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Background: Patients receiving the cytokine immunotherapy of interferon-alpha (IFN-q)
frequently present with depression. This is one of the excellent models to explore the action
of peripheral cytokine on central nervous system (CNS) and to study the development of
depression. The auditory steady-state response (ASSR), electroencephalogram (EEG)
oscillations induced by periodic acoustic stimulation, is an effective approach to evaluate
the neural function in mental ilness including depression. The aim of the present study was
to investigate the effect of IFN-a on the cortical ASSR and its correlation with depressive-
like behavior.

Methods: Chronic electrodes were implanted on the skull over the auditory cortex (AC) of
male C57BL/6 mice. The animals were treated with daily injection of IFN-a or saline (vehicle)
for three weeks. EEGs were recorded in AC of the same mouse before and after the
injection treatment to monitor the changes of ASSR induced by IFN-a. Depressive-like
behavior was analyzed in the forced swim test (FST). Immunohistochemical staining was
used to examine the status of neuron and glia in the hippocampus and AC.

Results: Compared to pretreatment condition, injection of IFN-a significantly reduced the
power of 40 Hz ASSR in the mouse AC from the second week. Such a decrease continued
to the third week. The immobility times of FST were significantly increased by a 3-week
treatment of IFN-a and the immobility time was negatively correlated with the power of
40 Hz ASSR. Astrocytes and microglia in the hippocampus and AC were activated by IFN-
a, but the density of neuron was not significantly affected.

Conclusion: Our results suggest that EEG measurement of ASSR may be used as a
biomarker to monitor the CNS side effects of IFN-a treatment and to search a novel
intervention with potential therapeutic implications.

Keywords: interferon-alpha, depressive-like behavior, microglia, astrocytes, auditory cortex, EEG

HIGHLIGHTS

IFN-a reduces the power of ASSR in the cortex of mice. IFN-a induces depressive-like behavior in
mice. Reduction of ASSR is correlated with depressive-like behavior. ASSR deficit is accompanied
with glia activation in the hippocampus and cortex.
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INTRODUCTION

Interferon-alpha (IFN-a) is an innate immune cytokine that has
both antiviral and antiproliferative activities and widely used in
the immunomodulatory treatment in patients with chronic
hepatitis C virus (HCV) infection (Alavi et al., 2012) or
malignant melanoma (Tarhini et al., 2012). However, IFN-a
treatment can cause serious side effects on the central nervous
system (CNS), leading to treatment interruption (Quesada et al.,
1986; Vial and Descotes, 1994). For example, the standard
treatment of IFN-a with HCV infection is associated with the
development of major depressive episode (MDE) in up to 45% of
HCV patients (Musselman et al.,, 2001; Raison et al., 2005; Su
et al, 2010). Depression is a serious CNS side effect which
sometimes leads patients to committing suicide during IFN-a
therapy (Laguno et al., 2004). Animal studies in rodents or rhesus
monkeys also showed that acute or chronic exposures of IFN-a
can induce depression-like behaviors (Makino et al., 2000;
Sammut et al, 2001; Felger et al, 2007). However, the
mechanisms by which IFN-a induces the CNS side effect are
still under investigation.

IFN-a has been demonstrated to have regulatory effects on the
neuronal excitabilities in CNS (Calvet and Gresser, 1979) and
influence the function of neurotransmitter metabolism and
neuroendocrine linking to depression (Menzies et al., 1996;
Kumai et al., 2000; Kitagami et al., 2003; De La Garza et al,,
2005; Felger et al., 2007). Also, IFN-a is a potent stimulator of
proinflammatory cytokines not only at the periphery but also
within the CNS (Borden et al., 2007). IFN-a is known to induce
the production of interleukin-1 (IL-1) and tumor necrosis factor
a (TNF-a), which can induce neuroinflammation (Kim et al.,
2016; Na et al., 2014). Accumulating evidence suggests that
pathophysiology of depression might be associated with
activated inflammatory processes (Dantzer et al., 2008; Miller
etal., 2009). Clinically depressed patients have been found to have
higher levels of proinflammatory cytokines and inflammatory
markers (Maes, 1999; Schiepers et al., 2005; Dowlati et al., 2010).
To date, no coincident conclusion has been reached about
whether the IFN-a induced depression-like behavior is due to
the direct neuromodulation effect of IFN-a or secondary
inflammation process.

