHODS

Dataset and Image Annotation
All gastric-tissue sections were stained with H&E. Then, they
were digitalized using a KF-pro-400 scanner (Jiangfeng, Ningbo,
China) at 400× magnification. A total of 763 WSIs with manual
annotations from the stomach (normal mucosa, chronic gastritis,
and GC) were enrolled. Of those, 338 cases were normal gastric
tissues (including normal mucosa and smooth muscle), and 118
cases were chronic gastritis. Another 307 cases were intestinal-
type GC. All these images were authorized by Ruijin Hospital
(Shanghai, China). The study protocol was approved by the
ethics review board of Ruijin Hospital. Written informed consent
was obtained from patients to use their data.

The digitalized slides were annotated by senior pathologists
(YY and FY) with ASAP (an open-source platform for
visualizing, annotating and analyzing WSIs; https://
computationalpathologygroup.github.io/ASAP/). The key-
components of ASAP are: slide input/output, simple image
processing, and image viewer. Irregular curves or polygons
were used to encircle normal, chronic-gastritis, and GC regions
separately in the images. Human-readable Extensible Markup
Language (XML) files were generated automatically after manual
annotation with a specific format. Data preprocessing involved
use of delicate parsing method to extract the annotation
information in the XML files to determine the label positions
in the digital image.

Regions of Interest Extraction and Image
Segmentation
The size of each WSI can reach 5×104 pixels in both width and
height, which is usually beyond the processing power of
computers. Hence, we segmented the WSIs into image patches,
and then carried out operations on the cut patches. The process
of regions of interest (RoI) extraction is shown in Figure S1. One
canonical method to distinguish the background area from
foreground objects is to threshold the image with a “binary
mask”. Objects in the WSIs presented various colors and it was
inappropriate to use a uniform fixed threshold to distinguish the
background and target of all images. Instead, several adaptive
threshold methods were applied and compared. The Otsu
algorithm (Otsu, 1979) was adopted to determine the threshold
of binary-image segmentation by minimizing the intra-class
October 2020 | Volume 11 | Article 572372
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variation (Szegedy et al., 2016a). Then, we undertook a
morphologic close operation (which is equivalent to dilation
followed by erosion) to close small holes and fill the concave
corners in the image. Finally, regions with too small area
were abandoned.

In training process, patch-cutting mimics pathologists
viewing glass slides from low-power to high-power of a
microscope to extract image patches of different sizes:
768×768, 1,024×1,024, 1,495×1,495 and up to 2,048×2,048
pixels. Finally, patches were resized to 299 pixels in weight and
height before sending into the CNN. These procedures can train
many characteristics at different scales, including the contours of
certain lesions and detailed textures. Other too small or too large
patches were not adequate for further analyses. The patch size is
set as 1,024×1,024 when generating heatmap so that patches can
connect to each other by the same side length.

Stain Normalization and Data
Augmentation
To overcome the staining inconsistency of histology slides, multiple
researchers have applied operations to standardize specimen colors
in histopathological images prior to analysis (Ranefall et al., 1997;
Reinhard et al., 2001; Macenko et al., 2009; Tam et al., 2016;
Vahadane et al., 2016; Anghel et al., 2019; Ren et al., 2019). One
common approach to tackle stain normalization issue is to extract
multiple affinities for specific biological substances, and then perform
some kind of projection from a preselected reference image to all
images. Specifically, color deconvolution methods (Macenko et al.,
2009; Vahadane et al., 2016; Anghel et al., 2019) have been utilized
extensively in the past decades by transforming the original RGB
image into other color space like Lab (Reinhard et al., 2001) and
extract the stain vectors. Unsupervised vector estimation methods
(Anghel et al., 2019) and generative methods (Ren et al., 2019) have
also emerged in the past years. In this study, we applied an internal-
feature information of image A to another image B through a specific
operation. In brief, a set of characteristic parameters (the RGB color
model values of hematoxylin and eosin) are extracted from a
reference image, following by a mapping function (Beer-Lamber
Law to generate the optical density image and re-assemble the target
image’s concentration matrix) that converts the appearance of a
given image to the reference image. The parameters are, in general,
defined to capture the color distribution of H&E images. As a result,
the color distribution of a stain-normalized image will have a great
resemblance to the reference image. In general, nuclei are dark-
purple (hematoxylin dye) and the cytoplasm is light-pink (eosin
dye). To eliminate the influence of the void (white) pixels of the
background, we applied a threshold on pixel luminosity to isolate
different regions (Macenko et al., 2009). In instances of severe fading,
brightness standardization of the images was carried out (Tam et al.,
2016). The 2×3 stain matrix, S, was composed of the robust extreme,
defined by the two principle eigen-vectors of the optical density
(OD) covariance matrix on the angular polar plane. With the
extracted stain matrix, the concentration matrix, C, of a given
target image could be solved from the equation OD = C × S.

