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Clinical drug–drug interactions (DDIs) have been a major cause for not only medical error but
also adverse drug events (ADEs). The published literature on DDI clinical toxicity continues to
grow significantly, and high-performance DDI information retrieval (IR) text mining methods
are in high demand. The effectiveness of IR and its machine learning (ML) algorithm depends
on the availability of a large amount of training and validation data that have been manually
reviewed and annotated. In this study, we investigated how active learning (AL) might
improve ML performance in clinical safety DDI IR analysis. We recognized that a direct
application of AL would not address several primary challenges in DDI IR from the literature.
For instance, the vast majority of abstracts in PubMed will be negative, existing positive and
negative labeled samples do not represent the general sample distributions, and potentially
biased samples may arise during uncertainty sampling in an AL algorithm. Therefore, we
developed several novel sampling and ML schemes to improve AL performance in DDI IR
analysis. In particular, random negative sampling was added as a part of AL since it has no
expanse in the manual data label. We also used two ML algorithms in an AL process to
differentiate random negative samples from manually labeled negative samples, and
updated both the training and validation samples during the AL process to avoid or
reduce biased sampling. Two supervised ML algorithms, support vector machine (SVM)
and logistic regression (LR), were used to investigate the consistency of our proposed AL
algorithm. Because the ultimate goal of clinical safety DDI IR is to retrieve all DDI
toxicity–relevant abstracts, a recall rate of 0.99 was set in developing the AL methods.
When we used our newly proposed ALmethod with SVM, the precision in differentiating the
positive samples from manually labeled negative samples improved from 0.45 in the first
round to 0.83 in the second round, and the precision in differentiating the positive samples
from random negative samples improved from 0.70 to 0.82 in the first and second rounds,
respectively. When our proposed AL method was used with LR, the improvements in
precision followed a similar trend. However, the other AL algorithms tested did not show
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improved precision largely because of biased samples caused by the uncertainty sampling
or differences between training and validation data sets.

Keywords: drug–drug interaction (DDI), information retrieval (IR), text mining (TM), active learning (AL), random
negative sampling

1 INTRODUCTION

The concurrent use of multiple drugs (i.e., polypharmacy) has
become increasingly common around the world, and its
prevalence also has increased. This is attributable to multiple
comorbidities and/or preventative care, which necessitate
multiple drug treatments (Ward et al., 2014; Kantor et al.,
2015; Qato et al., 2016). Currently, a significant number of
people use one or multiple preventative medications; for
instance, most cancer survivors are prescribed five or more
drugs, including drugs to prevent cancer first occurrence or
recurrence (Murphy et al., 2018). However, polypharmacy has
significantly increased the likelihood of drug–drug interaction
(DDI) combinations (Percha and Altman, 2013; Patel et al.,
2014), which can lead to many negative clinical consequences,
including ADEs, especially in seniors (Budnitz et al., 2006;
Bourgeois et al., 2010). Literature review and meta-analysis
showed that drug interactions caused 1.1% hospital admissions
and 0.54% of the emergency department visits in the
United States (Becker et al., 2007; Magro et al., 2012;
Dechanont et al., 2014), which means that DDIs increase the
cost to society and can become a great threat to the public health
system (Classen et al., 1997; Eltyeb and Salim, 2014). More
seriously, some DDIs could potentially be very dangerous and
even cause death (Bates et al., 1995). Therefore, identifying
clinically significant DDIs has high potential in preventing
ADEs, and in reducing morbidity and mortality as well as
healthcare costs. A large amount of DDI evidence is hidden in
the text of biomedical literature. Therefore, with increasing rates
of polypharmacy, DDI information retrieval from the literature is
a vital part of preventing clinically significant DDIs and ADEs.