Recording the electrical activity of neurons, such as
electroencephalogram (EEG), is an effective mean to evaluate
the CNS function. Previous studies on the spontaneous EEG
activities have revealed several EEG abnormalities in both the
patients during IFN-a therapy (Mattson et al., 1983; Rohatiner
et al., 1983; Suter et al., 1984) and animals that received IFN-a
treatment (Birmanns et al, 1990). Recently, accumulating
evidence suggests that auditory steady-state response (ASSR),
cortical oscillations in the gamma frequency range (40 Hz)
induced by periodic acoustic stimulation, is an effective
approach to evaluate the neural function in mental illness
including bipolar disorder (Oda et al, 2012; Isomura et al,
2016; Zhou et al, 2018) and schizophrenia (Krishnan et al.,
2009; Javitt and Sweet, 2015) and in neuropharmacological
experiments on animal models (Leishman et al, 2015;
Shahriari et al., 2016; Sivarao et al., 2016). EEG measurement

IFN-a Induced ASSR Deficit

of ASSR reflects the integrity of the sensory pathways and the
capacity of these pathways to generate synchronous activity.
ASSR  deficits have been reported in the patients with
psychosis (Oda et al.,, 2012; Isomura et al, 2016; Zhou et al.,
2018). However, whether ASSR deficits are associated with IFN-a
induced CNS side effects remains unknown.

Given the above, we determine the potential effect of IFN-a on
the ASSR by conducting EEG recording on mice through the
chronic electrodes implanted in the skull over the auditory cortex
(AC). The AC plays a critical role in the cortical auditory
processing (Dong et al., 2011; Dong et al., 2013). We recorded
the EEGs in AC of the same mouse treated by IFN-a or saline
(vehicle) to monitor the changes of ASSR induced by IFN-a. And
the forced swimming task (FST) was used to access depressive-
like behaviors of the mice, in which an increased duration of
immobility signifies behavioral despair (Petit-Demouliere et al.,
2005). Histomorphologic changes of neurons and glia were
analyzed to test for possible linkages between behaviors, ASSR
deficits, and neuroinflammation.

MATERIALS AND METHODS

Mice

Experiments were performed using 8—-12-week-old C57BL/6 male
mice (Vital River Laboratory, Beijing, China). All animals were
maintained in standard animal cages under conventional
laboratory conditions (12/12h light/dark cycle, 22°C) with ad
libitum access to food and water. The animals were maintained
and treated in compliance with the policies and procedures
detailed in the “Guide for the Care and Use of Laboratory
Animals” of the National Institutes of Health. The animal
experimental protocols of the “Guide” and the treatment
procedures were reviewed and approved by the Animal Care
and Use Committee of China Medical University (No.
KT2018060). All surgeries were performed under anesthesia,
and all efforts were made to minimize animal suffering.

Surgery of Electrode Implantation

Mice were handled according to the criteria of the ethics
committee at our institution. Following a period of two weeks
of handling for at least once a day for 5min, animals were
subjected to a surgery for implantation of chronic single-wire
electrodes. Animals were kept under anesthesia during the whole
procedure with a gaseous mixture of 2% isoflurane in air.
Atropine sulfate (0.1 mg/kg) was used to reduce the viscosity
of bronchial secretions. Temperature was monitored rectally and
maintained at 37°C using a feedback-controlled blanket. After
placing the animal in a stereotaxic frame (#68001, RWD Life
Science, Shenzhen, China), the cranium was exposed. Two
stainless screws were separately inserted into the left
hemisphere of AC (AP = -2.3-3.5mm, ML = +3.5-4.0 mm,
and DV = -2-25mm) according to the standard mouse
stereotaxic atlas (Konsman, 2003). A sliver microwire (ID
30pm, OD, #785500, A-M Systems, Hotheim, United States) as
an electrode was fixed on the bone by the screws in one end. The
other end of the microwire was soldered to a pin connector, which
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FIGURE 1 | Experimental Design: the mice experienced surgery for electrode implantation and 7 days of recovery. The first EEG recording was conducted after
4 days of familiarization to the recording environments. Then IFN-a or saline was administered for 3 weeks. EEG recording was repeated at 7, 14, and 21 days after
treatment. FST was conducted at the 21 days after EEG recording; then the brain was collected in the next day.