Data augmentation can ease the problem of having few
samples. Therefore, we processed affine transformations, such
Frontiers in Pharmacology | www.frontiersin.org 3
as 30° rotations, migrations by 20% of the dimension, image
flipping horizontally and vertically, and shearing by a factor of
0.2. We did not make any extra adjustment on the brightness and
contrast of images to preserve the color and texture features of
the images after stain normalization.

Patch Classification at the WSIs-Level
and Features Extraction
Due to the limitation of time and hardware, it was impossible to test
multiple models on all patches extracted. Therefore, we made a
preliminary attempt with a small amount of data on models before
using all patches. Models used included Vgg16 (Simonyan and
Zisserman, 2014), Resnet50 (He et al., 2016), InceptionResnet v2
(Szegedy et al., 2016a), Densenet169 (Huang et al., 2017) and
Inception v3 (Szegedy et al., 2016b). The result of the preliminary
attempt showed that Inception v3 was of great potential in
this study.

Inception v3 of the open source of Google™ was selected,
which contains the module characteristics suitable for pathology
tasks (Ker et al., 2019). Inception v3 has been applied in
classification tasks in skin cancer (Esteva et al., 2017) and
diabetic retinopathy (Gulshan et al., 2016). We added a global
average pooling layer, two fully connected layers, and a soft-max
layer on the basis of Inception v3. Thus, a modified deep CNN
with 43 layers was applied at patch-level classification. The CNN
structure is shown in Figure S2.

To test the performance of the CNN model for distinguishing
different images from various types of gastric diseases, the CNN
was trained “from scratch” for 25 epochs with an exponentially
decayed learning rate starting at 10−3. Then, the set of hyper-
parameters with the highest accuracy on the validation set was
fine-tuned for another 25 epochs with an exponentially decayed
learning rate starting at 10−4. In the training process, we used
Adam as the optimizer, which has faster convergence speed and
can avoid loss function compared with other adaptive learning
rate algorithms. The CNN parameters were randomly initialized
at the beginning of the first training epoch. Meanwhile, “Cross
entropy” was chosen as the loss function corresponding to the
soft-max layer.

After obtaining “cancer likelihood maps” from the patches-
based classification, we undertook post-processing to extract
WSIs-level characteristics. One cancer-likelihood map was
created for each WSI, which was an assembled heatmap (H)
from enormous patches. One pixel (x, y) in H was generated by
assembling the malignant probabilities by taking the highest
probability of patches containing the point (x, y). That is,

H(x, y) = max
p∈P

(I (x, y) ∈ pf g)*( Pr (p ! = normal)),

where P is the set of all patches extracted from the WSI, p is one
particular patch in the WSI, I(·) is the indicator function, and Pr
(p! = normal) is the malignant probability of patch p. The tumor-
probability threshold (denoted as Ptumor) in the probability
section indicates that a pixel in the heatmap is regarded as a
tumor pixel if its malignant probability is greater than
the threshold.
October 2020 | Volume 11 | Article 572372
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RF Classifier for WSIs-Level Classification
To reduce the overfit of the training data due to their
randomness, we introduced a RF (Breiman, 2001). A RF is an
integrated supervised learning algorithm which ensures that the
results of the whole model have high accuracy and considerable
generalization performance. The features extracted in the above
process are given as the input of the model used for classification
at the WSIs-level. The reason that we did not use an end to end
approach on WSIs-level classification was that WSIs without
preprocessing would cause memory overflow. All the training
WSIs were the same as those selected as the training data at the
patch-level.