Text mining has been used widely to identify and extract DDI
data from biomedical literature (Thamrongrattanarit et al., 2012;
Percha et al., 2012). Several DDI corpora have been developed.
The DDI extraction challenge tasks (DDI-ECT) in 2011 and 2013
(Bedmar and Martinez, 2011; Segura-Bedmar et al., 2014)
provided the pharmacological substances and DDI
relationships in sentences in DrugBank and PubMed abstracts
(Herrero-Zazo et al., 2013). The pharmacokinetic DDI package
insert corpus (PK-DDI-PI) (Boyce et al., 2012) provided a second
body of information regarding evidence of drug interactions. It
was built using FDA-approved drug labels, and focused
exclusively on annotating DDI relationships. The
pharmacokinetic corpus developed by our group contained
four classes of pharmacokinetic abstracts, including in vivo
pharmacokinetics, in vivo pharmacogenetics, in vivo DDI, and
in vitroDDI studies (Wu et al., 2013). Many text mining methods
based onmachine learning algorithms have been applied to detect
DDI-relevant sentences (i.e., detection) and classify interacting
drugs (i.e., classification: classifying into one of four types

“advise,” “effect,” “mechanism,” and “int”) on the corpora,
especially on DDI-ECT (Ananiadou et al., 2006; Segura-
Bedmar et al., 2014). Kim et al. (2015) used a support vector
machine (SVM) model and achieved competitive performances
for DDI detection (F1 � 0.775) and DDI classification (F1 �
0.670). Zheng et al. (2016) applied a context vector graph kernel
to the DDI-ECT 2013 corpus and achieved acceptable
performances for DDI detection (F1 � 0.818) and DDI
classification (F1 � 0.684). Various deep neural network
algorithms also have been proposed for DDI classification on
the DDI-ECT 2013 corpus (Liu et al., 2016). Zhao et al. (2016)
proposed a syntax convolutional neural network that combined a
traditional convolutional neural network and external features,
such as contexts, shortest path, and part-of-speech, to extract and
classify DDIs. It obtained F1-scores of 0.772 and 0.686 for DDI
detection and classification, respectively. By integrating a
recurrent neural network with multichannel word embedding,
Zheng et al. (2017) combined an attention mechanism and a
recurrent neural network with long short-termmemory units and
obtained a system that performed well for DDI detection (F1 �
0.840) and classification (F1 � 0.773). Zhang et al. (2018)
proposed a hierarchical recurrent neural network-based
method to integrate the shortest dependency paths and
sentence sequence, which produced an F1-score of 0.729 for
DDI classification. Wang et al. (2017) introduced the
dependency-based technique to a bidirectional long short-term
memory network and built linear, DFS (depth-first search), and
BFS (breadth-first search) channels, which made significant
progress in DDI detection and gave an F1-score of 0.720 for
DDI classification. Deng et al. (2020) proposed a multimodal
deep learning framework named DDIMDL to predict DDI-
associated events, and the accuracy of the model achieved 0.8852.

IR systems aim to retrieve the most relevant articles to the
given queries and meanwhile address the diversity of search
results for completely meeting the information needs (Hersh
et al., 2006; Hersh and Voorhees, et al., 2009). In this article, we
focus on IR methods for detecting clinical drug safety DDI-
relevant abstracts from PubMed. The goal of IR applying is
transformed to retrieve clinical drug safety DDI-relevant
documents covering as many aspects of the query as possible.
An aspect of a query can be described with certain biomedical
terms (Xu et al., 2019). This task differs from previously described
text mining methods that focused on detecting DDI-relevant
sentences or classifying drug interaction pairs. Two DDI IR
studies have been reported previously. Kolchinsky et al. (2015)
implemented a set of classifiers (variable trigonometric threshold
(VTT), SVM, logistic regression, Naïve Bayes, linear discriminant
analysis (LDA), and dLDA) to identify abstracts relevant to
pharmacokinetic DDI evidence. Their work contributed to the
construction of a corpus of pharmacokinetic-related abstracts
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that is publicly available as “Pharmacokinetic DDI-Relevant
Abstracts V0” (Wu et al., 2013). They discovered that bigram
features were important for classification. Among the classifiers,
LDA achieved the best performance (F1 � 0.93). Zheng et al.
(2019) presented a DDI-PULearn (positive-unlabeled learning)
method for large-scale DDI predictions; it obtained F1-scores of
0.860 and 0.862 for 3-fold and 5-fold cross-validation,
respectively. Using a different abstract corpus that contained
DDI-relevant, drug-relevant but DDI-irrelevant, and drug-
irrelevant abstracts from PubMed, Zhang et al. (2017)
developed a two-stage cascade classifier to separate DDI-
relevant abstracts from abstracts that were either drug-
irrelevant or drug-relevant but DDI-irrelevant. Their classifier
addressed the issue of class imbalance in DDI retrieval, and its
performance measures were precision � 0.83, recall � 0.95, and
F1 � 0.88.

