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Spinal muscular atrophy (SMA) is the most common genetic disease affecting infants
and young adults. Due to mutation/deletion of the survival motor neuron (SMN) gene,
SMA is characterized by the SMN protein lack, resulting in motor neuron impairment,
skeletal muscle atrophy and premature death. Even if the genetic causes of SMA are
well known, many aspects of its pathogenesis remain unclear and only three drugs
have been recently approved by the Food and Drug Administration
(Nusinersen—Spinraza; Onasemnogene abeparvovec or AVXS-101—Zolgensma;
Risdiplam—Evrysdi): although assuring remarkable results, the therapies show
some important limits including high costs, still unknown long-term effects, side
effects and disregarding of SMN-independent targets. Therefore, the research of
new therapeutic strategies is still a hot topic in the SMA field and many efforts are
spent in drug discovery. In this review, we describe two promising strategies to select
effective molecules: drug screening (DS) and drug repositioning (DR). By using
compounds libraries of chemical/natural compounds and/or Food and Drug
Administration-approved substances, DS aims at identifying new potentially
effective compounds, whereas DR at testing drugs originally designed for the
treatment of other pathologies. The drastic reduction in risks, costs and time
expenditure assured by these strategies make them particularly interesting,
especially for those diseases for which the canonical drug discovery process would
be long and expensive. Interestingly, among the identified molecules by DS/DR in the
context of SMA, besides the modulators of SMN2 transcription, we highlighted a
convergence of some targeted molecular cascades contributing to SMA pathology,
including cell death related-pathways, mitochondria and cytoskeleton dynamics,
neurotransmitter and hormone modulation.
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INTRODUCTION TO SPINAL MUSCULAR
ATROPHY AND AVAILABLE THERAPIES

Spinal Muscular Atrophy Pathogenesis
Spinal muscular atrophy (SMA) is a severe neuromuscular
disorder affecting children and young adults with an incidence
of one in 3,900–16,000 live births. In Europe, 4,653 patients were
genetically diagnosed between 2011 and 2015, with 992 diagnosed
in 2015 alone (Verhaart et al., 2017). SMA is characterized by
brainstem and spinal motor neuron (MN) degeneration, due to
mutation/deletion of survival motor neuron 1 (SMN1) gene. In
physiological conditions, the encoded SMN protein has many
important roles such as in the assembly of the spliceosome,
biogenesis of ribonucleoproteins, mRNA trafficking and local
translation, cytoskeletal dynamics, cellular bioenergetics,
endocytosis and autophagy (for an extensive review on SMN
functions, see Chaytow et al., 2018). In SMA, its lack determines
motor impairment, muscle atrophy and premature death.
However, the ubiquitous deficiency of SMN protein leads to
consider SMA a multisystemic disorder, since its depletion can
dramatically affect many other organs/systems (including heart,
pancreas and immune system) (Bottai and Adami, 2013).

More in details, in humans there are two SMN genes i) the
telomeric form SMN1, which translates for a ubiquitous protein
(full-length SMN or FL-SMN), and ii) its centromeric
homologous SMN2 which mostly generates a truncated and
rapidly degraded protein delta7-SMN (SMNΔ7) and only
about 10% of FL-SMN (Lorson et al., 1999). Therefore, in
SMA, the production of functional SMN protein depends only
on SMN2 gene and the degree of the disease severity is based on
SMN2 copy number. Indeed, there are four types of SMA
(reviewed by D’Amico et al., 2011; Boido and Vercelli, 2016;
Vaidya and Boes, 2018). SMA 1, also known as Werdnig-
Hoffmann disease, is diagnosed within 6 months of age: it is
the most severe and the most common type (60% of all SMA
cases) and it is generally fatal early on in life. SMA one babies
show severe muscle weakness and trouble breathing due to spared
diaphragm and feeble intercostal muscles; they also have
difficulties in coughing, swallowing and feeding. SMA two is
usually diagnosed between 6 months and 2 years of age, and the
life expectancy is reduced. SMA type 2 babies show significant
delay in reaching motor milestones or fail to meet milestones
entirely: they can sit up without help, though they may need
assistance getting into a seated position, but they are unable to
walk and require a wheelchair. SMA 3, also called Kugelberg-
Welander disease or juvenile SMA, is usually diagnosed after
18 months of age. Individuals affected by SMA three can be
divided in two subgroups depending on the disease onset: i)
patients with onset before 3 years of age are initially able to walk,
but have increasingly limited mobility as they grow due to
scoliosis and many need to use a wheelchair; and ii) patients
with onset after 3 years of age might continue to walk and show
slight muscular weakness. Finally, SMA type 4 is very rare and
usually appears in adulthood (after 18 years of age), leading to
mild motor impairment and no respiratory and nutritional
problems.

