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The insulin regulated aminopeptidase (IRAP) has been proposed as an important
therapeutic target for indications including Alzheimer’s disease and immune disorders.
To date, a number of IRAP inhibitor designs have been investigated but the total number
of molecules investigated remains quite small. As a member the M1 aminopeptidase
family, IRAP shares numerous structural features with the other M1 aminopeptidases. The
study of those enzymes and the development of inhibitors provide key learnings and new
approaches and are potential sources of inspiration for future IRAP inhibitors.

Keywords: insulin regulated aminopeptidase, aminopeptidase, enzyme inhibitor design, transition state analog,
small molecule inhibitor, peptidomimetic

INTRODUCTION

The insulin regulated aminopeptidase (IRAP) is a zinc-dependent M1 aminopeptidase and a type II
transmembrane protein with a cytoplasmic N-terminal domain and an extracellular/intra-
endosomal C-terminal domain containing the catalytic zinc domain (Keller et al., 1995; Keller
et al,, 2002). IRAP is found in almost all human tissues (Keller et al., 1995; Tsujimoto and Hattori,
2005) and is known to be expressed in a range of neuronal cells (Fernando et al., 2005), placental
cells (Nomura et al., 2005), and leukocytes (Saveanu et al., 2009). IRAP appears to play three distinct
physiological roles. Firstly, IRAP degrades a number of extracellular signaling peptides through the
removal of the N-terminal amino acid. Proposed substrates include oxytocin, vasopressin,
angiotensin III, Met-enkephalin, dynorphin A, neurokinin A, neuromedin B, somatostatin, and
CCK-8 (Rogi et al., 1996; Herbst et al., 1997; Matsumoto et al., 2001; Lew et al., 2003; Tsujimoto and
Hattori, 2005), although the physiological relevance of these remains controversial. Secondly, IRAP
participates in MHC class I antigen presentation through amino terminal trimming of exogenous
cross-presenting peptides (Saveanu et al., 2009; Saveanu and van Endert, 2012). Thirdly, IRAP is co-
located with Glut4 in insulin-responsive membrane vesicles and is thought to play a role in the
insulin-induced translocation of these vesicles to the plasma membrane thus regulating cellular
glucose uptake (Waters et al., 1997; Bryant et al., 2002; Pan et al, 2019). Interestingly, genetic
deletion of IRAP in mice has not been associated with any major health defects, but rather provides
protection against damage due to cerebral ischemia (Pham et al., 2012), thrombosis (Numaguchi
etal.,, 2009; Gaspari et al., 2018) in models of those respective injuries, as well as diet-induced obesity
(Niwa et al., 2015).

Commensurate with this pleiotropic character, IRAP is a potential therapeutic target for a range
of therapeutic applications. In particular, IRAP is a potential therapeutic target for the treatment of
Alzheimer’s disease and other cognitive impairments. Rodents treated with the IRAP inhibitors
such as Angiotensin IV (AnglV, 1) (Figure 1) via intracranial injection or subcutaneous
administration, show improved performance in learning and memory (Wright et al, 1999;
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FIGURE 1 | Chemical structures of IRAP inhibitors.
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Albiston et al., 2001; Pederson et al., 2001; Lee et al., 2004; Gard,
2008; Golding et al., 2010). The cellular mechanism for this
increased learning is unclear and may be attributable to
modulation of glucose uptake via GLUT4 containing vesicles
or reduced degradation of oxytocin and vasopressin, which have
both been shown to improve learning and memory (Vanderheyden,
2009; Fidalgo et al., 2019). A second emerging therapeutic
application is the potential of IRAP inhibitors to protect against
stroke, thrombosis, and obesity-related disorders in comparable
fashion to the knockout phenotypes. A third therapeutic potential
for IRAP inhibitors is drawn from their role in preparing peptides
for cross-presentation. Disruption of this function by inhibitors has
been demonstrated in vitro and underscores their potential
application in cancer immunotherapy or control of autoimmunity
(Stratikos, 2014; Papakyriakou et al,, 2015; Kokkala et al., 2016).
Together, this pool of research suggests that there may be a number
of indications for IRAP inhibitors.

