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Medicinal plants and their extracts have been used as important sources for drug
discovery. In particular, plant-derived natural compounds, including phytochemicals,
antioxidants, vitamins, and minerals, are gaining attention as they promote health and
prevent disease. Although several in vitro methods have been developed to confirm the
biological activities of natural compounds, there is still considerable room to reduce time
and cost. To overcome these limitations, several in silicomethods have been proposed for
conducting large-scale analysis, but they are still limited in terms of dealing with incomplete
and heterogeneous natural compound data. Here, we propose a deep learning-based
approach to identify the medicinal uses of natural compounds by exploiting massive and
heterogeneous drug and natural compound data. The rationale behind this approach is
that deep learning can effectively utilize heterogeneous features to alleviate incomplete
information. Based on latent knowledge, molecular interactions, and chemical property
features, we generated 686 dimensional features for 4,507 natural compounds and 2,882
approved and investigational drugs. The deep learning model was trained using the
generated features and verified drug indication information. When the features of natural
compounds were applied as input to the trained model, potential efficacies were
successfully predicted with high accuracy, sensitivity, and specificity.

Keywords: natural compound, natural product, medicinal use, deep learning, molecular interaction, chemical
property, network analysis, text mining

INTRODUCTION

A large number of medicinal plants possess diverse natural compounds, contributing to drug
development by providing novel candidate therapeutic agents against various diseases. Natural
compounds are small molecules synthesized by living organisms, including primary and secondary
metabolites (Hanson, 2003). Accumulating evidence has shown that the ingestion of bioactive
natural compounds, such as phytochemicals, antioxidants, vitamins, and minerals, through a diet
rich in herbs, fruits, vegetables, and spices may promote health via negative immunoregulatory and
anti-inflammatory activities (Chu et al., 2002; Mursu et al., 2013; Kruk, 2014). Moreover, many
natural compounds have been proven to play an important role as modulators of cell signaling and
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homeostasis, which enforces the need to identify the medicinal
potentials of bioactive natural compounds (Brindha, 2016; Dias
et al., 2016; Pellavio et al., 2017).

Most previous studies on the identification of the medicinal
uses of natural compounds used in vitro assessments (Foster et al.,
2001; Iacopini et al., 2008; Li et al., 2008). In these studies, in vitro
screening tests were performed for the assessment of the
biological activities of natural compounds. However, large-
scale experiments are needed as the number of considered
natural compounds and candidate effects increases, which
exponentially increases time and cost. Therefore, in silico
approaches, which mostly focus on specific information such
as molecular properties, chemical similarities, or clinical
knowledge, have been proposed to predict medicinal
candidates from natural compounds. Molecular-based
approaches focus on finding similar responses or mechanisms
between natural compounds and drugs from various networks,
e.g., functional protein interactions or compound-target
interactions (Tao et al., 2013; Kibble et al., 2015; Rampogu
and Rampogu Lemuel, 2016). Chemical-based approaches
investigate bioactive natural compound candidates by
examining physicochemical properties and physiological effects
(Zhou et al., 2010; Chen et al., 2017; Muhamad et al., 2017).
However, the molecular targets, mechanisms, and chemical
structure information of natural compounds are largely
hidden, compared with those of approved drugs (Sutter and
Wang, 1993; Lee, 1999; Yoo et al., 2018c). Therefore, both
molecular and chemical-based approaches have low coverage
and usability. Knowledge-based approaches apply statistical
analysis to scientific databases, such as PubMed, or clinical
trial information to identify medicinal natural compound
candidates for a certain disease (Butler, 2005; Jensen et al.,
2014; Shergis et al., 2015). These approaches provide better
coverage compared with molecular and chemical-based
approaches, but their performance is low because they cannot
directly consider complex molecular mechanisms and chemical
structures. Moreover, the effects of reporting bias, sampling
variance, and response variance should be considered to
perform statistical analysis based on reporting data
(DuMouchel, 1999; Bate and Evans, 2009; Tatonetti et al.,
2012). Alternatively, machine learning-based approaches were
proposed to utilize large volume of information. These
approaches predicted the potential effects of natural
compounds by investigating the drugs having similar
properties to those of natural compounds (Rupp et al., 2010;
Romano and Tatonetti, 2019; Chen and Kirchmair, 2020; Zhang
et al., 2020). To construct prediction models, they applied
classification algorithm, such as logistic regression, random
forest, neural network, and support vector machine (SVM).
However, limited natural compound information is still a
bottleneck when trying to utilize various types of features in
the learning process. In conclusion, we need to solve the problem
with the bottleneck effect caused by the limited natural
compound information and inappropriate methods available
currently.

In this paper, we propose a deep learning-based approach to
predict the medicinal uses of natural compounds. Our previous

studies have shown that the various properties of natural
compounds, such as molecular and chemical properties, can
be utilized to predict the medicinal uses of natural compounds
(Noh et al., 2018; Yoo et al., 2018a; Yoo et al., 2018b; Yoo et al.,
2018c). Therefore, we adapted our previous approaches to extract
the molecular and chemical properties of natural compounds
(Supplementary Section S1 in Supplementary Data S1).
Moreover, additional information was extracted by capturing
latent knowledge from scientific literature to complement the
incomplete molecular and chemical information. However, it is
still difficult to perform integrated analysis because the extracted
information is complex and heterogeneous. Also, the number of
extracted features are relatively large comparing with the number
of samples of training dataset. To solve this problem, we applied a
partially connected deep neural network approach. The complex
and heterogeneous information can be captured and analyzed by
constructing multiple hidden layers in the deep learning model.
For all approved and investigational drugs, we extracted latent
knowledge, molecular interactions, and chemical property
features and used them as inputs of the model. To predict the
medicinal use of natural compounds, we used medicinal effects of
drugs as the output class labels. Finally, the medicinal uses of
4,507 natural compounds for 15 diseases were predicted by the
trained deep learning model. The evaluation results showed that a
large number of predictions were successfully identified with high
accuracy, sensitivity, and specificity. To conclude, the novelty of
the present study is three-fold. Firstly, it is the first deep learning-
based approach that identifies the medicinal uses of natural
compounds. Secondly, it can be used to perform a large-scale
natural compound study by utilizing large amounts of
heterogeneous information, including latent knowledge,
molecular interactions, and chemical properties, to mitigate
the inadequacies of incomplete information, which causes a
bottleneck effect. Finally, this approach can be used in a
preliminary screening of natural compounds from a large
number of candidates.