Spinal Muscular Atrophy Approved Drugs
Despite the disease severity and its well-known genetic causes,
until 2017 no treatment was available for SMA. Indeed, the efforts
of the scientific, pharmaceutical, academic and clinical
communities led to the discovery of effective drugs able to
restore SMN1 or to increase the expression of SMN2 gene, in
order to compensate the lack of FL-SMN protein.

Nusinersen (Spinraza) from Biogen is the first drug approved
by the Food and Drug Administration (FDA) (in December 2016)
and by the EuropeanMedicines Agency (EMA) (in June 2017) for
both infants and adults with SMA. It is a modified 2′-O-
methoxyethyl antisense oligonucleotide (ASO) designed to
increase the expression of the SMN protein (Chiriboga et al.,
2016). Nusinersen increments the capability of SMN2 to produce
FL-SMN by binding to the intron-splicing silencer region N1 in
the SMN2 pre-messenger RNA (pre-mRNA) promoting exon
seven inclusion (Singh et al., 2006). Since the drug cannot pass
through the blood brain barrier (BBB), it must be intrathecally
administered. On May 2019, another drug, AVXS-101
(Zolgensma) from AveXis, a Novartis company, has been
approved by the FDA, after the publication of the positive
results of the phase one study called START (Identifier:
NCT01547871) on its safety and efficacy after a one-time
infusion in SMA one patients with symptoms before 6 months
of age. In March 2020, it also received a conditional marketing
authorization and it has been approved in May 2020 from EMA
(Zolgensma, 2020a; Novartis, 2020).

AVXS-101 is the non-replicating recombinant AAV9
containing the complimentary DNA of the human SMN gene
under the control of the cytomegalovirus enhancer/chicken-
β-actin-hybrid promoter. The phase 3, open-label, single-arm
and single-dose study delivering AVXS-101 by intravenous
infusion called STR1VE (Identifier: NCT03306277) has been
concluded in November 2019. On March 2020, the company
showed the results of the concluded study STR1VE-US: “nine of
22 patients in the completed pivotal study demonstrated the
ability to thrive, a stringent composite endpoint remarkable
compared to untreated children with SMA type 1; the study
showed that patients achieved rapid and sustained improvement
inmotor function” (for the complete press-release see Zolgensma,
2020b). Up to now, different studies are still ongoing: START
Long Term Follow Up (Identifier: NCT03421977) aims to
estimate the long-term safety on patients who completed the
study START; whereas SPR1NT (Identifier: NCT03505099), a
phase 3 open-label, single-arm, multi-center trial has been
designed to evaluate the safety and efficacy of a one-time
intravenous infusion in pre-symptomatic patients with SMA 1.
The overall expected advantage of the AAV9 is that by a single
administration patients could have a systemic and long-term
lasting expression of SMN1 (Al-Zaidy et al., 2018). A recent
review, which compared all the published data and clinical trials
on AVXS-101, confirmed that it represents an effective therapy
for younger pediatric patients with SMA 1 (Stevens et al., 2020).

