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Recently, there has been renewed interest in metabolic therapy for cancer, particularly in
amino acid deprivation by enzymes. L-asparaginase was approved for the treatment of
acute lymphoblastic leukemia by the U.S. Food and Drug Administration. Arginine
deiminase and recombinant human arginase have been developed into clinical trials
as potential cancer therapeutic agents for the treatment of arginine-auxotrophic tumors.
Moreover, other novel amino acid degrading enzymes, such as glutaminase,
methionase, lysine oxidase, phenylalanine ammonia lyase, have been developed for
the treatment of malignant cancers. One of the greatest obstacles faced by anticancer
drugs is the development of drug resistance, which is reported to be associated with
autophagy. Autophagy is an evolutionarily conserved catabolic process that is
responsible for the degradation of dysfunctional proteins and organelles. There is a
growing body of literature revealing that, in response to metabolism stress, autophagy
could be induced by amino acid deprivation. The manipulation of autophagy in
combination with amino acid degrading enzymes is actively being investigated as a
potential therapeutic approach in preclinical studies. Importantly, shedding light on how
autophagy fuels tumor metabolism during amino acid deprivation will enable more
potential combinational therapeutic strategies. This study summarizes recent
advances, discussing several potential anticancer enzymes, and highlighting the
promising combined therapeutic strategy of amino acid degrading enzymes and
autophagy modulators in tumors
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INTRODUCTION

In recent years, there has been increasing interest in targeting tumor amino acid metabolism as a
strategy to treat cancer (Dang et al., 2011; Koppenol et al., 2011). It has been recognized that tumor
cells often undergo metabolic reprogramming to support the high metabolic demands that are
required for tumorigenesis (Nicholatos et al., 2019; Souder and Anderson, 2019). Cancer cells
attempt to utilize various fuel sources to maintain rapid and abnormal proliferation (Vander Heiden
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and DeBerardinis, 2017). However, certain tumor cells become
auxotrophic for specific amino acids, such as asparagine, arginine,
and methionine (Cheng et al., 2007; Rytting, 2010; Gao et al.,
2019). Therefore, depleting these amino acids by amino acid
degrading enzymes inhibits and impairs tumor growth. Whereas,
normal cells are kept in good condition due to their capability to
synthesize these specific amino acids via endogenous synthesis.
The difference between normal and cancer cells in terms of
nutritional demand makes tumor tissue vulnerable to certain
amino acid deprivation treatments (Fung and Chan, 2017;
Dhankhar et al., 2020). Thus, degrading amino acids by
enzymes may be an excellent therapeutic approach for the
treatment of malignant cancer. L-Asparaginase was the first
amino acid degrading enzyme approved by the U.S. Food and
Drug Administration (FDA) in 1978, used to treat acute
lymphoblastic leukemia (ALL) (Truelove et al., 2013). Since
then, many other amino acid depriving enzymes have been
developed through preclinical or clinical evaluations (Stasyk
et al., 2015; Fernandes et al., 2017).

There is a growing body of literature indicating that cellular
metabolism stress, for example, nutrient deprivation, could
induce macroautophagy (Xie et al., 2015; Fulop et al., 2018;
Nacarelli et al., 2018). Macroautophagy is an evolutionarily
conserved catabolic process in which damaged cellular
organelles and proteins are engulfed into double-membraned
vesicles named autophagosomes, and then delivered to lysosomes
for degradation (Nishida et al., 2009; Honda et al., 2014). Besides
macroautophagy, there are other categories of autophagy,
including macroautophagy, microautophagy, and chaperone-
mediated autophagy (Mony et al., 2016). Macroautophagy
(hereafter referred to as autophagy) plays a crucial role not
only in normal cells and tissues but also in pathological
environments. Amino acid starvation initiates autophagy by
inhibiting the mammalian target of rapamycin (mTOR) and
activating adenosine 5′-monophosphate (AMP)-activated
protein kinase (AMPK). In the initial stage, the ULK1 and
VPS34 complexes are most essential in recruiting and
assembling other components that are needed for autophagy.
There are more autophagy-related genes (ATGs) involved in the
whole process of autophagy (Hsu et al., 2018; Chang, 2020; Gu
et al., 2020). A large number of studies have been published on the
complicated and context-dependent role of autophagy in cancer
(White et al., 2015; Levy et al., 2017). Although autophagy served
as a double-edged sword in the carcinogenesis, progression,
treatment, and resistance of tumors (White, 2015; Limpert
et al., 2018; Monkkonen and Debnath, 2018), most studies
have suggested that autophagy is vital to promote tumor
growth and survival. Nowadays, blocking autophagy as a
potential anticancer therapy is currently undergoing clinical
trials (Bortnik and Gorski, 2017; Chude and Amaravadi,
2017). Autophagy serves a cytoprotective role in cancer
through its capability to support cancer metabolism. Given
that autophagy can degrade various substrates, it is not
surprising that autophagy provides cancer cells with abundant
metabolic plasticity, for example, degradation of protein or
peptide into amino acid could fuel the tricarboxylic acid
(TCA) cycle (Kimmelman and White, 2017).