MATERIALS AND METHODS

Data Collection
Plant-derived natural compounds and their chemical structure
information were collected from KTKP (Portal, 2020), TCMID
(Xue et al., 2012), COCONUT (Yoo et al., 2018a), and FooDB
(FooDB, 2020). Drug information, including chemical structure
and indication, was collected from DrugBank version 5.1.5
(Wishart et al., 2018). The molecular targets of the drugs and
natural compounds were collected from the DrugBank, CTD
(Davis et al., 2011), MATADOR (Günther et al., 2008), STITCH
(Kuhn et al., 2013), and TTD (Zhu et al., 2011) databases. In this
study, we used 4,507 natural compounds and 2,882 approved and
investigational drugs that have at least five molecular target
information. For extracting latent knowledge from scientific
literature, we collected 13,200,786 PubMed abstracts that were
published from 1950 to 2019, containing 236,645,741 sentences
and 3,689,111,651 words. For the molecular interaction analysis,
a protein-protein interaction (PPI) dataset was obtained from
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BioGrid version 3.5.182, containing 18,008 nodes and 504,848
edges (Chatr-Aryamontri et al., 2015).

Generating Heterogeneous Features of
Drugs and Natural Compounds
In this study, we generated three important features that can help
us predict the medicinal effects of natural compounds (Figure 1).
Each feature was generated by a fixed-length numeric vector
form. We have provided the latent knowledge, molecular
interaction, and chemical property features of the drugs and
natural compounds in (https://doi.org/10.6084/m9.figshare.
12671870).

Identification of Latent Knowledge Features by Text
Mining
We generated latent knowledge features to obtain various types of
drug and natural compound information from scientific
literature. To this end, we applied a word embedding
approach that represents a single word as a real-valued vector
in a low-dimensional space (Figure 1A). There are several
machine learning-based approaches for word embedding. For
example, the word2vec creates embedding vectors of words in a
given corpus using context to predict a word (continuous bag-of-
words, C-BOW model) or using a word to predict the context
(skip-gram model) (Mikolov et al., 2013a; Mikolov et al., 2013b).
However, this method is highly dependent on the training corpus,
making its application to rare or unusual natural compound and
drug names difficult. In particular, the organic chemistry field
includes many complex and compound words, such as “alpha-
isothiocyanatotoluene.” Thus, the word2vec model cannot be
used to appropriately estimate vector representations in the
field. To solve this problem, we used fastText: a word
representation using the sub-word skip-gram model that
learns representations for character n-grams based on
unlabeled corpora where each word is represented as the sum
of the n-gram vector representations (Bojanowski et al., 2017;

Young and Rusli, 2019). This model improves the representations
of rare words by considering the character level information and
internal structure of the words. For example, the natural
compound name “alpha-isothiocyanatotoluene” can be
estimated by dividing the word into “alpha,” “isothiocyanato,”
and “toluene,” which are relatively frequent in the training
corpora. The fastText model learns the distributed
representations for all character n-grams in “alpha-
isothiocyanatotoluene” and integrates the sub-word vectors to
generate the final embedding vector of “alpha-
isothiocyanatotoluene.” In this study, we used the pre-trained
fastText model withWikipedia and Common Crawl (Grave et al.,
2018). The model additionally learned from the DrugBank
indication and PubMed literature. Before training, we pre-
processed the PubMed literature by tokenizing each word and
transforming it into lowercase. We then transformed special
characters and Greek symbols to alphabetic names (e.g., α to
alpha) for generalization.

Identification of Molecular Interaction Features from
Protein-Protein Interactions
We generated molecular interaction features by investigating
mechanisms from the binding targets of compounds to the
therapeutic targets or biomarkers of diseases. To this end, we
constructed a PPI network and applied the random walk with
restart (RWR) algorithm to quantify the molecular interaction
effects of the compounds (Figure 1B). The RWR simulates the
random walker starting from seed nodes and iteratively diffuses
the node values to the neighbors according to edge weights until
stability is achieved (Köhler et al., 2008; Li and Patra, 2010). The
RWR is defined as the following equation.

pt+1 � (1 − r)WTpt + rp0

where W is the column-wise normalized adjacency matrix of the
network, and r is the restarting probability of the random walker
at each time step (it was set to 0.7 in this study). The adscript of pt