Risdiplam (Evrysdi), from Genentech, a member of the Roche
Group, has been approved by the FDA on August 7th, 2020 for
the treatment of children from 2 months of age on of adult (FDA
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Approves Genentech’s Evrysdi (risdiplam) for Treatment of
Spinal Muscular Atrophy (SMA) in Adults and Children
2 Months and Older, 2020). Risdiplam is a mRNA splicing
modifier which increases SMN protein expression. It is a
liquid medicine, which can be administered orally without the
need for hospitalization. Risdiplam is currently under study in
four open-label trials: i) FIREFISH (Identifier: NCT02913482)
and ii) SUNFISH (Identifier: NCT02908685) to investigate safety,
tolerability, pharmacodynamics and kinetics and Efficacy in SMA
1 or SMA2 and 3, respectively; iii) JEWELFISH (Identifier:
NCT03032172) and iv) RAINBOWFISH (Identifier:
NCT03779334) to reveal the long-term efficacy of Risdiplam
in patients who previously received another SMA treatment
and infants from birth till 6 weeks of age, respectively.

Besides the ascertained data reporting the safety profile of
these treatments and their significant benefits for some cohorts of
SMA patients, it is necessary to take into account also their
limitations, not only from the medical point of view but also from
the socio-economical side.

Limits of Current Therapies and the Need of
New Targets
One important limit of the current available treatments for SMA
is that such approaches are merely SMN-dependent strategies
and overlook other molecular pathways contributing to SMA
pathogenesis (see beyond). To overcome this problem,
combinatorial therapies should be considered, in order to
redefine the timing and parameters of administration of the
SMN-enhancing therapies currently in use, and to consider the
synergistic effects with other drugs. Overall, combinatorial
treatment strategies are required to face the SMN-
independent features of SMA pathology. Moreover, the
efficacy of the available treatments strictly depends on the
age/type of patients: indeed, the effects induced by SMN-
enhancing therapies are most consistent in the early-treated
patients, whereas delayed interventions lead to less efficient or
none rescue of motor neuron defects (Hoolachan et al., 2019;
Hensel et al., 2020; Poletti and Fischbeck, 2020). In fact, SMN-
restoring approaches seem particularly effective when the MNs
are still alive and muscle functions not irreversibly
compromised, as in the early phase of SMA disease.
Depending on the age at the beginning of the therapy,
Nusinersen and AVXS-101 can significantly extend the
survival of babies with SMA 1, allowing motor milestone
achievement; similarly, young patients with SMA two also
show progresses on different motor scales after treatment.
However, when Nusinersen is administered in adults patients
with SMA type 2 and 3 (20–68 years old), improvements did not
reach similar significant levels and could just support the
stabilization of motor functions and the reduction in the
symptom worsening (Jochmann et al., 2020; Mercuri and
Sansone, 2020). While on one hand this piece of evidence
strongly encourages the improvement of newborn screening
methods, on the other hand it explains the growing pressure
from late-symptomatic patients and caregivers for accessing to
additional treatments (Richelme, 2019; Ramdas and Servais,

2020). Furthermore, prospective studies with larger patient
numbers as well longer follow-up durations are required to
better define the safety and efficacy of the treatments (Lee et al.,
2019; Malone et al., 2019; Zuluaga-Sanchez et al., 2019).

To note, the current therapies present important limits such as
i) the invasiveness of the administration route (in the case of
Nusinersen), ii) more or less severe side effects, and iii) their cost
and commercial accessibility. Indeed, Nusinersen administration
requires hospitalization since it is administered intrathecally at
least three times per year, for the entire life of the patient.
Moreover, SMA patients generally develop severe scoliosis and
spinal deformities, which in turn complicate or hinder this way of
administration. These limitations can be circumvented by the
development of systemically (as AVXS-101) or orally
administered drugs able to cross the BBB (as Risdiplam)
(Poletti and Fischbeck, 2020). To date, other orally delivered
compounds are in final phases of clinical development and trials
(Ramdas and Servais, 2020): these include a mRNA splicing
corrector, branaplam (LMI070, Novartis), and a fast-skeletal
muscle troponin activator, reldesemtiv (CK-2127107,
Cytokinetics) (Rao et al., 2018). These alternative
administration routes can also assure peripheral SMN-
restoration, complementing the SMN central effects.