Importantly, the combination of amino acid degrading
enzymes and autophagy regulators has been demonstrated
to show marvelous synergistic anticancer effects in
preclinical and clinical studies (Kim et al., 2009b; Zeng
et al., 2013; Song et al., 2015). This review will highlight
recent advances in the development of amino acid depriving
enzymes and the combinational employment of autophagy
regulators and enzymes which have been successfully used
as potential therapeutic approaches in the therapy of
cancer.

L-Asparaginase and Autophagy
L-asparaginase, the first bacterial enzyme approved for cancer
therapy, hydrolyzes L-asparagine (ASN) and yields aspartic
acid and ammonia (Pieters et al., 2011). ASN plays an
important role in glycoproteins biosynthesis, regulating the
functions of the immune and nervous systems (Wu, 2013;
Knott et al., 2018). Importantly, several types of tumors,
particularly leukemia cells, cannot synthesize ASN due to
lack of or low expression of asparagine synthetase (Willems
et al., 2013), which renders the tumors sensitive to
asparaginase. The first commercial drug of L-asparaginase is
a native E. coli-derived asparaginase, an indication of which is
ALL. Although L-asparaginase derived from E. coli achieved
great therapeutic improvements, it is subject to
hypersensitivity and other toxicities, such as hepatic and
renal dysfunction (Spiers and Wade, 1979; Salzer et al.,
2014). A more stable and efficient form of L-asparaginase
derived from E. coli was PEGylated to reduce the allergy to
foreign proteins and prolong half-life (Dinndorf et al., 2007).
Nowadays, L-asparaginase derived from E. coli has been
applied as first-line therapy and L-asparaginase derived
from Erwinia chrysanthemi has been used for the treatment
of ALL patients when hypersensitivity to E. coli-derived
L-asparaginase happens (Keating, 2013). Apart from
hypersensitivity, glutamine depletion is another clinical
problem of L-asparaginase due to its dual asparaginase and
glutaminase activity, which can cause hepatotoxicity,
thrombotic complication, and neurotoxicity (Reinert et al.,
2006). Researchers have explored solutions by modifying
L-asparaginase via replacing amino acid residues (Derst
et al., 2000).

One of the greatest obstacles faced by L-asparaginase in
clinical applications is the development of drug resistance. We
reported that L-asparaginase not only induced caspase 3-
dependent apoptosis but also triggered obvious autophagy
in chronic myeloid leukemia (CML) cells, accompanied by
inhibition of Akt/mTOR and activation of the ERK signaling
pathway (Song et al., 2015), as illustrated in Figure 1. The
blocking of autophagy by LY294002, chloroquine (CQ), and
quinacrine enhanced apoptosis is triggered by L-asparaginase,
suggesting the pro-survival role of autophagy in
L-asparaginase-treated CML cells. Moreover, the ROS-p53
feedback loop played an important role in the
combinational treatment of L-asparaginase and CQ. In
addition to CML, ALL, glioblastoma, laryngeal squamous
cell carcinoma, and pulmonary adenocarcinoma showed
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sensitivity to L-asparaginase, and autophagy was demonstrated
to be activated through autophagosomes formation and the
conversion of cytoplasmic LC3-I to membranal LC3-II (Zhang
et al., 2016; Chen et al., 2017; Ji et al., 2017; Takahashi et al.,
2017; Polak et al., 2019). Moreover, the combination of CQ and
L-asparaginase significantly enhanced the antitumor effect of
L-asparaginase. Based on the studies mentioned, autophagy
played a cytoprotective role in most cancer therapy of
L-asparaginase, which indicated that both targeting