Visualization of Morphologic
Characteristics of Different Gastric
Lesions
We wished to construct saliency maps (Simonyan et al., 2013) of
the normal mucosa, chronic gastritis, and GC. Hence, we needed
to compute the gradients of the unnormalized class score with
respect to image pixels, and take the maximum value over red/
green/blue (RGB) channels to depict the visually interesting
locations in an image. Such topologic representation describes
the contribution of each pixel in an image to the confidence of
the CNN to classify that image into a specific lesion class. We
adopted Grad-CAM (Selvaraju et al., 2020) to produce a coarse
localization map highlighting the important regions for
predicting the lesions. Grad-CAM takes class-specific gradient
information flowing into the penultimate layer of a CNN, and
computes an “attention map” showing how intensely the input
image activates different channels in the layer with regard to the
class. To avoid information loss in the final dense layers, such
spatial information in the penultimate layer provides additional
guidance. Then, we investigated whether the CNN captured
certain cell, nucleus, gland, tissue or stroma features to help
identify gastric lesions and make the final decision.

Survival Analyses
Survival analysis is a crucial ingredient which provides important
information about a patient’s prognosis status for treatment
design and selection. The combination of clinical features as
well as clinicopathological features extracted by machine
learning methods like Support Vector Machine (Zhang et al.,
2011), Random Forest (Liao et al., 2020), Lasso regression (Li
et al., 2019) as well as Deep CNN (Ren et al., 2019) has been
proved to substantially enhance the accuracy of survival analysis
for different kinds of cancers. To expand the clinical usefulness of
our CNN system, we undertook survival analyses which
combined the features extracted by the CNN with clinical
follow-up data for GC. “Survival” was defined as the
percentage of people who survived for a specified period of
time. The clinicopathologic features used in RFModel 1 are listed
in Table S2. We discretized survival duration (right-censored) as
<1 year, 1–5 years, and >5 years. Then, the WSIs-level features
and clinicopathologic data were fed into a RF classifier. We also
compared the prediction performance with the model excluding
WSIs-level features for evaluating the effects of WSIs-level
Frontiers in Pharmacology | www.frontiersin.org 4
features of the CNN system. The Kaplan–Meier estimation
method was used (Campos-Filho and Franco, 1988;
Miettinen, 2008).
RESULTS

Image Patches Produced for CNN
Analyses
We used 534 (70%) out of 763 H&E-stained WSIs for the
training set, 153 (20%) as the test set, and 76 (10%) as the
validation set. The latter was used only to “tune” hyper-
parameters in the training process of the CNN. The test set
was exposed only when evaluating the performance of the CNN
model. The dataset covered >1.6 million image patches in the
training set, and 0.4 million image patches in the test set (Table
1). In the preliminary attempt, about one fifth of the above
patches were used.

Stain Normalization and Extraction
of Features
Results of the preliminary attempt are listed in Table S1.
Inception v3 achieved the highest accuracy in the test set
among all models, which indicated that the model had great
potential in this study. Therefore, Inception v3 was selected as
the final CNN structure.