Additionally, the available treatments can also cause
important side effects such as headache, back pain
(Nusinersen), acute liver damage, bleeding, and heart damage
(AVXS-101) (Gidaro and Servais, 2019). Moreover, about 5% of
AVXS-101-treated patients can develop anti-AAV9 antibodies
(viral titer greater than 1:50) this can increase the risk for immune
response to gene therapy and reduce its therapeutic benefit (Al-
Zaidy andMendell, 2019). Finally, Nusinersen and AVXS-101 are
listed among the most expensive drugs in the world: the relative
cost-effectiveness ratio data reports, constantly updated, must be
considered (Rao et al., 2018; Hoot, 2019; Malone et al., 2019).

Considering the limitations of the approved drugs for SMA, it
is evident that the search for other potential therapies is
necessary.

Below, we firstly describe two common methods to find new
drugs: drug screening (DS) and drug repositioning (DR).
Secondly, we make a comprehensive review of DS and DR
studies conducted specifically in the SMA field, describing
procedures, models, drug-targeted signaling pathways and
results.

DRUG SCREENING AND DRUG
REPOSITIONING FOR SMA

DS is a process by which a huge amount of compounds can be
relatively quickly tested and selected as effective, by means of
appropriate experimental models. On the contrary, DR (also
currently referred as drug repurposing, reprofiling, retasking,
or therapeutic switching) consists in a strategy to attribute
new uses to drugs (generally already FDA approved) that are
outside the scope of the original medical indications reducing
risks and costs associated with time consuming new drug
development programs. Briefly, the two approaches, eventually
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in combination, exploit the availability of large compound
libraries, which include thousands of chemical and natural
compounds and/or FDA-approved substances: Prestwick
Chemical Library, MicroSource Discovery Systems,
ComGenex, National Institute for Neurological Disorders and
Stroke, TimTec, IBS, and ChemBridge are just few libraries that
have been used to find new SMA therapies during the last years
(Kelley et al., 2004; Sleigh et al., 2011; Konieczny and Artero,
2020). Afterward, once screened in search of specific cellular/
molecular readouts, the substances can be firstly tested on
“simplified” SMA models (cell cultures and/or invertebrates
models), and then (or directly, in some cases) on SMA mice
and/or patient-derived iPSCs (Figure 1).

Many kinds of DS approaches exist since a long time,
including High-throughput, Focused, Fragment, Structural
aided drug design, Virtual, Physiological, and Nuclear
Magnetic Resonance screens (for an extensive review, see
Hughes et al., 2011). These methods can be also extended to
DR research, when FDA-approved drugs (already employed for
the treatment of other pathologies) are investigated. Notably,
High-throughput, Virtual and Physiological screenings are those
ones mainly used in the SMA field.

High-throughput and Virtual screening are two rapid
methods that allow wide-scale assays (by omics studies), in
particular during the first screening phase to identify hit-
compounds. As reviewed in Fox et al., (2006), to date, the
High-throughput approaches, based on phenotypic screening
of entire compound libraries, are commonly used in drug
discovery processes, including different phases: target
validation, assay development, secondary screening, ADME/
Tox, and lead compound optimization (Fox et al., 2006). As
an example, in SMA drug discovery, the 3,6-disubstituted
pyridazine was identified through High-throughput screening
in the NSC-34 cell line containing a SMN2minigene reporter, and
was then chemically modified leading to the synthesis of
Branaplam (nowadays in clinical trial phase 2 for SMA
treatment) (see section Direct and Indirect Modulation of
Survival Motor Neuron 2 Transcription) (Cheung et al., 2018).
On the other hand, virtual screening methods (such as ligand-
based/structure-based virtual screening; as reviewed by McInnes,
2007), which exploit docking of new compounds that could bind
known targets, are widely and successfully used to identify novel
drugs for the treatment of neurodegenerative diseases (Makhouri
and Ghasemi, 2017). Although these virtual screening paradigms