Although machine learning (ML) approaches can effectively
detect DDI-relevant abstracts, they usually require a large
number of high-quality samples manually curated by domain
experts, which is highly time consuming. Active learning (AL) is
an interactive approach that guides new training sample
selection and updates ML algorithm training that previous
ML algorithms performed poorly. AL significantly reduced
the total training sample size and therefore led to less
manual data curating (Lewis and Catlett, 1994; Settles and
Craven, et al., 2008; Lewis and Gale et al., 1994). Several AL
applications in biomedical research are available. For instance,
Bressan et al. (2019) proposed the selection criteria based on
representativeness and uncertainty sampling to explore the
most informative samples in six public biomedical datasets,
and obtained 97% accuracy with just 24 samples. Another AL
application is the phenotyping algorithm that was developed
using electronic health records. Chen et al. (2013) investigated
how AL performed in developing phenotyping algorithms for
two phenotypes (rheumatoid arthritis and colorectal cancer)
and demonstrated that, compared with the ML approach, AL
reduced the number of annotated samples required to achieve
an AUC of 0.95 by 68% (rheumatoid arthritis) and 23%
(colorectal cancer) when unrefined features were used in the
two phenotypes.

The essential idea of AL is uncertainty sampling. In each
round, the ML algorithm is trained and updated based on the
samples with the highest uncertainty (i.e., uncertainty sampling)
predicted from the current ML algorithm (Lewis and Catlett et al.,
1994). Because AL directs ML to concentrate its training on the
low-performance samples through uncertainty sampling, it
effectively reduces the sample size, and hence the manual
curating cost (Chen et al., 2013). DDI-related abstracts are
only a very small fraction of the total 30 million abstracts in
PubMed, especially the abstracts related to clinical drug safety
DDIs. Although some DDI corpora have already been developed
in recently years, the consistency of their content is limited
(Herrero-Zazo et al., 2013). The DDI corpus regarding clinical
drug safety differs from existing corpora in the scope of the
annotated DDIs, while it is annotated with a specific DDI
category. Therefore, a random sample subset of PubMed
abstracts will be largely negative, that is, non–DDI-related.

This random negative sampling scheme is a very cheap way of
collecting negative samples that do not need manual curating.
The present study aimed to investigate how uncertainty sampling
and random negative sampling can be integrated into AL to
achieve an optimal DDI IR performance. In the AL research
literature, the selection of external validation samples has not
been well studied. We considered that the new positive and
negative samples that AL guided and collected would be
different from the positive and negative samples that were
collected initially. Therefore, when we develop an AL
algorithm and demonstrate its performance improvement, we
will update not only the training data but also the external
validation data set accordingly.

2 MATERIALS AND METHODS

2.1 Data Source
We constructed a clinical drug safety DDI corpus in this study.
First, PubMed abstracts were screened with a keyword query:
[“drug interaction” AND (Type of Study)] and [“drug
combination” AND (Type of Study)]. Then, 600 positively
labeled and 400 negatively labeled clinical drug safety DDI
abstracts were selected using the inclusion and exclusion
criteria detailed in Table 1.

In addition, we randomly selected 9,200 abstracts from
PubMed. Unlike the 600 positive and 400 negative drug safety
DDI abstracts, these abstracts were not manually reviewed or
labeled. Assuming most of the 9,200 abstracts were negative, we
considered that as random negative samples.