A QUICK SNAPSHOT OF IRAP INHIBITOR
DEVELOPMENT

The search for inhibitors of IRAP dates back to its discovery as
oxytocinase in 1959 (Hooper, 1959). In this first study of serum

aminopeptidase activity from human placentae, Cu®*, di-
isopropylphosphofluoridate (DFP), tetraethylpyrophosphate
(TEPP), and ethylenediamine tetra acetic acid (EDTA) were
shown to block the enzyme activity, signaling the metalloprotease
nature of the enzyme. The first attempts to block this with
competing ligands is described soon after using modified
oxytocin peptides (Berankova et al., 1960; Berankova and Sorm,
1961). However, further progress appears to have been hampered
by the challenges of the complex protease mixtures, including other
M1 family members, in the tissue sources being studied.

A major step forward was the identification of the
hexapeptide, AngIV, 1 (1) as an IRAP inhibitor. The memory
enhancing effects of Ang IV administration and as well as its
inhibitory effect on oxytocin metabolism were both reported and
investigated separately prior to the appreciation that these effects
were modulated through the action of a single target - IRAP
(Braszko et al., 1988; Albiston et al,, 2001). Ang IV is a
component of the renin-angiotensin system as a degradation
product from the proteolytic truncation of the vasoconstricting
peptide, angiotensin II. With good affinity but poor plasma
stability, successful structural modifications of 1 have led to the
B-amino acid containing peptide mimetic 2 (K; = 27 nM), which
contains both N and C terminal B-amino acids and is less
susceptible to degradation by IRAP (Lukaszuk et al., 2008) and
the analogue IVDE77 (Nikolaou et al., 2013). In an alternate but
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comparable peptidomimetic approach, cyclic compounds, HA-
08, 3 (K; = 3.3 nM) and analogs were developed (Andersson et al.,
2010). The design of these compounds had in mind IRAP’s
unique ability to process cyclic peptides like oxytocin and
vasopressin as part of the design. HA-08 was recently co-
crystallised with IRAP (Mpakali et al., 2020), and a considerable
body of SAR data pertaining to the cyclic structure has been
accumulated (Andersson et al., 2011; Barlow et al., 2020).

Other IRAP inhibitors have been developed from
investigations into the S1 subsite using fluorogenic substrates.
Non-natural amino acids such as homoPhe and Nle were
identified as S1 residues that conferred some substrate
selectivity over other M1 aminopeptidases, ERAP1 and ERAP2
(Zervoudi et al.,, 2011). The selectivity of these probes inspired
the development of the aminobenzamide inhibitor 4, which has
good potency (IC5o = 110 nM) and selectivity against ERAP1 and
ERAP2 (Papakyriakou et al.,, 2015). Transition state mimetics
which build on the growing understanding of P1 and P1' SAR
have also been effective. In particular, a number of phosphinic
acids including 5 have exhibited good potency (Kd = 18 nM)
(Kokkala et al., 2016). Compound 5 was also the first inhibitor to
be co-crystallised in complex with IRAP (Mpakali et al., 2017a).

The first the small molecule inhibitor series to be described
were benzopyrans discovered by a virtual screening approach,
including HFI-419, 6 (Albiston et al., 2008; Mountford et al.,
2014). This molecule also displays good potency (K; = 0.48 puM).
More recently, high throughput screening approaches have led to
the discovery of 7 (ICso = 6.1uM) and 8 (ICso = 0.4uM) (Engen
et al., 2016; Vanga et al., 2018).

While this represents a diverse series of compounds that
have played their roles in defining the pharmacology of
IRAP inhibitors, none have emerged as bone fide drug
candidates as yet. In part, the challenges of delivery to the CNS
for indications such as Alzheimer’s disease have hampered the
progression of peptide-like molecules and have also proved
challenging for small molecules. Similarly, for immunological
antigen processing, intracellular delivery will be a requirement.
Advancing these, or future series of IRAP inhibitors, will
therefore require close attention to the specific requirements
related to each indication.

TABLE 1 | M1 aminopeptidases.

INSPIRATIONAL INHIBITORS WITHIN THE
M1 AMINOPEPTIDASE FAMILY

The human M1 aminopeptidase family, which includes IRAP,
contains 12 members (Table 1) (Rawlings et al., 2014). All
members utilize a single catalytic zinc atom in a conserved
HExxHx18E motif and contain a substrate binding domain
comprised of a conserved GXMEN motif. Structural similarities
between M1 aminopeptidases result in a number of common
substrates that are degraded by more than one family member.
Indeed, the N-terminal specificity of M1 aminopeptidases in
known to be broad and overlapping, and inhibitors are usually
required to engage several subsites in order to achieve selectivity
(Rawlings and Barrett, 2013).