FIGURE 1 |DS and DRmethods as powerful approaches in SMA therapeutic research. The two approaches, eventually in combination, can pave the way for rapid
identification of drugs for novel SMA treatments. The compounds (present in large screening libraries) can be tested for primary outcomes (continuous arrow, in the
middle) firstly on “simplified” SMAmodels (cell cultures and/or invertebrates models), and then on SMAmice and/or patient-derived iPSCs (differentiated in neurons, MNs
and muscle cells, eventually cocultured) to achieve secondary outcomes. In some cases (dotted arrow, in the middle) the hit compounds can be directly tested on
murine models and iPSCs. Created with BioRender software. DR, drug repositioning; DS, drug screening; MN, motor neuron; SMA, spinal muscular atrophy.
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have been poorly carried out in the SMA field, some successful
applications of these methods have been reported: in particular,
molecular docking studies highlighted both the binding mode of
the C5-substituted quinazolines against a RNA metabolism
regulator (the scavenger decapping enzyme, DcpS), and the
binding mode of E-resveratrol, suberoylanilide hydroxamic
acid and valproic acid against HDAC8 (see section Direct and
Indirect Modulation of Survival Motor Neuron 2 Transcription)
(Dayangaç-Erden et al., 2008; Singh et al., 2008; Makhouri and
Ghasemi, 2017). Some of these compounds identified by DS (e.g.,
RG3039 and valproic acid) underwent clinical trial studies for
SMA treatments (Kissel et al., 2011; Gogliotti et al., 2013).
Moreover, molecular docking studies represent a rapid and
cheap strategy to test FDA-approved drugs, paving the way to
DR (Hughes et al., 2011; Pushpakom et al., 2018). Finally, as
reviewed by Hughes et al., (2011), in the last stage of DS process,
the Physiological screening is generally exploited to assay only
hit-compounds (Hughes et al., 2011): indeed, this screening,
based on tissue specific analyses and readouts (as muscular
tissues in case of SMA), can require complex experimental
models, such as transgenic mice (Le et al., 2005).

In the last years, DS/DR methods allowed both an in depth
understanding of SMA pathological mechanisms and the
identification of therapeutic approaches, including enhancing
SMN function and regulating the SMN exon seven splicing.
Furthermore, new targets mainly related to the rescue of the
downstream effects of SMN protein depletion have been also
highlighted. With this purpose, DR strategies have been applied
in SMA field, allowing either the usage of established approaches
on new targets, or the development of novel approaches on
established targets (Ashburn and Thor, 2004). Indeed, the
advantages of this approach can be summarized in three main
features: i) it provides a lower risk of drug failure; ii) it reduces
time frame for drug development, by skipping several clinical trial
steps; and iii) it needs lower investment in clinical trials. This is
due to pre-existing proofs of safety and efficacy for the
repurposed drugs. In fact, the success rates for a repurposed
drug to the market are significantly higher compared to specific
de novo clinical trials (more than 15% in phases II–III clinical
trial) (Hoolachan et al., 2019). For this reason, DR became a
helpful approach in orphan diseases (designation granted by
FDA) such as SMA (Hoolachan et al., 2019). In addition, the
development costs related to DR are estimated to be thousands
folds lower than those of a new chemical compound (Lotfi
Shahreza et al., 2018; Pushpakom et al., 2018).

To date, albeit successfully, the process of DR has been largely
opportunistic and serendipitous, often lacking a systematic
approach aimed at the identification of a drug off-target or
new target effects, suggesting its repositioning (Lotfi Shahreza
et al., 2018; Lipinski and Reaume, 2020). During the early stages
of the DR process (hypothesis generation phase), a potential
repurposable drug can be identified with a high level of
confidence thanks to a systematic approach and by exploiting
different types of data coming from modern DS methods
(i.e., computational and experimental approaches).