Injection of IFN-a or saline FST

was secured onto the cranium using dental acrylic resin. A
stainless-steel screw electrode over the cerebellum served as
ground. Four additional skull screws were implanted serving
as anchors. Animals were allowed to recover for 1 week.

Electrophysiological Recording and Sound

Stimuli

After recovery from surgery, animals were familiarized with the
sound-attenuated recording room. Briefly, the animals were
transported in their home cage to the recording room where
they were left alone for 5 min. They were then put in a mesh box
(20 x 20 x 30 cm) and tethered to the recording system via a
flexible cable for 15 min. This procedure was repeated for 4 days.
Recording experiments were conducted on the fifth day. The
sound stimulus used in our experiments was a train of click
sounds to assess ASSR. The waveform of each click was a
rectangular pulse of a 0.2 ms duration, which was repeated at
a rate of 40 cycles/s and continued for 0.5s duration. The
waveforms were generated digitally with a 100 kHz sampling
rate using a custom-built MATLAB (Mathworks, Natick, MA,
United States) program and transferred to an analog signal by a
D/A board (PCI-6052E, National Instruments, Austin, Texas,
United States) and then played through a loudspeaker (K701,
AKG, Vienna, Austria) at the top of recording box. The intensity
of the sound stimulus was adjusted to be at 70 dB sound pressure
level (SPL) and measured at the center of the recording box (Briiel
and Kjer type 2,238 sound level meter, Naerum, Danish). In one
session, 120 trials of click-train were presented at a random
interval between 4 and 8s.

IFN-a Treatment and Experiment

Procedures
Recombinant human IFN-a was obtained from Miltenyi Biotec
Inc. (Auburn, CA, United States). Stock solution of IFN-a was
made up with distilled water into different aliquots containing
100,000 IU/ml. Prepared stock solutions were immediately stored
at —20°C. Solutions for administration were prepared each day
from these stock solutions, depending on the need for the day. As
shown in the diagram of Figure 1, after completing one session of
EEG recording under normal condition, the mice received a
single subcutaneous injection of IFN-a (400 IU/g) or vehicle
for 21 days.

Electrophysiological recording was conducted at 7, 14, and 21
days, respectively. At the 21st day after completing the EEG

recording, animals were tested by the forced swimming test (FST)
(Porsolt et al., 1977). The FST is a widely used measure of
depressive-like behavior in rodents. Mice were placed into the
glass cylinders (10 cm diameter) filled to a depth of 25 cm with
water (25 + 1°C) for 6 min before exposure. Behavior was video-
recorded and later scored by an observer masked to treatment.
The time of immobility (in seconds) was measured during the last
4 min of the 6 min period of exposure, leaving the first 2 min for
habituation. An animal was judged to be immobile when it ceased
struggling and remained floating motionless and making only
movements allowing to keep the head just above the surface of
water. They were then sacrificed in the next day and the brain

tissue was processed by standard histological methods (see
below).

Electrophysiological Data Acquisition and
Analysis

EEG signals were acquired through a flexible, low noise cable
connected to the pin connector implanted on the skull of the
mice. The microwire output was delivered to a multichannel
preamplifier (PBX Preamplifier; Plexon, Dallas, Texas,
United States) and then to a digital multichannel acquisition
processor (MAP; Plexon). The waveforms of EEG were amplified
and low-pass filtered with a 300 Hz cutoff frequency and then
imported into MATLAB for analysis. First, EEG was visually
checked to exclude the artifacts. The EEG fragments within an
epoch of 500 m s before onset of a sound stimulus and 500 m s
after stimulus offset were averaged for all trials without artifacts.
The trial based spectra of EEG fragments were accessed by the
mean trial power (MTP) analysis using a wavelet-based analysis
algorithm, implemented in custom-written code using eeglab
toolbox  (https://sccn.ucsd.edu/eeglab/index.php). MTP was
computed by averaging the EEG power in the spectral-
temporal domain across the 120 trials from one session. The
results of MTP were presented following a dB baseline correction
implemented by eeglab.