asparagine metabolism and autophagy was a new promising
therapeutic strategy for malignant tumors. More studies and
evaluations of the combinational treatment of amino acid
degrading enzymes and autophagy regulators are listed in
Table 1.

It is noteworthy that there is a close relationship between
autophagy and the immune system (Gonzalo and Coll-Bonfill,
2019), which is vital for efficient cancer therapy (Jin et al., 2017;
Yamamoto et al., 2020). L-asparaginase is demonstrated to not

FIGURE 1 | Schematic illustration of the cytoprotective role of autophagy in the cytotoxicity induced by amino acid degrading enzymes (L-Asparaginase, ADI, and
rhArg) in cancer cells.

TABLE 1 | Current developments of the combination of amino acid degrading enzymes and autophagy inhibitors in pre-clinical studies.

Enzymes Combined treatment Types of cancer Level proof-of
concept

References

L-asparaginase L-asparaginase + CQ ALL In vitro and in vivo Takahashi et al. (2017), Polak et al. (2019)
L- asparaginase + CQ/LY294002/
quinacrine

CML In vitro Song et al. (2015)

L-asparaginase + CQ/LY294002 Glioblastoma In vitro and in vivo Chen et al. (2017)
L-asparaginase + CQ Laryngeal squamous cell

carcinoma
In vitro Ji et al. (2017)

L-asparaginase + CQ Pulmonary adenocarcinoma In vitro Zhang et al. (2016)
Arginine deiminase Arginine deiminase + CQ Lymphoma In vitro Delage et al. (2012)

Arginine deiminase + CQ/siBeclin1 Melanoma In vitro Savaraj et al. (2010)
Arginine deiminase + CQ/siBeclin1 Prostate cancer In vitro Kim et al. (2009b)

Arginase I rhArg + 3MA/CQ/siBeclin1 Triple-negative breast cancer In vitro Wang et al. (2014)
rhArg + 3MA/CQ Leukemia In vitro Li et al. (2016)
rhArg + CQ Ovarian cancer In vitro Nasreddine et al. (2020)
rhArg + CQ/siAtg5 Melanoma In vitro Wang et al. (2014)
rhArg + 3MA/CQ/siBeclin 1/siAtg5 Non-Hodgkin’s lymphoma In vitro Zeng et al. (2013)
rhArg + CQ/Baf A1 Laryngeal squamous cell

carcinoma
In vitro Lin et al. (2015)

rhArg + CQ/LY294002 Non-small cell lung cancer In vitro and in vivo Shen et al. (2017)
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only suppress autophagy in macrophages but also inhibit
phagocytosis, MHC-II expression, secretion of cytokine IL-6,
and TNF-α in activated macrophages. Importantly, activating
autophagy could overcome the immune suppression triggered by
L-asparaginase in macrophages (Song et al., 2017).

ARGININE DEIMINASE AND AUTOPHAGY

Arginine is a semi-essential amino acid that cannot be adequately
supplied by endogenous biosynthesis. Arginine metabolism is
complicated, as arginine plays an essential role in several
biological functions, such as precursors for cell signaling
molecules as well as intermediates of the urea cycle and TCA
cycle (Shen and Shen, 2006; Ni et al., 2008). Arginine can be
produced through sucargininosuccinate synthetase (ASS),
ornithine transcarbamylase (OTC), and argininosuccinate lyase
in the urea cycle. ASS and OTC are the key enzymes for arginine
synthesis (Fultang et al., 2020).