The collected crystallographic data (Table 1) supports the
common structural features of the M1 family as well as various
archetypes that distinguish them. A conserved tyrosine residue
typically binds the distal C-terminal, and interdomain movement
may allow binding of diverse substrates (Cadel et al., 2015;
Drinkwater et al., 2017). In particular, both closed and open
conformations of the catalytic domains are observed. A dynamic
model has been proposed whereby the domains II and IV close
around extended substrates to support binding and hydrolysis
(Mpakali et al., 2020). This mode of binding may be mimicked by
inhibitors, but the dynamic nature provides a challenge to
structure-based inhibitor design.

Other members of the M1 aminopeptidase family have also
been identified as targets for therapy, most notably APN, APA,
LTA4H, and ERAPI. Given the similarities of the family members,
it seems that the study of other inhibitor designs within the M1
aminopeptidase family may provide interesting insights into
inhibition mechanisms that are pertinent for inhibitor design and
could be exploited to provide new IRAP inhibitors.

ISOFORM HOPPING—ENDOPLASMIC
RETICULUM AMINOPEPTIDASE 1

As alluded to above, inhibitors of one aminopeptidase class can
be expected to inhibit other classes. In a pessimistic sense, this

M1 Aminopeptidases Abbreviation

S1 substrates

Publications* X-ray structures”

Insulin Regulated Aminopeptidase IRAP C,LKRM 170 B5MJ6 (Mpakali et al., 2017a), 4PJ6 (Hermans et al., 2015)
Aminopeptidase N APN AFY,LP 1700 4FYS (Wong et al., 2012), 6BV3 (Joshi et al., 2017)
Aminopeptidase A APA E, D 515 4KXB (Yang et al., 2013)

Leukotriene A, Hydrolase LA4H AR L 486 B6ENB (Numao et al., 2017), 605H (Lee K. H. et al., 2019)
Thyrotropin-releasing hormone-degrading ectoenzyme ~ TRHDE pGlu 9

Puromycin-sensitive aminopeptidase PSA ALK 109

Arginyl aminopeptidase N APB R, K 111

Endoplasmic reticulum aminopeptidase 1 ERAPA L, M,C, 128 6T6R (Liddle et al., 2020), BRYF (Giastas et al., 2019)
Endoplasmic reticulum aminopeptidase 2 ERAP2 R, K, M 31 5K1V (Mpakali et al., 2017b)

Arginyl aminopeptidase like 1 RNPL1 ALSLM 20

Aminopeptidase Q APQ L, R K, 13

Aminopeptidase O APO R, N 4

*Publications in PubMed that contain the M1 aminopeptidases name in the title, abstract or text.

*Recent examples of crystal structures deposited in the Protein Data Bank (PDB).
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characterizes the challenge of achieving selectivity, while in a
positive sense, redesigns can be used to tune selectivity between
family members without major changes to the core molecular
scaffold. This selectivity transitioning often manifests within
derivative libraries. For example, Zervoudi et al. identified the
phosphinic acid inhibitors DG002 (9) and DG013 (10) to target
antigenic processing enzymes, ERAP1, ERAP2, and IRAP
(Figure 2) (Zervoudi et al., 2013). These compounds and, in
particular, the R,S,S-diastereomer, DGO013A, showed good
potency across the three isoforms. The same team showed
replacement of the central leucine yielded the IRAP selective
compound 5 (DG026A) (Mpakali et al., 2017a).

Note that phosphinic acids have an even broader general
history. As far back as 1989, such compounds were described as

A JQ
HO o
9, DG002 10, DGO13

H o)
OH ©
H OR HO’N N N
HO~ N o) H0
) H 9o

12, tosedostat, R = cyclopentyl
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FIGURE 2 | M1 aminopeptidase inhibitors from other families.

14, actinonin

transition state analogs for metalloproteases (Grobelny et al., 1989;
Yiotakis et al., 1994) and are represented in the M-17 Leucine
amino peptidase inhibitors described in 2003 by Grembecka et al.
(2003). The broader activity and/or selectivity of these ligands
needs to be considered (Talma et al.,, 2019). It is an interesting
feature that these peptidomimetic transition state analogs possess
intracellular activity also (Koumantou et al., 2019).