FIGURE 1 | Computational processes for the generation of latent knowledge, molecular interaction and chemical property features. (A) Latent knowledge features
were obtained by applying the text mining method to the PubMed abstracts. The n-gram features (x1, . . ., xN) are embedded and averaged to fore the hidden variable.
(B)Molecular interaction features were generated by applying RWR algorithm to the PPI network. The RWR algorithm propagated compound effects from seed nodes
(binding information, red circles) to their neighbors, recursively. (C) Chemical features, including physicochemical properties, lipophilicity, water solubility,
pharmacokinetics, druglikeness and medicinal chemistry information, were calculated.
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represents the probability vector of each node at time step t, and
p0 represents the initial probability vector. To apply the RWR
algorithm, we first set the initial values of the seed nodes based on
the binding target information of the compounds. This study
used two types of binding target information: direct and indirect
binding. Direct binding indicates the target proteins of the
compounds, whereas indirect binding includes the molecular
effects of the compounds, including changes in protein
expression and compound-induced phosphorylation, or the
effects of compounds that are transformed into active
metabolites. By considering both types of binding information,
we can consider the various properties of the compounds on the
network. The initial values (p0) of direct and indirect binding
were assigned as 1 and 0.3, respectively. Next, the transition
probability from a node to the neighbors was calculated. We
assumed that the transition probability represents the propagated
effects on the PPI network. Based on Eq. 1, the transition
probability vector of each node at time step t + 1 was
calculated. The RWR algorithm simulated the random walker
until pt became stable, which was evaluated by pt+1 − pt < 10− 8. In
this study, we considered 4,487 disease-related proteins from a
total of 18,008 proteins. Next, principal component analysis
(PCA) was performed on the probability vector of proteins to
reduce the dimensionality (i.e., from 4,487 to 285), as the number
of proteins was still large compared with the number of instances
of the training set (Jolliffe, 2003). In this study, we set the
threshold of the cumulative explained variance ratio as 0.8.
Finally, we generated molecular interaction features based on
the PCA result.

Identification of Chemical Property Features
Containing Physiological and Physicochemical
Properties
Chemical property features were generated by considering
physicochemical properties, lipophilicity, water solubility,
pharmacokinetics, drug-likeness, and medicinal chemistry
friendless information (Figure 1C). Physicochemical properties
include molecular weight, number of heavy atoms, fraction Csp3,
rotatable bonds, hydrogen-bond acceptors, hydrogen-bond
donors, and molar refractivity. For all physicochemical
properties, we performed feature scaling by applying Z-score
normalization. The scale of input variables used to train the
model is an important factor because unscaled inputs can result in
a slow or unstable learning process, which causes exploding
gradients in the learning process. Therefore, we performed
Z-score normalization, which can standardize the values
having zero-mean and unit variance. Lipophilicity contains the
results of five different methods for the prediction of the partition
coefficient between n-octanol and water (log Po/w), containing
XLOGP3, WLOGP, MLOGP, SILICOS-IT, and iLOGP
(Moriguchi et al., 1992; Moriguchi et al., 1994; Wildman and
Crippen, 1999; Cheng et al., 2007; Sanders et al., 2012; Daina et al.,
2017). The consensus log Po/w is the arithmetic mean of the values
predicted by the above five methods. Water solubility includes the
results of three different methods for the prediction of water
solubility, containing the ESOL, Ali, and SILICOS-IT methods
(Delaney, 2004; Ali et al., 2012; Sanders et al., 2012).

Pharmacokinetics includes human intestinal absorption, blood-
brain barrier permeability, permeability glycoprotein (P-gp)
substrate, five major isoforms of cytochrome P450
(i.e., CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4),
and the logarithm of skin permeability coefficient (log Kp).
Drug-likeness contains Lipinski’s rule of five, Ghose, Veber,
Egan, Muegge, and bioavailability score (Ghose et al., 1999;
Egan et al., 2000; Muegge et al., 2001; Veber et al., 2002;
Martin, 2005). We used lipophilicity, water solubility,
pharmacokinetics, and drug-likeness values without feature
scaling because the data are log scale or the data type was
categorical. All categorical data were transformed into binary
variables by applying one-hot encoding. Lastly, medicinal
chemistry friendless contains the pan assay interference
compounds (PAINS) filter (Baell and Holloway, 2010), the
Brenk filter (Brenk et al., 2008), lead-likeness (Teague et al.,
1999), and synthetic accessibility (Ertl and Schuffenhauer, 2009).
All the properties were calculated using SwissADME (Daina et al.,
2017).

Deep Learning-Based Prediction of the Medicinal
Uses of Natural Compounds
In this study, we used a deep learning model to predict the
potential medicinal effects of natural compounds (Figure 2). For
all natural compounds and drugs, the algorithm works in four
steps: 1) collecting various types of natural compound and drug
information from public databases; 2) generating latent
knowledge, molecular interaction, and chemical property
features from the collected information via text mining,
network analysis, and chemical property analysis; 3) training
the deep learning model based on the features of the approved
and investigational drugs as inputs and their indication
information as outputs; and 4) predicting the medicinal uses
of natural compounds based on the trained deep learning model.

When the input features are complex and heterogeneous, deep
learning can improve the performance of the predictor by
learning high-level representation from low-level features. The
proposed model consists of four sequential layers (Figure 3): 1)
input layer, 2) partially connected hidden layers, 3) fully
connected hidden layers, and 4) output layer. The models
were generated for 15 diseases, respectively, to predict the
potential effects list from input features. For each drug or
natural compound, we generated latent knowledge, molecular
interaction, and chemical property features and used them as the
inputs of the model. Hidden layers generalized their outputs by
providing a high-level representation that was more abstract than
the previous layer by discovering nonlinear relationships between
the low- and high-level data. Let Xl is the output of the lth hidden
layer. The forward propagation of the neural network with lth
hidden layer can be represented as follow.

Xl � f (WlXl−1 + bl)
whereWl � [wl1, wl2, . . . , wln] is the weight matrix of the edge from
l-1st layer to lth layer, bl is the bias of each hidden units, and f (·) is
the activation function. In this study, the hidden layers were
divided to two parts: the partially connected and fully connected
parts. A fully connected neural network is the most commonly
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FIGURE 2 | A systematic procedure of deep learning model for the identification of medicinal use of natural compounds. (A) We constructed an integrated
database to merge various types of drug and natural compound information. (B) For all natural compounds and drugs, input features were generated based on the latent
knowledge, molecular interaction and chemical property information. (C) We trained a deep learning model by using the extracted features and known efficacy of
approved drugs. (D) Potential medicinal use of natural compounds was predicted by applying extracted features of natural compounds to the trained model.