The computational approaches, as reviewed in detail by Lotfi
Shahreza et al. (2018), involve the main in silico methods, based

on docking simulation and machine learning (drug-based/
disease-based). These methods allow to evaluate new
indications on chemical ligands and protein targets or to
discover repositioning opportunities (Lotfi Shahreza et al.,
2018). Furthermore, as a natural evolution of these studies,
promising results have been achieved in network-based
computational biology, which attempts to identify
pharmacological targets by reconstructing the biological
network in different pathologies, simulating its interactions
and highlighting correlations between drug targets (Lotfi
Shahreza et al., 2018; Sam and Athri, 2019; Singh et al., 2020).
In this way, the integration of “big data” generated by high-
performance DNA and RNA sequencing, mass spectrometry,
metabolomics and transcriptomic studies leads to the generation
of different types of network-based association studies (Lotfi
Shahreza et al., 2018; Pushpakom et al., 2018; Álvarez-
Machancoses et al., 2020).

DR computational methods have already been exploited in the
SMA field. In particular, Artero’s group using the Prestwick
Chemical Library drug database (constituted by almost 1,280
compounds) (Prestwick Chemical, 2013) discovered a
repurposed FDA-approved small molecule, the antibiotic
Moxifloxacin, with the potential to become a new therapy for
SMA (see section Direct and Indirect Modulation of Survival
Motor Neuron 2 Transcription) (Konieczny and Artero, 2020).
However, DR is a complicated process in which the
computational approach per se is not sufficient to achieve
satisfactory results. Indeed (as reviewed by Pushpakom et al.,
2018; Lipinski and Reaume, 2020), the intertwining of
computational and experimental methods achieves the
reliability of DR approach. Data from large-scale drug screens,
combined with genomic data, binding assays and High-
throughput phenotypic screening, can be used to identify
novel targets of known drugs (Pushpakom et al., 2018;
Lipinski and Reaume, 2020). As an example, in vivo
phenotypic screenings have been also exploited in the SMA
field, allowing the discovery of small molecules able to target
the RNA splicing specifically enhancing the exon seven inclusion
of SMN2 transcript and the SMN protein levels. Indeed, in 2014,
Naryshkin and coll. published the first report of a phenotypic
screen yielding selective SMN2 splice modulators, leading to
Risdiplam (RG7916), a recently FDA-approved drug for SMA
treatment (Naryshkin et al., 2014; FDA Approves Genentech’s
Evrysdi (risdiplam) for Treatment of Spinal Muscular Atrophy
(SMA) in Adults and Children 2 Months and Older, 2020), while
in 2015, Palacino’s group identified the splicing modulator
Branaplam (LMI070) (see section Direct and Indirect
Modulation of Survival Motor Neuron 2 Transcription)
(Palacino et al., 2015). Most importantly, DR phenotypic
screening allowed uncovering novel SMN-independent targets
and drug paradigms, such as Olesoxime (see section
Mitochondria-Related Pathways). This compound has been
identified as potential therapeutic agent for both SMA and
ALS (Calder et al., 2016; Swalley, 2020), since it is able to
preserve mitochondrial function and protect MNs from
degeneration (Calder et al., 2016; Blasco et al., 2018; Rovini
et al., 2019). Indeed, a successful repositioning strategy in
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SMA treatment may be to identify drugs that are currently used to
treat other neuromuscular diseases [such as ALS, hereditary
spastic paraplegia (HSP) and Duchenne dystrophy (DD)
(Patten et al., 2014)]: FDA-approved drugs modulating the
pathogenetic pathways shared by these diseases have been
proposed for SMA patients, as riluzole (Rilutek

™
or

Teglutik
™
) (see section Neurotransmitters’ Modulation),

commonly administered for ALS (Calder et al., 2016;
Hoolachan et al., 2019; Hensel et al., 2020). Also other drugs
originally developed for different neurodegenerative diseases
(such as rasalgiline and masitinib) could potentially represent
promising SMA treatments (Hoolachan et al., 2019; Hensel et al.,
2020).