2.2 Preprocessing and Feature Selection
All the selected abstracts were retrieved from PubMed. After a
series of processing including parsing the desired content (titles
and abstracts), converting to GENIA format, and converting to
multiple text files, the abstracts were saved in text format. And the
word stemming was implemented to remove the common
morphological and inflectional endings from words, and to
map the related words to the same stem. This process erased
word suffixes to retrieve their radicals. We used the “tm” text
mining package in R for word stemming and obtained each
word’s stem with its suffixes removed. Then, initialization and
normalization processes were implemented to convert lowercase
letters, remove punctuation, and create term–document matrices.
A total of 46,604 terms were created from all the abstracts
including titles. The frequency distribution of the standard
deviations (SDs) of these terms was shown in Figure 1. The
frequency of appearance of each term in the samples followed
Poisson distribution and was represented as a categorical
term–document occurrence matrix based on the word count.
The terms with low SDs were considered to lack useful
information and specificity. Besides, the frequencies of terms
with SDs ≤0.03 were more than 5,000, which meant they were
many repeats in a lot of abstracts. Therefore, the 16,200 terms
with SDs >0.03 were selected as features. The distribution of one
representative term (word stem: “advanc”) in all the texts is
shown in Figure 2.
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2.3 Active Learning Methods for DDI IR
In this study, we investigated four different AL methods. We
began with the conventional and simplest AL method, which had
a single ML algorithm with uncertainty sampling and no
validation sample update. The second AL method added
random negative sampling to the uncertainty sampling and
had a single ML algorithm and no validation sample update.
The third AL method added a second ML algorithm for random
negative sampling but had no validation sample update. The
fourth AL method was similar to the third method but included a
validation sample update. The training and validation sample
sizes for the four AL algorithms are shown in Table 2.

2.3.1 Traditional AL
The AL workflow and related training and validation data sets are
presented in Figure 3. During the first round, a single ML algorithm
was trained using 200 positively labeled and 200 negatively labeled
abstracts (seeTable 2). Its performancewas evaluatedusing 200positive
and200negative abstracts from the external validationdata set. Then, to
predict the unlabeled 9,200 abstracts that were randomly selected from
PubMed, a random subset of low confidence samples (i.e., uncertainty
sampling with classification probability between 0.4 and 0.6) was
extracted. They were reviewed manually, labeled, and added back to
the training set for the second roundML algorithm training. The same
external validation data were used in the second evaluation round.

TABLE 1 | Inclusion and exclusion criteria for clinical drug safety drug–drug interaction (DDI) abstract selection.

Inclusion Clinical trial DDI toxicity study: Phase I/II/III clinical trials in which drug combination and/or single drug toxicity data are evaluated and reported
Pharmaco-epidemiological DDI study: Pharmaco-epidemiology studies in which toxicities from drug combinations are reported and compared to
toxicities from a single drug
DDI and adverse drug event (ADE) case reports: DDI-induced ADE cases in which the time sequential drug and ADE are reported in clinical settings

Exclusion a) Clinical PK DDI study: Both single drug and drug combination exposures (i.e., pharmacokinetics) are evaluated either in patients or healthy volunteers
b) Clinical PK PG study: The single drug exposure (i.e., pharmacokinetics) is evaluated among patients who have different genotypes in CYP450 and UGT
enzymes and drug transporters
c) In vitro PK study: Substrate depletion and metabolite formation study are for the fm data collection, and inhibition study is for the Ki data collection
d) Drug interaction detection algorithms or software
e) Compliance of avoiding DDIs
f) Concordance of DDI reporting among different drug interaction knowledge base
g) Comparison of tde performance of DDI clinical decision systems
h) Drug–alcohol/food interactions
i) Drug/test interactions
j) Case report studies
k) Review papers
l) Cell culture and animal studies
m) Other studies that are not related to drug interactions

FIGURE 1 | Distribution of the standard deviations (SDs) of the initial
46,604 terms from all the selected abstracts.

FIGURE 2 | Frequency distribution of one representative term (“advanc”)
in all the selected texts.
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2.3.2 Traditional AL With Random Negative Sampling
This AL workflow and related training and validation data sets
are presented in Figure 4. Unlike the first AL method, this AL
method had 1,000 random negative samples as the negative
abstracts (see Table 2). In the first round, the ML algorithm
was trained using 200 positively labeled abstracts and 1,000
random negative samples. Its performance was evaluated using
200 positive and 200 negative abstracts, and 200 random
negative samples from the external validation set. Then, to
predict the 9,200 unlabeled samples, including the random
negative samples in the first round, a random subset of low
confidence samples (i.e., uncertainty sampling with a
probability between 0.4 and 0.6) was extracted. We also
included high confidence positively predicted abstracts
(probability >0.7) in the random negative samples. These
two parts of uncertainty samples were reviewed manually
and labeled, and then they were added back to the initial
training set. The new training set was for the second round ML

algorithm training. The external validation data were the same
in the two rounds of evaluation.