FIGURE 3 | Architecture of the deep learningmodel for predicting the potential effects of natural compounds.We used latent knowledge, molecular interaction, and
chemical property features as the inputs of the model, and each feature consisted of 101, 241, and 300 fixed-length numeric vectors. To capture the high-level
representation of each feature, we applied both partially connected and fully connected neural network structures. The model was trained based on the extracted
features and verified indication information of drugs. Models were generated for 15 diseases, respectively. Finally, we predicted the potential medicinal effects of
natural compounds based on the trained model.

Frontiers in Pharmacology | www.frontiersin.org November 2020 | Volume 11 | Article 5848755

Yoo et al. Medicinal Candidates of Natural Compounds

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


used model because it usually does not need a priori information
on input data for defining the structure of the model
(Shanmuganathan, 2016). This simplifies the model design
since every neuron in one layer connecting to every neuron in
the next layer. However, it may need large training data, and
cannot consider the characteristic of the input feature types. A
partially connected neural network can be defined as a network
that contains only a subset of all possible connections. It has
strengths in reducing complexity and improving generalization
without producing significant modeling errors. This study
applied a partially connected network to learn the spatially
distinguished representation of each feature (Chen et al., 2016;
Mason et al., 2018; Tek, 2018). When input neurons connect to
the next layer of neurons, we set them to connect only neurons of
the same input feature type. In the above-mentioned weight
matrix (Wl), zero values are set for the disconnected edges
based on feature types. When n input features are fully
connected to m neurons included in the hidden layer, n·m
edges are created, but the proposed method creates ∑

i
ni ·mi

edges (where i is the number of feature types). In this study,
the partially connected model generated (101·68) + (285·160) +
(300·200) edges, whereas the fully-connected model generated
(101 + 285 + 300)·(68 + 190 + 200) edges. We applied a partially
connected structure to the first and second hidden layers. This
process reduced the number of edges to be trained by about 37%.
Therefore, we can learn the weights of the edges with a relatively
small training set taking into account the input feature types. The
outputs of each partially connected layers are further
concatenated to produce the single layer.

The proposed model was constructed using the following
techniques. We applied the ReLU (Rectified Linear Unit)
activation function in which f(x) � max (0, x) to all hidden
units to increase the nonlinearity (Nair and Hinton, 2010). The
weights were initialized using random numbers with zero-
centered Gaussian with standard deviation of

����
2/nl

√
(where nl

is the number of input units) that takes into account the ReLU
nonlinearity (He et al., 2015). The batch normalization was used
to normalize the input layer by re-centering and re-scaling (Ioffe
and Szegedy, 2015). The class-weighted binary cross-entropy loss
function for gradient descent was used to handle imbalanced
dataset and defined as follow equation.

Lw � −∑
i

w0yilog(ŷi) + w1(1 − yi)log(1 − ŷi)

where i is the number of samples, ŷi is the predicted model output,
and yi is the corresponding target value.w0 andw1 are the weights
for class 1 and 0, which are set to be inversely proportional to the
class frequencies. To optimize the loss function, the Adam
optimizer was applied with the learning rate � 0.0001, the
learning rate decay � 0, β1 � 0.9 and β2 � 0.999 (Kingma and
Ba, 2014). To avoid overfitting, early stopping was applied to an
iterative procedure of gradient descent (Prechelt, 1998; Yao et al.,
2007). We ran the models for 3,000 epochs and the batch size of
64 with early stopping (patience � 30).

We used a total of 2,882 approved and investigational drugs
to train the model and 4,507 natural compounds for testing. To

train the model, the output layer needed data indicating the
effects of the drugs. As the indication information in
DrugBank is described using free text, named entity
recognition (NER) was applied to extract disease terms with
standard identifiers. We used a Bidirectional Encoder
Representations from Transformers (BERT)-based NER
tool, known as BERN, to extract the disease terms from the
drug indications (Kim et al., 2019; Lee et al., 2019). The
extracted disease terms were mapped to Medical Subject
Headings (MeSH) IDs and then converted into class labels
(Lipscomb, 2000). For each drug, an average of 2.57 ± 0.11
(confidence interval � 0.95) MeSH IDs were mapped. All the
NER results are provided in Supplementary Data S2. In this
study, out of a total of 1,607 diseases, 15 disease terms that
most frequently appeared in the indication information of
drugs were used for predictions. We have provided the
runnable source code in https://doi.org/10.6084/m9.figshare.
13153184.

RESULTS

Generated Latent Knowledge, Molecular
Interaction, and Chemical Property
Features
Latent Knowledge Features
We evaluated the latent knowledge features by calculating the
similarity for groups of drugs based on the Anatomical
Therapeutic Chemical (ATC) code. The ATC classification
system categorizes drugs into different groups according to
their chemical, pharmacological, and therapeutic properties
(Methodology, 1982; Organization, 2019). In the ATC
classification system, drugs are classified into groups at five
different levels: the first level has 14 anatomical main groups;
the second level indicates the main therapeutic group; the third
level indicates a therapeutic or pharmacological subgroup; the
fourth level indicates a therapeutic, pharmacological, or
chemical subgroup; and the fifth level is the chemical
substance. In this experiment, we grouped the drugs based
on the five levels of the ATC code, respectively. For each
group, cosine similarity values for the latent knowledge
features of all possible drug pairs were calculated. From the
result, we found that the mean value of the cosine similarity of
the same ATC code group (S1st � 0.417, S2nd � 0.478, S3rd �
0.551, S4th � 0.603, S5th � 0.608) was higher than that of the
randomly selected group (Srandom � 0.341–0.369). Moreover, it
was confirmed that the similarity of the latent knowledge
features increased as the level of ATC codes went from top
to bottom. We have provided the results of cosine similarity for
all groups in Supplementary Data S3. Moreover, our approach
has a higher similarity values comparing with the word2vec
method (S1st � 0.322, S2nd � 0.349, S3rd � 0.423, S4th � 0.498, S5th
� 0.502). These results indicated that the latent knowledge
features effectively represented the anatomical, therapeutic,
and pharmacological properties, as the deeper the ATC level,
the more similar the properties of the drugs.
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TABLE 1 | AUROC values of the five different cases of the trained models in predicting the medicinal uses of drugs for 15 diseases.