Arginine deiminase (ADI), an arginine-depleting enzyme, is
regarded as a novel anticancer candidate (Synakiewicz et al.,
2014) and hydrolyzes arginine into citrulline and ammonia. For
ADI, ASS-deficient tumors are arginine-auxotrophic and its
efficiency is highly dependent on the ASS deficiency of
cancer patients (Lam et al., 2009). ASS silencing in
cholangiocarcinoma cells (Roeksomtawin et al., 2018) and
glioblastoma multiforme cells (Przystal et al., 2018)
significantly enhanced their sensitivity to ADI-PEG20
treatment. It is reported that ADI-PEG20 significantly
reduced tumor growth in ASSlow sarcoma models. However,
significantly increased expression of ASS was observed in tumor
tissue over time (Delage et al., 2012; Bean et al., 2016). In
randomized clinical trials, neutralizing antibodies against ADI-
PEG20 and enhanced ASS expression was found in the latter
treatment, which caused drug resistance (Szlosarek et al., 2017).
Pegylation significantly reduces antigenicity of ADI and ADI-
PEG20 has been used in clinical trials in patients with
hepatocellular carcinoma (HCC) (in phase III), melanoma (in
phase I/II), small cell lung cancer (SCLC) (in phase II),
mesothelioma (in phase I/II) and other arginine-auxotrophic
advanced tumors.

In addition to neutralizing antibodies and enhanced ASS
expression, autophagy is reported to be associated with ADI-
resistance. Arginine deprivation by ADI could induce obvious
autophagy and autophagy inhibitors potentiated the
cytotoxicity of ADI-PEG20 in lymphoma cells, indicating
the cytoprotective role of autophagy triggered by ADI-
PEG20 in lymphoma. Furthermore, blocking autophagy by
CQ or silencing autophagy-related Beclin1 mRNA
accelerated and enhanced the antitumor effect of ADI in
melanoma (Savaraj et al., 2010) and prostate cancer (Kim
et al., 2009a; Kim et al., 2009b), suggesting that both
targeting autophagy and arginine metabolism may provide
novel potential avenues for cancer therapy. ADI activated
MEK and ERK signaling pathways but suppressed the Akt/
mTOR pathway in melanoma cells, as shown in Figure 1. In
general, Akt/mTOR and ERK signaling pathways are vital in

manipulating autophagy in eukaryotic cells (Dai et al., 2019;
Farias Quipildor et al., 2019). Nutritional starvation triggers
autophagy via inhibiting mTOR, which is a vital negative
regulator of autophagy. The ERK signaling pathway is
documented to regulate the induction of autophagy by
interacting with LC3 and the expression of autophagy as
well as lysosomal genes.

It was observed that depriving arginine by ADI triggered a
cytotoxic excessive autophagy which contributed to cell death in
ASS-deficient prostate cancer cells. Representative micrographs
exhibited atypical autophagy with large autophagosomes
formation, nucleus membrane rupture, and DNA/chromatin
leakage was captured by autophagosomes, which was referred
to as chromatin autophagy (Changou et al., 2014; Li et al., 2019).
ADI triggered regular-sized autophagosomes during the first 24 h
and giant autophagosomes after 48 h in prostate cancer cells.
Moreover, ADI triggered mitochondrial dysfunction, for
example, mitochondrial membrane potential depolarization
(Kung et al., 2015).

Arginase and Autophagy
Another arginine degrading enzyme used for cancer therapy is
arginase I. Previous studies have suggested that cancers with
deficiencies in either ASS and/or OTC expression are sensitive
to arginine-auxotrophy induced by arginase I (Cheng et al.,
2007; Tsui et al., 2009). Recombinant human arginase I (rhArg)
is a modified enzyme, which contains cobalt (II) ion or
manganese (II) ion (Cheng et al., 2007; Lam et al., 2009; Yau
et al., 2013). During a preclinical evaluation, rhArg exhibited
significant antitumor activity in many ASS and/or OTC
deficient cancer cells, namely HCC (Cheng et al., 2007),
melanoma (Wang et al., 2014b), breast cancer (Leung et al.,
2019), keratinocytic carcinoma (Bobak et al., 2010), SCLC (Xu
et al., 2018) and Merkel cell carcinoma (Agnello et al., 2020).
Pegylated rhArg has a remarkable advantage over the native
arginase I on account of the extended half-life, from several
hours to 72–96 h, due to its enhanced stability (Lam et al., 2011).
According to the records on ClinicalTrials.gov, PEG-rhArg has
been studied in clinical trials for a variety of malignant cancers,
including HCC, pediatric AML, pediatric ALL, and prostate
adenocarcinoma.