2.3.3 AL With Two Separate ML Algorithms Integrated
Random Negative Sampling
This AL workflow and related training and validation data sets
are shown in Figure 5. This AL also had 1,000 negative random
samples as part of the negative abstracts, but, unlike the second
AL, two separate ML algorithms were constructed. In the first
round, ML1 was trained using 1,000 random negative samples
and 200 positively labeled abstracts, whereas ML2 was trained
using 200 positively labeled and 200 negatively labeled
abstracts (see Table 2). Their performances were evaluated
using 200 positively labeled and 200 negatively labeled
abstracts, and 200 random negative samples. Then, to
predict all the unlabeled samples, including the random
negative samples in the first round, a random subset of the
low confidence samples (i.e., uncertainty sampling with a

FIGURE 3 | Active learning workflow with a single machine learning (ML) algorithm, uncertainty sampling, and no validation update.

TABLE 2 | Training and validation sample sizes for four different active learning (AL) methods in two rounds.

AL algorithms First round (SVM) Second round (SVM) First round (LR) Second round (LR)

Training Validation Training Validation Training Validation Training Validation

Traditional AL 200+*
200-*

200+*
200-*

208+*
567-*

200+*
200-*

200+*
200-*

200+*
200-*

205+*
473-*

200+*
200-*

Traditional AL with random negative sampling 200+*
1000R*

200+*
200-*
200R*

217+*
1104R*

200+*
200-*
200R*

200+*
1000R*

200+*
200-*
200R*

211+*
1085R*

200+*
200-*
200R*

AL with two separate ML algorithm integrated
random negative sampling

ML1 200+*
1000R*

200+*
200-*
200R*

209+*
1213R*

200+*
200-*
200R*

200+*
1000R*

200+*
200-*
200R*

206+*
1106R*

200+*
200-*
200R*ML2 200+*

200-*
209+*
412-*

200+*
200-*

206+*
306-*

AL with two separate ML algorithm integrated
random negative sampling, and validation
sample update

ML1 200+*
1000R*

209+*
412-*
196R*

204+*
1053R*

209+*
412-*
196R*

200+*
1000R*

204+* 391-*
199R*

202+*
1046R*

204+*
391-*
199R*ML2 200+*

200-*
205+*
306-*

200+*
200-*

202+*
295-*

Note: +* (positive samples), -*(negative samples), and R*(random negative samples).
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probability between 0.4 and 0.6) was extracted. We also
included high confidence positively labeled abstracts
(probability >0.7) in the random negative samples. These
abstracts were labeled by manual review and added back to
two initial training sets. The same external validation data were
used in the second evaluation round.

2.3.4 AL With Two Separate ML Algorithms Integrated
Random Negative Sampling and Validation Sample
Update
This AL method is the one proposed in this study. The
proposed AL workflow and related training and validation
data sets are presented in Figure 6. The following is a detailed
description.

a. Two training sets and an external validation set: One training
set contained 1,000 random negative samples and 200
positively labeled abstracts, and the other contained 200
positively labeled and 200 negatively labeled abstracts. The
initial validation set was the same as that used for the third

AL, namely, 200 positively labeled and 200 negatively labeled
abstracts, and 200 random negative samples (see Table 2).

b. First-round ML training: ML1 and ML2 were built separately
with the training sets.

c. Uncertainty sampling: To predict all 9,200 unlabeled
samples, including the random negative samples in the
first round, a random subset of the low confidence
samples (probability between 0.4 and 0.6) was extracted.
We also included high confidence positively predicted
abstracts (probability >0.7) in the random negative samples.

d. Manual review and re-splitting data into training and
validation data sets: All new samples selected from the
uncertainty sampling were labeled by manual review and
divided into three parts, and then added back into the two
initial training sets and external validation set.

e. Second round ML training: ML1 and ML2 were built
separately using the updated training sets.

f. Model performance evaluation: The performances of the first
and second round MLs were evaluated using the updated
external validation data sets.

FIGURE 4 | Active learning workflow with a single machine learning (ML) algorithm, uncertainty sampling plus random negative sampling, and no validation update.