Disease term Partially connected Fully connected

All features All features Latent knowledge features
only

Molecular interaction features
only

Chemical property features
only

Carcinoma 0.774 0.684 0.767 0.702 0.711
Hypertension 0.970 0.962 0.955 0.882 0.777
Pain 0.943 0.776 0.840 0.815 0.611
Diabetes mellitus, type 2 0.850 0.765 0.824 0.564 0.616
Arthritis, rheumatoid 0.774 0.692 0.692 0.683 0.667
Urinary tract infections 0.985 0.983 0.948 0.986 0.944
Alzheimer’s disease 0.864 0.757 0.859 0.588 0.810
Bacterial infections 0.948 0.926 0.880 0.717 0.865
Parkinson’s disease 0.995 0.947 0.977 0.913 0.953
Heart failure 0.880 0.873 0.865 0.727 0.833
Sleep initiation and maintenance disorders 0.875 0.846 0.865 0.669 0.870
Skin diseases 0.774 0.789 0.759 0.587 0.653
Nausea 0.934 0.971 0.865 0.957 0.798
Myocardial infarction 0.964 0.798 0.800 0.975 0.766
Stroke 0.972 0.974 0.971 0.946 0.949
Average 0.900 ± 0.040 0.850 ± 0.054 0.858 ± 0.042 0.781 ± 0.077 0.788 ± 0.059
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Molecular Interaction Features
We confirmed whether the molecular interaction features can be
used to predict the potential medicinal effects of compounds. To
this end, we mapped the sum of the protein values of the
molecular interaction features to diseases based on the
therapeutic target and biomarker information of diseases.
Target diseases include 3,832 diseases defined by MeSH and
Online Mendelian Inheritance in Man (OMIM) (Hamosh
et al., 2005). Through this process, we obtained a list of
disease scores for each drug. We then compared our
predictions with the results of the network-based efficacy
screening methods, including closest, shortest, kernel, center,
and separation methods (Guney et al., 2016). The closest
method predicts effects by calculating the mean shortest
distance between compound targets and the nearest disease
gene. The shortest method calculates the mean shortest
distance between all compound targets and disease-related
proteins. The kernel method calculates the distance by
downweighting long paths exponentially. The center method
calculates distance with considering the largest closeness
centrality among the disease-related proteins. Lastly, the
separation method calculates the sum of the mean distance
between compound targets and disease-related proteins using
the closest method and subtracts it from the mean shortest
distance between compound targets and disease-related
proteins. The results indicated that our predictions, which
used the molecular interaction features, exhibited better
performance (the area under the receiver operating
characteristic, AUROC � 0.776 ± 0.094) than the closest
(AUROC � 0.721 ± 0.076), shortest (AUROC � 0.697 ±
0.102), kernel (AUROC � 0.713 ± 0.084), center (AUROC �
0.707 ± 0.088), and separation (AUROC � 0.710 ± 0.078) in terms
of medicinal effects prediction. These results indicated the
effectiveness of the molecular interaction features in predicting
the effects of compounds by analyzing propagated effects
compared with the conventional approach.

Chemical Property Features
We performed various statistical tests to analyze the
characteristics of the chemical property features. Firstly, we
compared the distribution of the chemical properties of the
natural compounds and drugs (Figure S1 in Supplementary
Data S1). The results indicated that the median values of 68%
chemical properties of natural compounds lie inside of the
interquartile range of drugs. The mean, standard deviation,
and standard error of the mean values of the chemical
properties of the natural compounds and drugs are
provided in Table S1 in Supplementary Data S1. Secondly,
we compared the average similarity between compounds with
the same medicinal effects and randomly selected drugs. It was
confirmed that the average similarity of compounds with the
same medicinal effect was 0.259 ± 0.031, whereas the average
similarity of randomly selected compounds was 0.091 ± 0.014.
This result indicated that the chemical properties of
compounds with the same medicinal effect were likely to be
similar.

Performance Evaluation
Our method provided a list of the effects of the natural
compounds with quantified scores. To assess the predictive
performance, the AUROC and accuracy were calculated. We
tested the performance for two different types of model structure
and four different types of input data: 1) partially connected
model using all features; 2) fully connected model using all
features; 3) fully connected model using the latent knowledge
feature only; 4) fully connected model using the molecular
interaction feature only; 5) fully connected model using the
chemical property feature only.