Immunofluorescence

Mice were anesthetized and transcardially perfused with 10 mM
PBS, pH 7.5 at 4°C, followed by a fixative solution containing 4%
PFA in PBS. Brains were postfixed in 4% PFA overnight at 4°C
and cryoprotected for 72 h in 30% sucrose at 4°C before freezing
in OCT on dry ice. A series of four coronal sections of the right
hemisphere of hippocampus or AC was mounted for
immunofluorescence analysis and stained with neuronal
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FIGURE 2 | No effect of saline treatment on the ASSR of one example mouse. (A)—(D) Unfiltered ASSR averaged from 120 trials of EEG signals evoked by 40-Hz
click stimulilasting from 0t0 0.5 s. Bars at the top represent the sound wave of click-train stimulus. (E)—(H) The same EEG responses filtered with a bandpass filter. (I)—(L)
Spectral-temporal spectrum of the filtered EEG responses.

nuclear antigen (NeuN), ionized calcium-binding adapter
molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP).
In brief, brain sections were first blocked with 10% blocking
serum in PBS and then incubated with the indicated primary
antibodies (1:500 with anti-NeuN ab177487, 1:200 with anti-Ibal
ab178847, or 1:500 with anti-GFAP ab7260 from Abcam)
overnight at 4°C. Slides were then incubated with secondary
antibody for 2h at room temperature. Rabbit highly cross-
adsorbed AlexaFluor 594 secondary antibody (1:300, SA00006-
8, Proteintech) was used to detect NeuN, Iba-1, or GFAP,
respectively.

To minimize any potential confounding effects from
immunohistochemistry, the sections were prepared, stained,
and imaged at the same time as their relevant control.
Furthermore, the cell number was counted in a predefined

area of the brain. Nine sections among the serial coronal
sections of the AC and hippocampus were selected from each
brain, which were separated by 10 sections (50 pm). The areas of
the AC and hippocampus were captured using an Olympus BX51
automatic microscope (Tokyo, Japan). The total numbers of cells
stained with NeuN, Ibal, or GFAP in a 500 x 500 um area were
marked by an operator who was blinded to the identity of the
sections, and an automated cell count was generated using Image]J
software (National Institutes of Health, Bethesda, MA,
United States, http://rsb.info.nih.gov/ij/). Only morphologically
intact and clearly identifiable cells were counted in the regions.
The number of cells in each section was averaged to obtain a
mean value for each animal (nine sections/mouse). The mean
values obtained from ten animals in each group were used for the
statistical analysis.
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FIGURE 3 | IFN-a treatment reduces the ASSR of one example mouse. Same format as Figure 2.

Statistical Analysis
Statistical analysis was performed using SPSS for Windows

(Chicago: SPSS, Inc.). All data are expressed as the group
mean + SEM. Values among multiple groups were analyzed
using one-way repeated-measures ANOVA with Tukey’s post
hoc test. The differences between two groups were calculated by a
two-tailed unpaired ¢-test.

RESULTS

Chronic IFN-a Treatment Reduced the
ASSR of AC in Mice

As shown in the schematic diagram of Figure 1, we
subcutaneously injected saline (vehicle) or IFN-a in mice (n =
10 for each group) for 21 days. The EEG signals of each mouse

were recorded before and during IFN-a treatment. The
representative results of one saline and IFN-a treated mouse
are presented in Figures 2 and 3, respectively. Before the
treatment, EEG showed a large deflection at the onset of
stimulus, followed by a stable oscillation synchronizing to the
40Hz click-train (Figures 2A, 3A). To compare with the
frequency of stimuli, the EEG signals were filtered with a
bandpass filter of 35-45 Hz. The filtered EEG showed a clear
oscillation synchronized to the stimulus frequency (Figures 2B,
3B). The power spectrum analyses on EEG also showed a clear
peak at 40 Hz, reflecting the strength of 40 Hz ASSR (Figures 2C,
3C). In the end of the first week after saline or IFN-a injection, the
ASSR recorded from the same mice remained unchanged
(Figures 2D-F, 3D-F). However, the ASSR was gradually
reduced from the second to the third week after IFN-a
injection (Figures 2G-L, 3G-L).
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We quantified the strength of 40 Hz ASSR by calculating the
average of MTP value in the spectral-temporal function between
35 and 45 Hz frequency range and during 0-0.55 s poststimulus
time window. Figure 4 shows the mean MTP of the IFN-a and
vehicle group (n = 10) at different time points. Injection of saline
did not significantly change the ASSR (p = 0.445, one-way
repeated-measures ANOVA, Figure 4A). In contrast, injection
of IFN-a can significantly reduce the ASSR from the second week,
comparing to pretreatment condition (p = 0.0001, one-way
repeated-measures ANOVA and Tukey’s post hoc test,
Figure 4B). Such a decrease continued to the third week (p =
0.0001, one-way repeated-measures ANOVA and Tukey’s post
hoc test, Figure 4B).