SUCCESS IS HARD TO ACHIEVE —
AMINOPEPTIDASE N

As the archetype of the M1-aminopeptidase family, APN has
been much studied and numerous attempts to develop inhibitors
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have been described. These have been extensively reviewed
recently by Amin et al. (2018). As a protein, APN shares some
features also characteristic of IRAP. They include the facts that
APN is recognized to be involved in multiple functions (enzyme
for peptide cleavage, and signalling molecule in signal
transduction), it exhibits broad substrate specificity (although
distinct from IRAP) and that it has been shown by crystallography
to exist in an open and closed form (Joshi et al., 2017). It has been
by far the most studied with respect to inhibitor development,
although the results of those efforts are yet to yield an unambiguous
drug candidate.

While a large body of work has accumulated in the
development of APN inhibitors, the best known examples that
have advanced to clinical studies, bestatin (11) and tosedostat (12),
are potent but non-selective. Bestatin, bearing the pharmacophoric
B-amino o-hydroxy amide motif was discovered as a natural
product inhibitor. Tosedostat, is a synthetic product but shares
the hydroxamic acid motif of the natural product actinonin (14)
(Figure 2). While both bestatin and tosedostat’s acid metabolite,
CHR-79888 (13), show good APN inhibition (ICsy ~ 200nM), the
activity in vivo is not thought to derive simply from APN
inhibition. Indeed, CHR-79888 is a potent LTA4 hydrolase
inhibitor. A useful lesson to note regarding metabolism is that
the circulating bioactive may have a much-altered selectivity profile
compared to the administered drug.

Otherwise, these two compounds signal the generalised
challenges of developing selective small aminopeptidase
inhibitors. For active site binding aminopeptidases, the likely
pharmacophore is built around S1 and S1’ binding and non-
scissile interactions with the catalytic zinc atom. The compounds
that achieve this typically will not be impeded from comparable
interactions in other zinc metallopeptidase sites, rendering them
non-selective. In developing substrate mimetic inhibitors the on-
going challenge has been to tune down the generic zinc binding
moiety (which can drive affinity) to exploit the subsite differences
of across the metalloprotease families (Tsoukalidou et al., 2019).

The challenges associated with peptide-based analogs can
imply replacement of backbone peptide bonds and the use of
non-proteinogenic side chain motifs to enhance selectivity. For
the former, the replacement of peptide bonds with ureido
equivalents in the hydroxamic acid series led to some potent
APN inhibitors such as 15. In the latter case, another series of
hydroxamate based inhibitors exemplified by 16 (Ki 4.5 nM)
were described by Lee J. et al. (2019). These molecules have no
obvious peptide character and may offer improved opportunity
for achieving selectivity.

Another small molecule series of interest are
aminobenzosuberones, which have been identified as a scaffold
that selectively inhibits mono-metallic aminopeptidases with 17
showing sub-nanomolar affinity against human APN (K; = 350
pM) (Peng et al., 2017; Salomon et al., 2018). The origin of this
series dates back to corresponding tetralones (Schalk et al., 1994)
and the class appears to provide the advantages of small molecule
inhibitors (low MW, potential oral availability, potentially BBB
penetrating). Co-crystallization of a phenyl substituted

benzosuberone with EcPepN showed the binding poExxHx;gE
motifs with the ketone function present in an sp” hydrated form,
acting as transition state mimetic not dissimilar from the PB-
amino o-hydroxy motif of bestatin (Peng et al., 2017). The
implications for IRAP inhibitor design in this class are evident
with one example showing strong inhibition of IRAP also (K; =
34 nM). One cautionary note is that these compounds, like many
small molecules, are predicted to have challenging metabolism
and toxicity profiles although this should be tested experimentally
(Salomon et al., 2018).