We first performed 10-fold cross-validation using only drug
information. The drugs were divided in a ratio of 6:2:2 to train,
validate, and test the model, respectively. As a result, AUROC
values for 15 diseases were obtained (Table 1). Importantly, the
partially connected model using all features (avg. AUROC �
0.900 ± 0.040) exhibited better performance than the method
using only single information (avg. AUROC � 0.781 ±
0.077–0.858 ± 0.042) (Figure 4A). However, the fully
connected model using all features (avg. AUROC � 0.850 ±
0.054) was worse performance than the fully connected model
using the latent knowledge feature only. This is because the
number of training samples is insufficient compared to the
number of weights to be learned in fully connected model
using all features. We further compared the method using the
partially connected model with the fully connected model. The
result indicated that the proposed partially connected model
performed better than the fully connected model. This is
because the partially connected neural network can be trained
by a relatively smaller data set compared to a fully connected
model. Lastly, we compared our method with other machine
learning methods, including logistic regression, SVM, and
bootstrapping (Table 2). Each model was created using all the
features. The result showed that our method performed better
than other machine learning methods (avg. AUROC � 0.781 ±
0.077–0.858 ± 0.042) (Figure 4B). Moreover, the average
accuracy of the proposed model for 15 diseases was 0.971 ±
0.011. These results indicated that the proposed model was
well built by reflecting the characteristics of the heterogeneous
information. Next, we confirmed whether the model could be
used to predict the medicinal effect of natural compounds
(Table 3). We trained the model based on drug information
and tested it using the verified medicinal effect information of
natural compounds. Furthermore, an additional experiment was
conducted using the inferred effects of the natural compounds as
a test set because the verified medicinal effect information of
natural compounds was limited. We found that the proposed
deep learning model, which was trained using drug information,
successfully predicted the verified (avg. AUROC � 0.832 ± 0.032)
and inferred medicinal effects (avg. AUROC � 0.883 ± 0.033) of
natural compounds. All predicted results, including a list of the
effects of natural compounds with scores, are provided in
Supplementary Data S4.

We additionally performed the statistical analysis based on
literature reporting the predicted medicinal effects of natural
compounds (Table 4). We made three independent sets by
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selecting top-ranked 10%, bottom-ranked 10%, and randomly
selected prediction results. Then, we confirmed whether the high-
scored predictions have more evidence than the low-scored and
randomly selected predictions. To do this, co-occurrences (nc) of
natural compound and disease terms in PubMed abstracts were
counted. The average co-occurrence frequency of the high-scored
set (nc � 0.87 ± 0.18) was 9.6 and 3.8 times larger than the low-
scored set (nc � 0.09 ± 0.03) and random set (nc � 0.23 ± 0.11).
Next, the co-occurrence was normalized as the Jaccard index (JI)
by dividing the frequency of co-occurrence by the frequency of
the union of individual terms to reduce the size influence
associated with the term frequency (Eck and Waltman, 2009).
The average Jaccard index of the high-scored set (JI � 1.07 × 10−4)
was higher than those of the low-scored (JI � 2.17 × 10−8) and
random set (4.31 × 10−5). Furthermore, we performed Fisher’s
exact test to examine the significance of the predictions. Fisher’s
exact test assess the null hypothesis (e.g., there is no difference in

TABLE 2 | Comparison of AUROC values of the proposed method with three machine learning-based methods, including logistic regression, SVM, and XGBoost.

Disease term Proposed method Logistic regression SVM XGBoost

Carcinoma 0.774 0.673 0.715 0.752
Hypertension 0.970 0.827 0.846 0.878
Pain 0.943 0.761 0.793 0.822
Diabetes mellitus, type 2 0.850 0.714 0.766 0.810
Arthritis, rheumatoid 0.774 0.653 0.688 0.725
Urinary tract infections 0.985 0.903 0.934 0.952
Alzheimer’s disease 0.864 0.772 0.817 0.831
Bacterial infections 0.948 0.851 0.826 0.916
Parkinson’s disease 0.995 0.910 0.952 0.963
Heart failure 0.880 0.813 0.807 0.833
Sleep initiation and maintenance disorders 0.875 0.751 0.796 0.855
Skin diseases 0.774 0.725 0.740 0.781
Nausea 0.934 0.812 0.912 0.892
Myocardial infarction 0.964 0.836 0.881 0.893
Stroke 0.972 0.915 0.964 0.967
Average 0.900 ± 0.040 0.794 ± 0.042 0.829 ± 0.043 0.858 ± 0.038

TABLE 3 | AUROC values of the trained models in predicting the medicinal uses of
natural compounds for 15 diseases using two different test sets.

Disease term Verified effect Verified
and inferred effect

Carcinoma 0.767 0.813
Hypertension 0.912 0.935
Pain 0.871 0.903
Diabetes mellitus, type 2 0.793 0.822
Arthritis, rheumatoid 0.725 0.761
Urinary tract infections 0.846 0.910
Alzheimer’s disease 0.827 0.841
Bacterial infections 0.879 0.927
Parkinson’s disease 0.924 0.961
Heart failure 0.808 0.894
Sleep initiation and maintenance disorders 0.797 0.867
Skin diseases 0.718 0.785
Nausea 0.844 0.913
Myocardial infarction 0.902 0.947
Stroke 0.870 0.969
Average 0.832 ± 0.032 0.883 ± 0.033

FIGURE 4 | Performance evaluations of predicted medicinal effects of natural compounds. (A) ROC curves for our method (blue), logistic regression (green), SVM
(red), and XGBoost (purple). (B) ROC curves for our method (blue), fully-connected using all feature (green), fully-connected only using lagent knowledge (red), fully-
connected only using molecular interaction (purple), and fully-connected only using chemical property (brown).
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the proportions of predictions between natural compound and
disease) of independence based on the hypergeometric
distribution of the numbers in a contingency table (Agresti,
1992). To obtain the contingency table of each prediction, the
number of PubMed abstracts was counted based on whether they
included the natural compound and whether they included the
target disease. The number of significant predictions of the high-
scored set (nf � 58.53 ± 14.01) was markedly larger than those of
the low-scored (nf � 13.46 ± 7.42) and random sets (nf � 27.86 ±
9.98). Lastly, we performed the Mann-Whitney U test to confirm
the statistical difference of above analysis among the high-scored,

low-scored, and random sets was significant. A p-value of Mann-
Whitney U test lower than 0.05 was considered statistically
significant. The result indicated that all statistical analysis
results were significantly different among the high-scored, low-
scored, and random sets.