FIGURE 5 | Active learning workflow with two separate ML algorithms, uncertainty sampling plus random negative sampling, and no validation update.
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2.4 Evaluation
We used SVM and LR as the primary ML algorithms to evaluate the
four ALmethods. Table 2 shows the training sets and validation sets
of SVM and LG in the two rounds of AL processing. The
performances of four AL methods were evaluated using recall (R)
� TP/(TP + FN), precision (P) � TP/(TP + FP), and F1-score by
confusion matrix. The F1-score was defined as F1-score � (2×P×R)/
(P + R). We reported P when R was set as 0.99 that was utilized to
present the precision of models when most positive samples were
identified. We expected to reduce the occurrence of the false
positives when detecting DDI toxicity information in the
literature, and preferred the improved precision value while
maintaining the highest R.

3 RESULTS

3.1 Traditional ALs Gave Decreased
Performances in the Second Round
When we used SVM, the performance of the traditional AL
method, that is, uncertainty sampling with a single ML
algorithm, reduced from the first to the second round (R, P,
F1) � (0.95, 0.99, 0.97) to (0.67, 1.00, 0.80) (Table 3). When R
was set as 0.99, P decreased from 0.97 to 0.94. When we used
LR, the performance from the first to the second round

presented (R, P, F1) � (0.94, 0.97, 0.95) to (0.81, 0.99, 0.89),
and P decreased from 0.96 to 0.94 when R � 0.99.

The performance of the second AL method for SVM also
reduced from the first to second rounds (R, P, F1) � (0.88, 1.00,
0.94) to (0.69, 1.00, 0.82) (Table 3), even when random
negative samples were added to the negatively labeled
abstracts in either the training or validation data. When R
was set as 0.99, P decreased from 0.96 to 0.94. The performance
for LR showed the same trends (R, P, F1) � (0.88, 0.97, 0.92) to
(0.80, 0.99, 0.88). When R was set as 0.99, P decreased from
0.95 to 0.94.

Considering the negatively labeled abstracts and random
negative samples are different, we implemented two separate
ML algorithms in the third AL algorithm (Table 4). Appling
SVM, the performance of ML1, which was designed to
differentiate random negative samples from positive
samples, reduced from the first to second rounds (R, P,
F1) � (0.89, 1.00, 0.94) to (0.66, 1.00, 0.80). The
performance of ML2, which was constructed to
differentiate negatively labeled abstracts from positive
samples, also reduced from the first to second rounds (R,
P, F1) � (0.95, 0.97, 0.96) to (0.75, 1.00, 0.86). With LR as the
algorithm, the performance (R, P, F1) of ML1 and ML2
reduced from (0.90, 0.98, 0.94) to (0.71, 0.99, 0.83) and
(0.91, 1.00, 0.95) to (0.76, 0.99, 0.86), respectively. When

FIGURE 6 | Active learning workflow with two separate ML algorithms, uncertainty sampling plus random negative sampling, and validation sample update.
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setting R as 0.99, none of their P was improved in the
second round.

3.2 The Proposed AL Method Performed
Well in the Second Round
We considered that the reduced performances of the previous
three AL methods in the second round may be because the
validation samples were incompatible with the training
samples after the AL step. Therefore, in our proposed AL
method with two separate ML algorithms, we updated the
validation samples. The performance of our AL method was
presented in Table 5. ML1 was designed to differentiate
random negative samples from positive samples. ML2 was
constructed to differentiate negatively labeled abstracts from
positive samples.

With SVM as the ML algorithm, both ML1 and ML2 showed
improved performances from the first to second rounds (R, P, F1)
� (0.87, 0.97, 0.92) to (0.85, 1.00, 0.92) and (0.95, 0.67, 0.79) to
(0.88, 0.98, 0.93), respectively. When R was set as 0.99, P
improved from 0.70 to 0.82, and from 0.45 to 0.83, for ML1
and ML2, respectively.

With LR as the ML algorithm, ML1 and ML2 showed similar
improved performances from the first to second rounds. In
particular, when R was set as 0.99, P improved from 0.81 to
0.84, and from 0.60 to 0.90, for ML1 and ML2, respectively.