DESIGNING FOR SELECTIVITY AND IN
VIVO ACTIVITY —AMINOPEPTIDASE A

In contrast, the development of the aminopeptidase A inhibitor,
Firibastat (18) presents an optimistic picture of what is possible
in the aminopeptidase class (Ferdinand et al., 2019). Firibastat
has entered phase III clinical studies for therapy of treatment-
resistant hypertension; yet at first view, it would seem an unlikely
therapeutic. Firstly, the active species of Firibastat, (S)-3-amino-
4-mercaptobutane-1-sulfonic acid (19, EC33) is a thiol. Thiols
are known to be effective chelators of zinc and have been
employed in a range of zinc enzyme inhibitors, most notably
captopril. However, the capacity for numerous off-target
chelating or covalent disulfide forming interactions would
typically argue against pursuit of such compounds.

The discovery of Firibastat has a long history. Early work by
Fournié-Zaluski et al. employed B-amino thiols as substrate
mimetics targeting the S' subsite of APN (Fournie-Zaluski
et al, 1992). An interesting comparison of zinc chelating
groups within this report suggested that B-amino thiols are
more effective inhibitors of APN than corresponding
hydroxamic acid, phosphate, and carboxylate inhibitors. A
compound from the series was found to have significant CNS
activity when administered by iv injection as its disulfide
prodrug form.

Turning their focus to APA, which cleaves N-terminal Glu
or Asp residues and in particular cleaves the N-terminal Asp from
angiotensin II, blocking angiotensin III formation. They found the
acidic sulfonic acid derivative, EC33 was a potent and selective
inhibitor (APA Ki = 0.37 uM, APN Ki = 25 uM) (Chauvel et al.,
1994a; Chauvel et al., 1994b). Intracerebroventricular injection of
EC33 was found to prevent APA production of the hypertensive
agent angiotensin III, lowering central arterial blood pressure
(Zini et al, 1996). By developing the corresponding disulfide
prodrug 18, it has been possible to move to oral administration.
The oral bioavailability is modest (10-15%), and the drug half-life
is short (40 min) but with a somewhat heroic dose of 500 mg,
twice daily Firibastat effectively reduced blood pressure in the
cohort (Ferdinand et al., 2019). While these clinical studies
continue, a second generation oral inhibitor N1956/QGC006
(20) with improved pharmaceutical properties is progressing
(Keck et al., 2019).
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NON-CANONICAL BINDING SITE
LIGANDS —LEUKOTRIENE A4
HYDROLASE

Leukotriene A, hydrolase has been another M1 aminopeptidase
that has attracted attention as a potential therapeutic target,
particularly in inflammatory disease. As suggested by its name,
the best studied feature of the enzyme is not its ability to cleave N-
terminal amino acids form substrate peptides, but rather to
hydrolyse the epoxide ring of Leukotriene A4 to Leukotriene B4
(Haeggstrom et al., 2007). LTB, is an inflammatory lipid and thus
blocking its formation would be considered a therapeutic option.
However, the enzyme has also been shown to process a variety of
peptides, most notably Pro-Gly-Pro a collagen degradation
product which is a pro-inflammatory chemotactic peptide
(Snelgrove et al,, 2010). This implies that the action of LTA,H
has opposing actions, which may be context dependent, and the
opposing activities of LTA4H reside within distinct yet overlapping
active sites, with specific amino acid residues required for each.
Several inhibitors including Bestatin (11) and Tosedostat (12) have
advanced to the clinics as well as Acebilustat (21) which is in phase
2 studies for treatment of cystic fibrosis (Bhatt et al., 2017). Clinical
trial results to date have been disappointing which has led to the
postulate that the inhibiting Pro-Gly-Pro degradation was
countering the desired therapeutic effects. In response, the
concept of biased inhibitors that spare the aminopeptidase
activity has emerged including allosteric ligands (22) that activate
Pro-Gly-Pro hydrolysis only (Lee K. H. et al., 2019) or those that
block LTA, hydrolysis and activate Pro-Gly-Pro hydrolysis.

By analogy, Liddle et al. recently described an allosteric ligand
for ERAPI (23) that activates hydrolysis of small substrates (such
as Leu-AMC) while inhibiting cleavage of longer substrates by
competing with the extended peptide binding site such as the
antigen precursor, YTAFTIPSI. It is postulated to achieve this by
stabilizing the dynamics of active site residues and/or facilitating
conformational change to a partially closed, more active
conformation (Liddle et al., 2020).

The actual benefit of these concepts remains controversial,
especially in the case of the Pro-Gly-Pro-sparing LTA4H
inhibitors (Numao et al., 2017), but the dual activity raises
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