Animal and Clinical Studies
In this study, the medicinal uses of natural compounds were
identified by deep learning. To evaluate the predicted effects of
the natural compounds, we performed evidence-based analysis
(Table 5). Firstly, we investigated in vitro and animal studies. 5-

TABLE 4 | The statistical analysis was performed by comparing co-occurrence, Jaccard index and Fisher’s exact test values among high-score, low-scored, and randomly
selected sets. Statistical significance was calculated by the p-value of Mann-Whitney U test.

Co-occurrence Jaccard index Fisher’s
exact test a

High-scored set 0.87 ± 0.18 1.07 × 10−4 58.53 ± 14.01
Low-scored set 0.09 ± 0.03 2.17 × 10−8 13.46 ± 7.42
Randomly selected set 0.23 ± 0.11 4.31 × 10−5 27.86 ± 9.98
Mann-Whitney U test (p-value) H vs. L <0.001 <0.001 <0.001

H vs. R <0.001 <0.001 <0.001
L vs. R <0.001 <0.001 <0.001

ap-value threshold of Fisher’s exact test is 0.001.

TABLE 5 | Predicted pharmacological effects of natural compounds in each phenotype.

Disease Compound Animal
and clinical studies

Alzheimer’s disease 4,5-dicaffeoylquinic acid PMID: 32075202
3,4-dicaffeoylquinic acid PMID: 32075202

Rheumatoid arthritis Tangeretin PMID: 31344704
Gossypol PMID: 23974697

Bacterial infection Indolylmethylglucosinolate PMID: 24360830
Gentianamine PMID: 12805773

Carcinoma Melatonin PMID: 28415828
Diabetes mellitus, type 2 Gambogic acid PMID: 29129773

Gamma-oryzanol PMID: 26718022
Heart failure Ergosterol PMID: 19753490

Arginine PMID: 15226784
Hypertension Reserpine PMID: 27997978

Norepinephrine PMID: 29915014
Octopamine PMID: 6125331
Digitoxin PMID: 26321114

Myocardial infarction Resveratrol PMID: 31182995
Nausea Pyridoxine PMID: 25884778

Camphene PMID: 29614764
Pain Morphine PMID: 8544547

Carvacrol PMID: 23791894
L-menthol PMID: 20171409

Parkinson’s disease Salsolinol PMID: 9120428
dl-laudanosine PMID: 8769881

Skin disease Neohesperidin PMID: 23285810
Sleep initiation and maintenance disorders Norephedrine PMID: 26321114

Melatonin PMID: 23691095
Colchine PMID: 14744269

Stroke Aspirin PMID: 31867054
Agmatine PMID: 20029450

Urinary tract infection 5-Methylcytosine PMID: 7767983
Cytosine PMID: 2041144
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Caffeoylquinic acid may prevent cognitive impairment in mice
with Alzheimer’s disease (Ishida et al., 2020). Tangeretin may
have therapeutic effects on rheumatoid arthritis in a rat model (Li
et al., 2019). Gossypol family members, such as BH3 mimetics,
may have benefits in the management of rheumatoid arthritis
(Billard, 2013). Indolyl-methyl-glucosinolate was reported to
exert anti-inflammatory activity (Vo et al., 2014), and
gentianine showed low anti-inflammatory activity in
carrageenan-induced hind-paw edema (Perez, 2001).
Gambogic acid may ameliorate angiogenesis in mice with
diabetic retinopathy (Cui et al., 2018). Gamma-oryzanol was
shown to be safe and effective in improving the conditions of
diabetes mellitus in several animal studies (Szcześniak et al.,
2016). Octopamine may be involved in central blood pressure
regulation (Delbarre et al., 1982). According to the reperfusion
duration, route of administration, and timing of the pretreatment
regimen, resveratrol showed benefits in the treatment of
myocardial infarct-sparing (Mao et al., 2019). N-methyl-(R)
salsolinol, as an endogenous neurotoxin, may induce
Parkinson’s disease in rats (Naoi et al., 1997). The
proliferation of MDA-MB-231 cells was prohibited using
neohesperidin in a time- and dose-dependent manner in
human breast adenocarcinoma (Xu et al., 2012). Tritiated
norephedrine may inhibit the substitution of beta-
phenylethylamines in rats (Henderson et al., 1995). Agmatine
protected brain tissues from edema after cerebral ischemia in
mice (Kim et al., 2010).

Next, we checked clinical studies. Melatonin may enhance the
therapeutic effects of various anticancer drugs (Li et al., 2017).
Ergosterol biosynthesis inhibitors may have curative activities in
murine models of acute and chronic Chagas disease (Urbina,
2009). In patients with chronic stable congestive heart failure,
L-arginine prolongs the exercise duration (Bednarz et al., 2004).
Reserpine may reduce systolic blood pressure as a first-line
antihypertensive drug, as shown in a Cochrane review
(Shamon and Perez, 2016). Plasma norepinephrine is directly
related to muscle sympathetic nerve activity values in
hypertensive group (Grassi et al., 2018). In a blind placebo-
controlled trial, a pyridoxine-doxylamine combination appears
to be safe for pregnant women suffering from nausea and
vomiting associated with pregnancy (Koren et al., 2015). RCTs
showed that Zingiber officinale Roscoe, which contains
camphene, can be used to alleviate nausea and vomiting in
pregnant women with no common side effects (Stanisiere
et al., 2018). In a randomized double-blind crossover study,
the use of oral morphine for pain control led to a reduction in
pain intensity relative to placebo use (Moulin et al., 1996).
Eugenol and carvacrol were shown to induce oral irritation,
causing various types of pain (Klein et al., 2013). A single
patch containing methyl salicylate and l-menthol significantly
relieved the pain associated with mild to moderate muscle strain
(Higashi et al., 2010). Laudanosine prevented NADH-linked
mitochondrial respiration and complex I activity as a
neurotoxin that promotes Parkinson’s disease (Morikawa
et al., 1996). Melatonin decreases sleep onset latency, increases
total sleep time, and improves overall sleep quality, as shown in a
meta-analysis (Ferracioli-Oda et al., 2013). One case study