Overall, we will focus here on the different DR and DS
approaches employed to screen and identify candidate
molecules for SMA treatment. Typically, in vitro phenotypic
screenings exploit a wide range of cell-based assays in a 96-
well format, including cellular disease models, highly engineered
immortalized cell lines or different kind of induced Pluripotent
Stem Cells (iPSCs); moreover, whole-organism phenotypic assays
(using C. elegans, Drosophila, zebrafish, and mouse models) are
also very important for their physiological relevance.

EXPERIMENTAL MODELS FOR DRUG
SCREENING/DRUG REPOSITIONING
STUDIES IN THE SPINAL MUSCULAR
ATROPHY FIELD

Over the years, several experimental models have been developed
to identify and improve SMA therapies. In vitro models are
needed for High-throughput screenings where hundreds or
thousands of compounds must be tested, while animal models
are more indicated for the final study phases to assess
phenotypical effects of hit compounds (Figure 1).

To perform large High-throughput screenings for SMA
therapy, different cell lines can be used, including NSC-34
(murine MNs), HEK-293 (human embryonic kidney cells) and
C33A (human cervical squamous cell carcinoma) (Zhang et al.,
2001; Sumner et al., 2003; Jarecki et al., 2005). A more recent
approach consider the use of patient fibroblasts and iPSC models,
allowing the possibility to tailor the medical treatments as
personalized medicine (Lai et al., 2017; Wang et al., 2019).

These experimental models, to apply High-throughput
screening systems, are pivotal for the rapid validation of
compound libraries. For example, Jarecki and coll. used a
SMN2 promoter β-lactamase reporter gene test in NSC-34 cell
line (Jarecki et al., 2005), while Zhang and collaborators
developed a wide-scale screening approach based on the
insertion of SMN2-luciferase or SMN2-GFP mini-gene
reporters into HEK-293 and C33A (Zhang et al., 2001). These
cellular models allowed to easily identify compounds that
interfere with SMN2 gene expression and, to date, SMN2-
luciferases mini-gene reporter is the most used one (Son et al.,
2019). In 2013, Letso’s group developed a High-throughput
screening test, to evaluate through ELISA assays the

endogenous SMN protein levels in SMA patient fibroblasts
(GM03813, GM09677, and GM00232) (Letso et al., 2013).
More recently, Wang and collaborators tested a small library
of 980 compounds, using the HEK293 cell line in which human
SMN2-GFP gene reporter was targeted by CRISPR/
Cas9–mediated homologous recombination (Wang et al., 2019).

Cellular models can also be used to evaluate hit-compounds
during the final screening phases; the most used are SMA
patient fibroblast lines (GM03813, GM03814, and GM22592)
(Cherry et al., 2013; Wang et al., 2019), human iPSCs-derived
neurons (Lai et al., 2017) or MNs (Wang et al., 2019), and co-
culture of human MNs and skeletal muscle cells (Santhanam
et al., 2018). Very recently, a promising (but not yet tested for
DS/DR) tool has been developed: it consists in an on-chip 3D
neuromuscular junction (NMJ) model, with optogenetically
controllable human iPSCs-derived MNs and skeletal muscle
cells (Osaki et al., 2020).