Arginase I is mainly expressed in the liver. Blocking
autophagy by liver-specific deletion of the important
autophagy genes Atg7 and Atg5, which generated circulating
arginase I and inhibited tumor growth and identifies a metabolic
vulnerability of cancer. Moreover, supplementation with
arginine in Atg7-deficient mice model partially relieved
arginine reduction and tumor growth inhibition. Whole-body
deletion of Atg7 in a mice model triggered a bigger regression of
KRAS-driven tumors than the knockdown of cancer-specific
autophagy, suggesting that basal autophagy facilitates tumor
growth (Poillet-Perez et al., 2018). Previously, we reported that
rhArg suppressed cell growth of triple-negative breast cancer
(TNBC), which lacks an effective druggable target, resulting in
poor prognosis. Also, autophagic flux was observed in TNBC
cells. Blocking autophagy by CQ, 3-MA and silencing Beclin1
enhanced the antitumor effect of rhArg in TNBC (Wang et al.,
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2014a). Until now, rhArg was also found to have an inhibitory
effect on melanoma cells (Wang et al., 2014b), non-Hodgkin’s
lymphoma cells (Zeng et al., 2013), laryngeal squamous cell
carcinoma cells (Lin et al., 2015), leukemia cells (Li et al., 2016),
ovarian cancer cells (Nasreddine et al., 2020), and non-small-
cell lung cancer (NSCLC) cells (Shen et al., 2017). Autophagy
inhibitors enhanced the antitumor effect of rhArg in these
tumors, indicating that autophagy is pro-survival in the
treatment of cancer (as shown in Table 1). Notably, arginase
I was reported to contribute to tumor-driven immune
suppression which is a major obstacle for the
immunotherapy of cancer (Czystowska-Kuzmicz et al., 2019;
Wang et al., 2019).

OTHER AMINO ACID ENZYMES AND
AUTOPHAGY

Apart from asparaginase, arginine deiminase, arginase, some
other amino acid enzymes have been recently developed for
cancer therapy, including methionase, lysine oxidase,
phenylalanine ammonia lyase, and glutaminase. These
amino acid degrading enzymes and their related autophagy
studies are relatively fewer than the three enzymes
discussed above.

Glutaminase is a vital enzyme that breaks down glutamine
into glutamate. Glutaminase is not regarded as a potential drug
for cancer therapy, but, instead, as a druggable target (Masisi
et al., 2020). Cancers with high glutaminase expression are
related to poor prognosis. Recently, the strategy of cancer
therapy in glutamine metabolism inhibition has begun to
concentrate on glutamine deprivation, glutaminase blocking,
and membrane glutamine transporter inhibition (Chiu et al.,
2014; Gross et al., 2014; Lee et al., 2014; Song et al., 2018).
Among glutaminase inhibitors, CB-839, one of the most
successful drug candidates, is under clinical trials for NSCLC,
melanoma, and leukemia (NCT03965845, NCT02771626, and
NCT02071927 respectively). It was reported that glutamine
deprivation was synthetically lethal for autophagy inhibition
in colorectal cancer (Li et al., 2017). Autophagy is an essential
process that provides glutamine for anaplerosis of the TCA cycle
in pancreatic ductal adenocarcinoma. Therefore, targeting
glutamine metabolism and autophagy simultaneously to
completely inhibit glutamine uptake offers a novel
therapeutic approach for treating refractory cancers (Seo
et al., 2016).