Correlation Between Reduction of ASSR
and Depressive-Like Behaviors Induced

by IFN-a

We next studied the effects of chronic IFN-a treatment on mouse
behavior. Both the mice in the IFN-a and saline group had no
significant difference of body weight between before and after
treatment (IFN-o: 39.1 + 2.9 g vs. 38.7 + 2.8 g, p = 0.15, saline:
386+ 19gvs. 379 +1.7¢g,p =0.11, n = 10, t-test). Depression-
like behaviors in these mice were examined using the FST (Porsolt
et al., 1977). In the FST, depression levels are determined based
on immobility times, which can be elongated by decreased
escape-oriented behaviors. The immobility times were
significantly increased by a 3-week treatment (¢t = 9.676, p =
0.0001, df = 18, t-test. Figure 5A), indicating that chronic IFN-a
treatment induced depressive behavioral phenotypes, consistent
with previous reports (Fahey et al., 2007; Felger et al.,, 2007). We
further found no significant correlation between the immobility
time and the power of 40 Hz ASSR in saline injection group (r =
0.12, p = 0.75, Pearson correlation, Figure 5B), but a negative
correlation (r = 0.46, p = 0.03, Pearson correlation, Figure 5C) in
the IFN-a injection group. This result suggests that ASSR can be

used as an EEG marker of the depressive-like behavior in the IFN-
a treated mouse.

Chronic IFN-a Treatment Induces Glia

Activation in AC and Hippocampus

We further found that the immunohistochemistry of NeuN in the
AC and hippocampus was not obviously changed by IFN-a
treatment as compared with vehicle (Figures 6A-D).
Statistical analysis showed that there was no significant
difference between the density of NeuN + neuron in the IFN-
a and vehicle group (t = 0.896, p = 0.396 in AC; t = 0.298, p =
0.773, in hippocampus, df = 8, t-test, Figure 6E). However, IFN-a
increased the density of astrocytes (t = 5.219, p = 0.0008 for AC;
t =4.938, p = 0.0011, for hippocampus, df = 8, t-test, Figure 6F,
6G, 6H, 61, and 6]) and microglia (t = 7.209, p = 0.0001 for AC;
t = 5.798, p = 0.0004, for hippocampus, df = 8, t-test, Figures
6K-0), accompanied by alterations of morphology. Thus, IFN-a
treatment resulted in glial activation.

DISCUSSION

In the present study, we used a mouse model of chronic IFN-a
treatment to demonstrate the effect of IFN-a on the
neuroelectrical activity in CNS. The key findings are that
chronic IFN-a treatment reduced the power of 40 Hz ASSR in
the mouse AC, and the reduction of ASSR was accompanied with
depressive-like behavior and glial activation in the AC and
hippocampus. Our results suggest that EEG measurement of
ASSR can be used as a biomarker to monitor the CNS side
effects of IFN-a treatment and to search a novel intervention with
potential therapeutic implications.

EEG is a minimally invasive method to assess brain activity.
Previous studies on spontaneous EEG have reported some IFN-a
induced alterations, such as enhanced slow-wave activity
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(Tivanainen et al, 1985) and increased synchronization
(Birmanns et al., 1990). Recently, gamma band oscillations in
EEG have become a subject of increasing research interest.
However, effects of IFN-a on gamma band oscillations have
not been examined; thus, we evaluated the brain activity with
the usage of ASSR evoked by sounds with a gamma rhythm
(40 Hz). ASSR, as an evoked gamma band oscillation, provides an
approach for examining the synchronizing responses from large
ensembles of neurons and binding neural activity across brain
areas (Picton et al., 2003; Uhlhaas and Singer, 2010). ASSR
paradigm is widely used in clinical studies of psychiatric
disorders, including schizophrenia (Thune et al, 2016) and
bipolar disorder (Uhlhaas and Singer, 2010; Oda et al., 2012;
Isomura et al.,, 2016; Zhou et al., 2018). Depression is a major and
serious side effect of IFN-a that limits its use as an antiviral and
antitumor drug. In fact, IFN-a-induced depression-like behavior
is one of the excellent models to explore the action of peripheral
cytokine administration on CNS and to study the development of
depression in a prospective way. Here, we for the first time
reported that chronic IFN-a treatment in mice can induce a
reduction of ASSR, which was moderately correlated with
depressive-like behavior. Studies of the neurobiological basis of
depression have focused on both principle excitatory glutamate
neurons and inhibitory y-amino butyric acid (GABA)
interneurons. They demonstrate structural, functional, and
neurochemical deficits in both major neuronal types that
could lead to degradation of signal integrity in cortical and
hippocampal regions (Duman et al., 2019). On the other hand,
it has been reported that the ASSR is more sensitive to the
modulation of glutamatergic transmission (Sullivan et al,
2015; Sivarao et al., 2016). Therefore, the abnormalities of
ASSR observed in this study may be attributable to the
dysfunction of glutamatergic transmission induced by IFN-a
treatment. This possibility is worthy of further investigation.