All patches were included in the results descried below. In the
binary classification (benign versus cancer) without stain
normalization, the best prediction accuracy on the test set was
98.1%. The prediction accuracy improved to 98.4% after stain
normalization. The specificity and sensitivity increased with stain
normalization, from 98.2% to 98.9% and from 97.8% to 98.0%,
respectively. Stain normalization helped the classification by
unifying the distribution of the pixels in the color spaces.
Figure 1A shows an example of color distribution of the two
image patches with and without stain normalization. Despite the
original huge color variation of the two patches, the distribution
of pixel color was much alike after stain normalization. The
improved performance was attributed to the better morphology
observed using digital images, so the CNN model could “grasp”
directly the different features between them for identification.
The receiver operating characteristic curve (ROC) curve for the
patch-level classification as well as the corresponding confusion
matrix is shown in Figure 1B. We further trained and tested the
CNN model on the datasets from three classes (normal mucosa,
chronic gastritis, and GC), and the best three-class prediction
accuracy of the test set was 94.5%. Stain normalization also
showed an improvement in three-class patch classification,
TABLE 1 | Image numbers at the patch-level of the study.

Images origin Training set Test set Validation set

Normal 544,925 135,446 68,201
Chronic gastritis 544,624 125,783 66,678
Cancer 527,164 138,011 67,452
Total 1,616,713 399,240 202,331
October 20
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where the prediction accuracy on the test set with a primary stain
was 93.8%. The confusion matrix shown in Figure 1C indicates
that the reduction in test accuracy (compared with the binary
classification) was caused mainly by 10.8% of normal mucosa
patches being classified as chronic-gastritis patches.

In everyday clinical practice, whole slices from patients are a
combination of normal mucosa, chronic gastritis, and GC. We
separated all WSIs into categories: “complete normal WSIs” and
“mixture WSIs” with gastritis or GC. After generating cancer-
likelihood heatmaps from the patch-level classification, we
undertook post-processing to extract WSIs-level characteristics.
Referring to relevant study (Wang et al., 2018), forty-four
features were extracted from the malignant probability
(denoted as Ptumor) heatmap (Table 2) in our study, including
various morphologic features, such as the long axis length of the
largest predicted tumor region. After this feature-extraction
process, a RF classifier with 44 extracted features was trained
and fine-tuned. The accuracy of the model on the test set was
96.0%, whereas the specificity was 93.3% and sensitivity was
Frontiers in Pharmacology | www.frontiersin.org 5
98.7%. The ROC curve for the WSIs-level RF classification as
well as the corresponding confusion matrix is shown in
Figure 1D.

Visualization of Morphologic
Characteristics for Different Gastric
Lesions
Visualization of morphologic characteristics is a vital function
for a deep-learning model because it can show what the model
has learnt. We wished to ascertain if the CNN model had seized
certain key characteristics of different gastric lesions. Hence, we
undertook gradient-weighted class activation mapping (Grad-
CAM) and saliency mapping for presentation of patch-level
extracted features from the WSIs of different lesions, which
corresponded to the evolutionary route of normal mucosa !
chronic gastritis! GC. Both visualization styles are presented as
heatmaps at patch-level.

Grad-CAM is able to capture certain object contours, which
are shown as an overlaid heatmap by blending the computed
A

B D
C

FIGURE 1 | Stain normalization improves the performance of classification at the patch-level and WSIs-level. (A) Example of color distributions with or without stain
normalization. Left: Two originally stained image patches with their corresponding pixel-color distribution in red/green/blue (RGB) color channels. Right: The same
patches after stain normalization and their corresponding pixel-color distribution in RGB color channels. (B) Receiver operating characteristic (ROC) curve and
normalized confusion matrix for a convolutional neural network (CNN) binary classification model at the patch-level. (C) Normalized confusion matrix of a CNN three-
class classification model at the patch-level. (D) ROC curve and normalized confusion matrix for a random forest binary classification model at the WSIs-level.
October 2020 | Volume 11 | Article 572372
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localization map into the original patch image with 50%
transparency. “Warmer” colors correspond to more significant
lesions, and vice versa. The saliency map was represented by a
heatmap indicating the regions whose change would contribute
most toward maximizing the predicted probability of that patch
belonging to its “true” class (normal, chronic gastritis, or GC).
The warmer the color in the heatmap, the higher the possibility
the area had to the prediction and vice versa.