Methionase, also named L-Methionine-γ-lyase, converts
methionine into ammonia, α-ketobutyrate, and methanethiol
(Cellarier et al., 2003; Thivat et al., 2007; Ho et al., 2011).
Methionine-dependent cancer cannot generate or generate low
levels of methionine. Methionase was regarded as a potential
anticancer candidate for Lewis lung, human colon carcinoma
(Tan et al., 1998), neuroblastoma (Hu and Cheung, 2009), and
glioblastoma (Kokkinakis et al., 2001). PEGylated recombinant
methionase has been developed into phase I clinical trials, in
which recombinant methionase showed no significant toxicity
(Tan et al., 1996; Tan et al., 1997). However, the antitumor

activity of PEGylated recombinant methionase was not reported.
Notably, methionine acts as a signal for amino acid which could
suppress autophagy induced by nitrogen starvation via
methylation of PP2A (a protein phosphatase enzyme), also
depleting methionine and cystine induced autophagy and
suppressed tumor growth in glioma cells in vivo.

Lysine oxidase, one of the most studied amino acid oxidases,
showed considerable cytotoxicity against a wide variety of
cancers, including leukemia, colorectal adenocarcinoma,
prostate cancer, pheochromocytoma (Pokrovsky et al., 2013;
Lukasheva et al., 2015). The short half-life of lysine oxidase
restricted its development and commercialization (Krupyanko
et al., 2017). Moreover, a few studies have shown that lysine
oxidase supports the growth of some tumors (Wang et al.,
2016), which makes the role of lysine oxidase in antitumor
therapy controversial and, therefore, demands more
preclinical data.

Phenylalanine ammonia lyase converts phenylalanine to
trans-cinnamic acid and ammonia. Like other enzymes. The
antitumor mechanism of phenylalanine ammonia lyase is
associated with a reduced level and disability of synthesis of
phenylalanine. Phenylalanine ammonia lyase showed to be
effective against colorectal cancer in vivo (Yang et al., 2019)
and leukemic lymphoblasts in vitro (Stith et al., 1973).

CONCLUSION

There exist several advantages of amino acid degrading enzymes
over conventional anticancer therapeutics. Firstly, amino acid
enzymes have strong effects against specific amino acid
auxotrophic tumors. Secondly, the side effect pattern of the
enzymes is unique, which is significant for drug combinational
therapy. Lastly, there exist key synthetases as biomarkers to
forecast the therapeutic effect (Timosenko et al., 2017;
Pokrovsky et al., 2019). Clinical trials of amino acid-degrading
enzymes have shown that enzyme treatment is a safe and effective
therapeutic approach. Despite the advantages of amino acid in
depleting enzymes, a few weaknesses still affect clinical
applications. The high immunogenicity and shorter half-life
may be the greatest obstacles in the development of drugs
(Schiffmann et al., 2019; Thisted et al., 2019). Chemical
modification, construction of fusion protein, and encapsulation
of enzymes are some of the existing solutions to overcome those
obstacles and increase the bioavailability of amino acid degrading
enzymes (Veronese, 2001; Li et al., 2007; Chen and Zeng, 2016;
Bilal et al., 2018; Sinha and Shukla, 2019).

Recently, both targeting autophagy and amino acid metabolism
have entered into clinical studies on the basis of preclinical
experiments (as shown in Table 1) and synergistic drug effects in
cancer therapy. Combinational therapy is a great opportunity for
cancer patients. Although the context-dependent role of autophagy
during tumor treatment has attracted great attention, amino acid
degrading enzyme induced pro-survival autophagy in themajority of
tumors. Therefore, manipulating autophagy provides a chance to
make a tumor more sensitive to subsequent therapeutics. Among
them, CQ is one of the most used autophagy inhibitors. CQ inhibits
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autophagosome fusingwith lysosome, and significantly improves the
expression level of LC3-II. Furthermore, there is a growing body of
literature that recognizes the importance of potential applications of
autophagy related proteins, including LC3, ATG7, ATG5, Beclin1,
and SH3GLB1, as prognostic biomarkers in some tumors, like
glioma, breast cancer, and colon cancer (Park et al., 2013;
Lebovitz et al., 2015). Under the right conditions, in the future, a
co-targeting autophagy and amino acid metabolism may become a
potential cancer therapy.

Despite the advances mentioned in this study, patients still
have a poor prognosis. Hence, further studies are required to
provide a deeper understanding of the underlying molecular
mechanisms and more clinical trials are needed to collect
evidence-based data with respect to the efficacy and safety of
these therapeutics.
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