In this study, we also found that 3 weeks of IFN-a treatment
(400 IU/g/day) caused an increase of immobility time in FST. FST
is a standard behavioral model to examine depression-like
behavior, in which a prolongation of immobility represents
behavioral despair (Petit-Demouliere et al., 2005). Our results
are consistent with the previous studies showing that chronic
application of IFN-a on rodent is an efficient way for

establishment of behavioral despair accessed by the FST
(Makino et al., 2000; Lv et al., 2018; Nicolussi et al., 2020).
Furthermore, we found that the mice with a lower MTP of
ASSR tended to show a longer immobility time, suggesting
that ASSR can partly reflect the change of brain activity
associated with the depressive-like behavior induced by IFN-a
treatment. The increase of immobility time is also commonly
reported in the experimental animals of depressive-like behavior
induced by lipopolysaccharide (LPS) (Gu et al., 2018; Rodrigues
et al,, 2018; Arioz et al., 2019). Though EEG abnormalities have
been examined in the LPS treated animals, all the previous studies
focused on the changes of resting state EEG (Lin et al., 2010;
Albrecht et al., 2018; Mamad et al., 2018). We, for the first time,
investigated the association between the depressive-like behavior
and EEG responses evoked by auditory stimuli. Our results
suggest that EEG measurement of ASSR can be used as a
biomarker to monitor the depressive-like behavior in animal
models.

Our immunohistochemical results revealed that the density of
NeuN + mature neurons in the AC was not affected by IFN-a
treatment, but the density of astrocytes and microglia was
significantly increased. Similar results were also found in the
hippocampus, which is the most commonly studied brain region
in depression research. Previous studies have suggested that
dysfunction of neural plasticity in the hippocampus is
involved in the neuropathology of depression (Zheng et al,
2015; Wachholz et al., 2016; Liu et al., 2017). Our results are
consistent with the previous findings on hippocampus (Zheng
et al,, 2015; Wachholz et al., 2016). The limitation of our study is
that we cannot clarify the underlying molecular and cellular
mechanisms of the ASSR abnormality. For one thing, IFN-a
may directly act on the neurons in the cortex and hippocampus,
because the receptors of IFN have been found in the neurons
(Owens et al,, 2014; Zheng et al., 2014). On the other hand, the
alterations of ASSR may be due to the changes of neuronal
activity secondary to inflammatory process. IFN-a is known to
induce the production of proinflammatory cytokines such as IL-
1B, IL-6, and TNF-a (Wachholz et al., 2016). Elevated plasma
concentrations of these proinflammatory cytokines have been
reported in the IFN-a treated patients (Bonaccorso et al., 2001;
Raison et al, 2010). Glial activation induced by the
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FIGURE 6 | Immunohistochemistry analysis of AC and hippocampus sections after 3 weeks of saline or IFN-a injection. (A)-(D) Representative NeuN staining of the

AC and hippocampus. (E) Bar graph of the density of NeuN stained cells. Results are expressed as mean + SE. (F)—(l) Representative GFAP staining. White rectangle is
an enlarged view of one representative cell to display the detailed morphology. (J) Bar graph of the density of GFAP stained cells. (K)}-(N) Representative Iba-1 staining.
(O) Bar graph of the density of Iba-1 stained cells. “*p < 0.01, t-test.
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proinflammatory cytokines may disrupt the neural functions
resulting in the ASSR abnormalities and depressive-like
behaviors. Therefore, future research is necessary to determine
the causality between the glial activation and ASSR alteration.
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