The most prominent characteristics of normal mucosa was
the compactness of lining mucosal cells, as well as the
morphologic regularity of the structure. Often, morphologic
characteristics were seen with patches extracted with a high-
power view (patches with pixels of 1,495×1,495 or larger, as
shown in Figure 2A). Tubular glands were packed closely and
separated from each other by the lamina propria. The contour of
assembly of the tubular glands with a regular shape was captured
clearly, especially in those patches extracted with a low-power
view (patches of pixel size 1495×1495 or smaller, as shown in
Figure 2B).

In chronic gastritis, the significant characteristics were
inflammation and intestinal metaplasia (IM), while atrophic
lesion of gastric mucosa is the key intermediate stage of
transition and development to early GC. IM was captured at
high-power magnification at patch-level (patch dimensionality at
pixel size 1,024×1,024 or smaller), which disclosed loss of normal
mucous glands, as well as the epithelial cells resembling the
glands of the intestinal mucosa. The deformed glands could be
seen clearly in Grad-CAM presentation (Figure 2C) and
irregularly shaped intracytoplasmic mucin droplets were
observed in the saliency map (Figure 2D).

According to Grad-CAM, GC presented with irregularly
shaped glands with nuclear pleomorphism and a disordered
structure. Distended tubules surrounded by polymorphous
cancer cells can be observed at the patch-level in Figure 2E.
The cancerous features of irregularly shaped and fused neoplastic
glands are captured in Figure 2F. These glands tended to be
Frontiers in Pharmacology | www.frontiersin.org 6
fused irregularly or expanded, and filled with inflammatory
debris or necrotic cells.

Features Extracted by CNNs Are Useful
for Predicting Outcome
Follow-up data were collected for 273 (88.93%) out of 307 GC
patients. The mean duration of follow-up was 46.1 months. The
mean age of the study cohort was 61.9 years, and 83.9% of cases
were older than 50 years. Clinicopathologic staging was
according to the 7th TNM staging criteria of the American
Joint Committee on Cancer/International Union Against
Cancer Classification for gastric adenocarcinoma (Ahn
et al., 2010).

The longest living case was first recorded over 12 years ago.
Among them, 118 patients had already died whereas 155 cases were
alive. The survival time of patients was discretized into three
categories with right-censoring, that is, patients who: (i) died
within 12 months; (ii) died within 5 years, but survived for ≥12
months; (iii) survived for ≥5 years. Three RF models with well-
tuned hyper-parameters were trained: (i) RF Model 1 (used only
clinicopathologic features) (Table S2); (ii) RF Model 2 (used 44
extracted features by CNN) (Table 2); (iii) RF Model 3 (used all
features, including clinicopathologic features and the 44 features
extracted by the CNN). With regard to analyses of the RF model,
75% of the data were used for the training set, whereas the
remaining 25% were used for the testing set.

After careful tuning of hyper-parameters, the prediction
accuracy increased from 92.7% (RF Model 1) to 97.4% (RF
Model 3) with the help of the 44 features extracted by the CNN.
Hence, a combination of clinicopathologic features with the 44
features extracted by the CNN resulted in an increase in
accuracy for predicting survival by 4.7%. In addition, the
prediction accuracy was 90.9% with the 44 features extracted
by the CNN only (RF Model 2), which suggested that AI-
extracted features were important clinically. To clarify the key
features of RF Model 3, we inspected the feature importance by
TABLE 2 | The 44 features extracted from a heatmap of malignant probability at the whole-slide images (WSIs)-level.