To further illustrate why our AL method was better than the
other AL methods at identifying uncertainty samples and to
show how it helped to improve the traditional ML models, we
analyzed the performances of ML1 and ML2 on the added

uncertainty samples from the first and second rounds
(Figure 7). When SVM was the ML method and the second
round models were used to predict the misclassified samples,
the F-score increased from 0.70 to 0.80 with ML1 and 0.14 to
0.78 with ML2. Similarly, using LR as the ML method, the
F-score increased from 0.43 to 0.75 with ML1 and 0.15 to 0.67
with ML2. These results demonstrate that the second round
models from our AL method showed significantly improved
performances in predicting misclassified or vaguely classified
samples from the first round.

3.3 Distribution Patterns of Uncertainty
Samples, Random Negative Samples, and
Training and Validation Samples
We performed principal component analysis (PCA) of the
various sample types, and the distribution patterns are shown
in Figure 8. We expected the distribution patterns would
provide insights into differences among the different sample
sets and justify the sampling scheme of our AL method.
Figure 8A shows the distributions of random negative
samples negatively labeled and positively labeled abstracts.
The positive samples are clearly different from the two
types of negative sample sets, but a subset of random
negative samples did not overlap with the negatively labeled
abstracts. These data justify why two ML algorithms were
needed for the two types of negative sample sets.

Figure 8B presents the distributions of negatively labeled and
positively labeled abstracts and uncertainty samples. Some

TABLE 3 | Performances (SVM and LR) of two active learning methods with single machine learning (ML) algorithms.

Two AL methods’ performances for SVM TP FP TN FN Recall Precision F-score Precision
(recall = 0.99)

Uncertainty sampling, a single ML algorithm, and
no validation data update

1st round 190 2 198 10 0.95 0.99 0.97 0.97
2nd round 134 0 200 66 0.67 1.00 0.80 0.94

Uncertainty sampling and random negative sampling,
a single ML algorithm, and no validation data update

1st round 176 0 400 24 0.88 1.00 0.94 0.96
2nd round 138 0 400 62 0.69 1.00 0.82 0.94

Two AL methods’ performances for LG TP FP TN FN Recall Precision F-score Precision
(Recall = 0.99)

Uncertainty sampling, a single ML algorithm, and
no validation data update

1st round 187 7 193 13 0.94 0.97 0.95 0.96
2nd round 161 1 199 39 0.81 0.99 0.89 0.94

Uncertainty sampling and random negative sampling,
a single ML algorithm, and no validation data update

1st round 176 5 395 24 0.88 0.97 0.92 0.95
2nd round 159 1 399 41 0.80 0.99 0.88 0.94

TABLE 4 | Performance (SVM and LR) of an active learning method with two separate machine learning (ML) algorithms.

Performance TP FP TN FN Recall Precision F-score Precision
(Recall = 0.99)

Uncertainty sampling and random negative sampling, two
separate ML algorithms, and no validation data update (SVM)

ML1 1st round 178 0 400 22 0.89 1.00 0.94 0.96
2nd round 132 0 400 68 0.66 1.00 0.80 0.94

ML2 1st round 190 6 394 10 0.95 0.97 0.96 0.94
2nd round 150 0 400 50 0.75 1.00 0.86 0.94

Uncertainty sampling and random negative sampling, two
separate ML algorithms, and no validation data update (LG)

ML1 1st round 180 3 397 20 0.90 0.98 0.94 0.96
2nd round 142 2 398 58 0.71 0.99 0.83 0.93

ML2 1st round 182 0 400 18 0.91 1.00 0.95 0.95
2nd round 152 2 398 48 0.76 0.99 0.86 0.94
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uncertainty samples were unlike both the positive and negative
sample sets, which shows why both the training and validation
data needed to be updated from the uncertainty samples.

Figure 8C–F displays the distributions of the training and
validation sample sets before and after they were updated for the
ML1 and ML2 algorithms. For ML1, which was built to differentiate
random negative samples from positively labeled samples, the new
positive/negative validation samples were very similar to the new
positive/negative training samples (Figure 8E), but the ex-positive/
negative validation samples were not (Figure 8C). For ML2, which
was built to differentiating negatively labeled samples from positive
samples, the training and validation samples had similar patterns
(Figure 8D,F). Together, the results of these analyses further
demonstrate the need to update both validation and training
samples at the same time.