revealed that long-term colchicine therapy leads to
symptomatic respiratory muscle weakness (Tanios et al., 2004).
Clopidogrel monotherapy leads to lower risks of major adverse
cardiovascular or cerebrovascular events compared with aspirin
treatment (Paciaroni et al., 2019). Demethylation of 5-
Methylcytosine may help in the management of interstitial
cystitis (Shahid et al., 2018). Flucytosine may serve as an
effective and safe treatment for urinary tract infection
(Fujihiro et al., 1991).

DISCUSSION

In recent years, natural compounds have received considerable
attention as an important resource for the development of drugs
and dietary supplements owing to the increasing evidence of their
health-promoting effects. Therefore, numerous attempts have
been made to determine the medicinal properties of natural
compounds through scientific analysis. Most previous studies
have focused on in vitro and in vivo approaches, but these
approaches have limitations in terms of cost and time. As an
alternative, in silico analysis has been proposed, but another
bottleneck effect may occur owing to the heterogeneous and
incomplete nature of the information on natural compounds.

Our previous studies have shown that natural compounds
have relatively limited chemical and molecular information
compared with drugs (Noh et al., 2018; Yoo et al., 2018a; Yoo
et al., 2018b; Yoo et al., 2018c). Analyzing this incomplete
information using conventional statistical methods can distort
the results or limit the coverage. In addition, the combination of
various types of information is difficult to consider. Thus, we
applied the partially connected deep neural network to solve these
problems. Our underlying hypothesis consisted of two parts.
First, even if a certain type of information is incomplete, its
effect can be mitigated by utilizing many other types of
information in the learning process. In general, we believe that
the more kinds of information we use, the better we can make the
model. But it becomes difficult to consider the heterogeneous
characteristics of the information. In addition, as the number of
features increases, the number of samples required for learning
increases. In other words, using a large number of features does
not always improve the performance of the model. The
prerequisite for this is that there must be a sufficient amount
of samples compared to the number of features. As shown in the
results of this study, when a fully connected neural network was
trained using complex and heterogeneous features, the
performance was rather poor than when fewer features were
used. Therefore, this study applied partially connected structure
to alleviate the incompleteness of natural compound information
by applying heterogeneous and complex characteristics. This
approach is meaningful in that it provides directions on how
to utilize heterogeneous and complex information on natural
compounds in the future study. Second, if a natural compound
has similar properties to certain approved drugs, this compound
is more likely to have medicinal effects similar to that of the drugs.
According to the validation results, the model incorporating
various types of information outperformed the models
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incorporating a single type of information. This indicated that the
simultaneous processing of various types of information led to
synergy in the deep learning model. If our approach did not
mitigate the incompleteness of the information, the performance
would have converged to the average of the models using a single
type of information. Moreover, it was confirmed that the model
trained with drug information can successfully predict the
medicinal effects of natural compounds. These results
supported our underlying hypothesis.

Our study had additional strengths in the following aspects.
First, various types of natural compound and drug information,
including latent knowledge, molecular interactions, and chemical
properties, can be utilized in many other in silico studies. All of
the information was not extracted under specific conditions or
constraints; thus, they can be easily used in various fields. We
expect that the information will help address the lack of
information that natural compound-related studies have been
experiencing. Moreover, it can be utilized in drug-related studies
such as drug repositioning, drug-drug interactions, and drug-
target identification. Second, we can perform bidirectional
analysis, including both bottom-up and top-down analyses.
Our approach was basically a bottom-up analysis, as it was
possible to find medicinal natural compound candidates
for disease treatment based on the model trained using
the extracted natural compound information.
Additionally, we can perform top-down analysis of the
predicted results by investigating detailed characteristics,
including molecular mechanisms, oral bioavailability, drug
availability, and tissue specificity, based on the input
features. In conclusion, our study provided a combination
of top-down and bottom-up analyses for more precise
prediction.

There are additional considerations that may improve our
method. First, there was a limited number of drugs and natural
compounds that were used as training and test sets in the deep
learning model. In the training step, a total of 2,882 approved
and investigational drugs were used, which is relatively small
compared with the number of input features. To compensate
for this problem, inferred compound-disease associations from
the CTD database were used in training, but another problem
still remained: the inferred information was relatively
unreliable. Furthermore, in the test step, only 4,507 natural
compounds were considered owing to the limited current
knowledge on natural compounds. However, these problems
will be solved as knowledge on natural compounds will
accumulate in future experiments. Second, it was difficult to
clearly interpret the exact manner in which the current deep

learning model made predictive results. This problem has been
raised continuously in the field of machine learning, and efforts
have recently been made to solve it through layer-wise analysis
(Montavon et al., 2010; Samek et al., 2017; Montavon et al.,
2018). Therefore, we plan to apply the layer-wise analysis
algorithm to the proposed model to interpret the
predictions. With further improvements, we expect that our
model will make more reliable predictions of the medicinal
uses of natural compounds.
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