Index Explanation of feature Probability remark

1 Total number of tumor regions with an area greater than a threshold Ptumor ≥0.90, area threshold ≥0.05 total area
2 Area percentage of tumor region over the whole tissue region Ptumor ≥0.90
3 Area of the largest tumor region Ptumor ≥0.50
4 Long axis of the largest tumor region Ptumor ≥0.50
5 Percentage of pixels with a high probability of malignancy Ptumor ≥0.90
6 Average prediction across the tumor region Ptumor ≥0.90
7–11 Max, mean, variance, skewness, and kurtosis of the tumor area Ptumor ≥0.90
12–16 Max, mean, variance, skewness, and kurtosis of the tumor perimeter Ptumor ≥0.90
17–21 Max, mean, variance, skewness, and kurtosis of tumor compactness (eccentricity) Ptumor ≥0.90
22-26 Max, mean, variance, skewness, and kurtosis of tumor rectangularity (extent) Ptumor ≥0.50
27-35 Mean, variance, standard deviation, median, mode, min, max, range, sum of tumor probabilities n/a
36 Average of malignant probability n/a
37 Proportion of tumor patches with Ptumor > Pmin Pmin= 0.999
38 Proportion of tumor patches with Pmax ≥ Ptumor > Pmin Pmax = 0.999, Pmin = 0.99
39 Proportion of tumor patches with Pmax ≥ Ptumor > Pmin Pmax = 0.99, Pmin = 0.95
40 Proportion of tumor patches with Pmax ≥Ptumor > Pmin Pmax = 0.95, Pmin = 0.9
41 Proportion of tumor patches with Pmax ≥ Ptumor > Pmin Pmax = 0.9, Pmin = 0.8
42 Proportion of tumor patches with Pmax ≥ Ptumor > Pmin Pmax = 0.8, Pmin = 0.7
43 Proportion of tumor patches with Pmax ≥ Ptumor > Pmin Pmax = 0.7, Pmin = 0.6
44 Proportion of tumor patches with Pmax ≥ Ptumor > Pmin Pmax = 0.6, Pmin = 0.5
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computing the number of tree splits one feature determined in
the model. Among the top-10 important features (Table 3), five
of those were clinicopathologic features, whereas the others
were features extracted by the CNN (Figure 3A). The survival
function is presented in Figure 3B for index 9 (number of
cancerous lymph nodes), Figure 3C for index 36 (proportion of
prediction probability >0.999) as well as Figure 3D for index 49
(average of predicted tumor probability). Index 36 represents
the proportion of the patches whose prediction probability is
greater than 0.999 in all patches, while index 49 represents the
average probability prediction of all patches in each WSI. We
segmented the data into two groups according to the feature we
were interested in. The median value of the feature value was
used for the cutoff. Mathematically, if we were studying the
A B

D

E F

C

FIGURE 2 | Visualization of different gastric lesions by Grad-CAM and saliency map. (A) Normal mucosa. Left: Patches extracted from normal WSIs with
2,048×2,048 pixels and 1,495×1,495 pixels, respectively. Right: Grad-CAM presentation for the patches. (B) Normal mucosa. Left: Patches extracted from tubular-
gland tissue regions with 1,495×1,495 pixels and 768×768 pixels, respectively. Right: Presentation of the saliency map for the patches. Note that the model
captures the contour of the compact glands, which results in lucid lines in the saliency maps. (C) Chronic gastritis. Left: Patches extracted from intestinal metaplasia
(IM) showing more intracytoplasmic mucin droplets of varying sizes and shapes. Right: Grad-CAM presentation for the patches. (D) Chronic gastritis. Left: Patches
extracted from an IM lesion with more goblet cells. Right: Presentation of the saliency map for the patches. Note the lucid area of IM is different from normal mucosa.
(E) Gastric carcinoma. Left: Cancerous patches with more stroma regions. Right: Grad-CAM presentation for the patches. Note that the red area with high attention
captures the disordered cancer clusters. (F) Gastric carcinoma. Left: Cancerous patches from 1,495×1,495 pixels and 1,024×1,024 pixels, respectively. Right:
Presentation of the saliency map for the patches. Note the lucid tubules reveal a significantly irregular shape.
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TABLE 3 | Top-10 features influencing the prognosis.