4 DISCUSSION

In this study, we investigated howAL improved the performance of
AL methods in DDI IR analysis. We recognized that the direct
application of AL did not address several primary challenges in
DDI IR from the literature. For instance, the vast majority of

abstracts in PubMed are negative; the existing positive and negative
labeled samples do not represent the general sample distributions,
and potentially biased sample sets may arise during the uncertainty
sampling process in an AL algorithm. Therefore, several novel AL
sampling and ML schemes were developed to address these
challenges in DDI IR analysis. In particular, random negative
sampling was added as a part of AL since it has no expanse in
the manual data label. Instead of one ML algorithm, we used two
ML algorithms in an AL process and differentiated random
negative samples from manually label negative samples. Further,
both the training and validation samples were updated during the
AL process to avoid or reduce biased sampling. Two supervisedML
algorithms, SVM and LR, were used to investigate the consistency
of our proposed AL algorithm. Given that the ultimate goal of DDI
IR is to identify all DDI toxicity–relevant abstracts, a recall rate of
0.99 was set for developing the AL methods. Using our newly
proposed ALmethod with SVM, the precision improved from 0.45
in the first round to 0.83 in the second round in differentiating the
positive samples from the manually labeled negative samples, and
from 0.70 to 0.82 in differentiating the positive samples from
random negative samples. When LR was used in the AL, the
precision improved from 0.60 to 0.90 in differentiating the positive
samples from themanually labeled negative samples, and from 0.81

TABLE 5 | Performance of our proposed active learning (AL) method evaluated using SVM and LR.

Performance TP FP TN FN Recall Precision F-score Precision
(Recall = 0.99)

AL with two separate ML algorithms integrated random negative
sampling, and validation sample update (SVM)

ML1 1st round 182 6 602 27 0.87 0.97 0.92 0.70
2nd round 178 0 608 31 0.85 1.00 0.92 0.82

ML2 1st round 199 98 510 10 0.95 0.67 0.79 0.45
2nd round 184 4 604 25 0.88 0.98 0.93 0.83

AL with two separate ML algorithms integrated random negative
sampling, and validation sample update (LG)

ML1 1st round 159 8 582 45 0.78 0.95 0.86 0.81
2nd round 161 18 572 43 0.79 0.90 0.88 0.84

ML2 1st round 194 58 532 10 0.95 0.77 0.85 0.60
2nd round 188 6 584 16 0.92 0.97 0.94 0.90

FIGURE 7 | Performance of ML1 and ML2 on uncertainty samples with SVM and logistic regression as the machine learning (ML) methods.
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to 0.84 in differentiating the positive samples from random
negative samples, in the first and second rounds, respectively.
However, the other AL algorithms did not show improved
precision largely because of biased samples that were caused by
either the uncertainty sampling or differences between training and
validation data sets. These sampling biases were further
demonstrated in the PCA of distribution patterns.

To the best of our knowledge, our AL method is the first to
integrate uncertainty sampling and random negative sampling.
Our AL method allows two separate ML models to differentiate
random negative samples and manually labeled negative samples,
and the AL updates both training and validation samples.
Together, these features contribute to its demonstrated success
in DDI toxicity data IR.

FIGURE 8 | Distribution patterns of various sample types by principal component analysis.
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However, cautions will be required when applying our AL
methods to other DDI text mining tasks. In this study, text
mining IR was focused on clinical drug safety DDI data,
whereas other published DDI IR methods were focused on
pharmacokinetic DDI data, so had different targeted samples.
Moreover, clinical drug safety DDI–related articles have a smaller
proportion in PubMed than DDI-relevant articles, even though
DDI-relevant articles are only a very small fraction. This situation
makes an unbalanced data composition for AL study. Our AL
method addresses this problem and avoids the biased sampling
by random negative sampling and validation set updating.
Therefore, the performance of our AL method in DDI IR
cannot be compared directly with the other DDI IR methods
which focus on the existing DDI corpora. It has the capability to
retrieve the information from the datasets with unbalanced
samples.

5 CONCLUSION

Although our AL method integrated random negative sampling
and uncertainty sampling, and performed well on clinical drug
safety DDI IR systems, it can be further improved. In future work,
we intend to adjust our method by training on different natural
language processing methods and investigate its application in
different DDI knowledge domains.
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