Index Name of feature Importance of
feature

Category

9 Number of cancerous lymph nodes 0.0624 clinical
5 Distant metastasis 0.0598 clinical
7 Depth of tumor infiltration 0.0334 clinical
0 Age of patient 0.0328 clinical
36 Proportion of prediction probability

>0.999
0.0282 AI

49 Average of predicted tumor probability 0.0253 AI
4 Macroscopic type of tumor 0.0237 clinical
47 Area of the largest tumor region 0.0235 AI
52 Proportion of prediction between 0.5

and 0.6
0.0224 AI

13 Long axis of the largest tumor region 0.0223 AI
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effect of feature x, and denoted the median value of x in the
dataset as ~x, then we compared the survival function of the two
segmented groups using the equations (where Pr(X) is the
probability of event X and T denote the survival time of a
patient):

S(t) = Pr(T > t x ≥ ~x) and S(t) = Pr(T > tj jx < ~x)

The difference in the two survival distributions was tested by
the log-rank test. The 95% confidence interval was presented as
the transparent shaded area around the curves.
DISCUSSION

A deep CNN model for aiding the digital-pathology diagnosis of
gastric lesions was designed and implemented. Beyond the
classification of histopathologic images, our CNN model also
captured features behind the CNN procedure to a certain extent.
Currently, CNNs are applied not only in digital pathology, but
also in computed tomography (CT) scans, ophthalmoscope
images, and ultrasound images (Esteva et al., 2017; De Fauw
et al., 2018; Coudray et al., 2018; Philbrick et al., 2018; Falk et al.,
2019; Li et al., 2019). Studies (Macenko et al., 2009; Iizuka et al.,
2020) have revealed that AI can identify various lesions with a
level of competence observed by imaging experts.

Unlike CT scans or ultrasound images, which are grayscale
images, WSIs of tissues are color images and more likely to suffer
Frontiers in Pharmacology | www.frontiersin.org 8
from color variations due to different staining conditions.
Staining inconsistencies may be attributed to multiple factors:
dye, staining protocols of laboratories, fading, and digital
scanners (Vahadane et al., 2016; Roy et al., 2018). To ease the
adverse impact upon the analytic accuracy of AI, multiple
scholars have tried various methods to standardize color
distribution in images (Khan et al., 2014; Vicory et al., 2015;
Bejnordi et al., 2016; Samsi et al., 2018). However, use of a single
transformation function for each channel is rarely sufficient. The
method of “intensity centering” and histogram equalization
enables automatic extraction of reference-stain vectors by
finding the fringe of pixel distributions in the optical-density
space, but yields poor estimation of the stain vectors in the
presence of strong staining variations (Tam et al., 2016). In
contrast to the diverse colors of natural images, pathologic
images often have a standard staining protocol. The color of
pathologic images is affected severely by dyes, storage times, and
fading. To tackle such problems, the luminosity of histology
slides must be considered because dust and microbes will dim the
transparent background and deteriorate the efficacy of stain
normalization. We proposed a method involving integration of
a brightness-standardization process into stain normalization to
filter-out the influence of different levels of brightness and
luminosity of the slides.

In analyses of WSIs, considering the gigantic magnitude,
Sharma and colleagues designed a program to extract small
patches at a fixed scale (e.g., 256×256 pixels) and trained a
A B

DC

FIGURE 3 | The top-10 significant features and survival analyses. (A) The top-10 significant features are presented as bar plots (listed in Table 3). (B) Survival
curves conditioned on observed numbers of cancerous lymph nodes (denoted as N). (C) Survival curves conditioned on the proportion of predicted patches with
cancerous probability >0.999. (D) Survival curves conditioned on predicted tumor probability. Note: The black dotted curves in plot (B–D) are the same survival
curve estimated for all sample cases as a reference.
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deep CNN to classify these small patches (Sharma et al., 2017a).
One possible shortcoming of their method is that there are often
some spatial correlations between neighboring patches, and
discarding such information may result in unstable
prediction results.

Here, we proposed a method to remedy such loss in spatial
correlation. We combined patches at different scales into the
training process: 2,048×2,048, 1,495×1,495, 1,024×1,024, and
768×768 pixels. In this way, not only was the spatial
correlation preserved but also the textual contours of different
lesions at different scales were captured.

Previously, analyses of the interpretability of pathologic slides
of gastric tissue relied merely on simple probability heatmaps
(Sharma et al., 2017a). The generated probability loses
information about the internal process in deep-learning models.

We applied complex visualization methods onto gastric
lesions to visualize activation in the deep-learning model and
the logic behind its decision. Multiple approaches, including
Grad-CAM, saliency maps, and variations in saliency-map
computations, such as rectified saliency (Zeiler and Fergus,
2014) and guided saliency (Springenberg et al., 2014), were
tested. By examining saliency-map and Grad-CAM
visualizations, we showed some morphological features in the
figure, which might be of significance in the process of
recognition of pathological images by CNN model. Moreover,
by carefully inspecting the morphologic features captured by
deep-learning models, it is possible to identify various diseases.
To uncover the mystery of the CNNmodel in analyses of medical
images, we outlined the key characteristics underlying AI
processing, and extracted 44 features, which had roles for
discriminating a normal mucosa, chronic gastritis, and
intestinal-type GC. Some of those features could be interpreted
based on pathologic morphology, others from computing
Frontiers in Pharmacology | www.frontiersin.org 9
language. More importantly, the features extracted by the CNN
were not only useful for classifying different gastric lesions, they
also had a role in predicting the prognosis. This is the first time
that crucial features have been revealed for prognostic diagnosis
by a CNN model. In the present study, >88% of GC cases were
followed up clinically for a long time. Hence, we assessed the
possible influencing factors for clinical outcomes. We found that
that certain features extracted by AI played an important part in
assessing disease severity and predicting the prognosis for
patients with GC.

Our study had one main limitation. About 30–40% of GCs are
classified as diffuse or rare types, which our current system could
not identify. The diagnosis of those types of GC, is part of our
research which will be carried out in the future and more relevant
WSI images have already been prepared. The CNN model we
constructed may have a greater role in AI-assisted differential
diagnoses for diffuse or rare types of GC in the future. Besides, we
will collect cases of different stages between normal type and GC
in the next study for better survival analysis.
CONCLUSIONS

A modified Inception v3 CNN was applied to classify gastric
diseases. We segmented WSIs into patches on various scales, and
normalized the patches stain.We obtained a good performance for
discriminating normal mucosa, chronic gastritis, and intestinal-
type GC based on 44 key features at the WSIs-level. The heatmap
of malignant probability could provide guidance for pathologists
to rapidly notice suspicious regions at the WSIs-level (Figure 4).
More importantly, certain features extracted from the CNNmodel
revealed clinical importance for predicting disease severity and the
prognosis. The future direction of GC study could integrate
A B D E

F G IH J

C

FIGURE 4 | The workflow of classifying gastric lesions by a convolutional neural network (CNN) model. (A) Patients undergo curative surgery or biopsy. (B)
Preparation of histopathologic slides. (C) Digitalization of the glass slides into WSIs. (D) RoI extraction for WSIs. (E) Cutting patches from WSIs with multiple scales.
(F) Stain normalization for the patches. (G) Patches-level classification through a deep CNN model. (H) Generation of a malignancy probability heatmap with patch-
level classification results. (I) Extraction of WSIs-level features from the malignancy heatmap. (J) Whole-slide images (WSIs)-level classification for patients.
October 2020 | Volume 11 | Article 572372

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Ma et al. AI Program Diagnoses Gastric Diseases
clinicopathologic features, extracted AI features, as well as
genomic features to guide “precision medicine”.
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