However, in the majority of cases, the final screening phase to
assess effectiveness of selected hit-compounds is carried out using
animal models. The percentage of identity and evolutionary
divergence among different species can be evaluated through
the amino acid differences of SMN protein. Homo sapiens, Mus
musculus, Danio rerio, Xenopus laevis, Caenorhabditis elegans,
Drosophila melanogaster, and Schizosaccharomyces pombe have
wide evolutionary distances, with range of SMN protein
conservation from 83 to 18.9% identity. However, the
N-terminal Gemin2 binding domain, the central Tudor
domain, and the C-terminal YG box are highly homologous
among all species (Osman et al., 2019). Among the
invertebrate models, C. elegans, together with D. melanogaster,
represents the most exploited animal model for High-throughput
screening studies for in vivo, allowing to study the mechanisms of
MN degeneration underlying SMA and to test compounds. Its
small size, short life cycle, body transparency, ease to generate
transgenic animals, and low maintenance costs contribute to its
large use in experimental studies. Moreover its nervous and
locomotor systems are well known, since its 302 neurons and
95 body wall muscles are all identified (C. elegans Sequencing
Consortium, 1998; Dimitriadi and Hart, 2010; Wolozin et al.,
2011; Cáceres et al., 2012; Lee et al., 2013; de Carlos Cáceres et al.,
2018). To date, several C. elegans Smn mutants have been
developed, such as smn-1(ok355) (null-mutant form) and
smn-1(cb131). The first one bears a wide deletion of most
Smn coding region, leading to growth and fertility defects, MN
loss and to early death (Briese et al., 2009; Dimitriadi and Hart,
2010; Grice et al., 2011). On the other hand, smn-1(cb131) model
shows a point mutation in N-terminal domain and, while
displaying a similar MN degeneration to smn-1(ok355), it
survives longer allowing screening progression (Grice et al.,
2011; Sleigh et al., 2011). Neuromuscular and motor defects
can be analyzed in the worm by the “thrashing assay,” a test
to measure the number of lateral swimming movements
(Buckingham and Sattelle, 2009). These evaluations can be
also correlated to MN degeneration analysis. To this aim, the
most recent automated system has been developed by de Carlos
Cáceres group: it employs microfluidic and image analysis that
assess worm phenotypes analyzing D-type ventral MN
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degeneration through a quick genetic screening technique (De
Carlos Cáceres et al., 2018).

Another invertebrate animal, used for both DS and DR, is
Drosophila melanogaster: it shares some advantages of C. elegans,
as a rapid life cycle, an easy husbandry and a simple genetic
manipulation (Cauchi and Van Den Heuvel, 2007; Lessing and
Bonini, 2009; McGurk et al., 2015; Aquilina and Cauchi, 2018).
Different D. melanogaster Smn mutants have been set up:
smn73Ao (smnA) and smnB mutants bear point mutations in
C-terminal YG box (Chan et al., 2003; Chang et al., 2008; Grice
et al., 2011); smnf05960 (smnC) and smnf01109 (smnD) mutants
carry a transposon insertion respectively downstream and inside
the Tudor domain. All these mutant models display impaired
motor behavior, neuronal transmission and NMJ defects, leading
to early death at larval moult stage (Grice et al., 2011). Finally, the
EY14384 (smnE33) mutant fly carries a transposon insertion
upstream of putative transcription start site and, while showing
similar motor defects to the other mutants, it has a higher survival
(Rajendra et al., 2007; Chang et al., 2008; Grice et al., 2011).
However, the most recent fly SMA model has been developed by
inserting the human SMN2minigene reporter, fused to luciferase,
into the Drosophila genome, in order to easily obtain the exon 7-
inclusion during SMN2 splicing process. This cheap and feasible
model allows to rapidly screen thousands of chemicals, possibly
increasing FL-SMN protein levels (Konieczny and Artero, 2020).

Danio rerio, also known as zebrafish, is another useful
invertebrate model to screen many compounds by DS/DR
approaches. It is commonly used because of its high gene
homology with human species and low maintenance costs
(Howe et al., 2013; Patten et al., 2014). However, it has been
mainly employed for ALS and HSP studies, whereas few SMA
zebrafish models exist. One SMA model was developed by
injecting an antisense morpholino oligonucleotide against Smn
gene. Other zebrafish models bear the following gene mutations:
smnG264D, smnY262X and smnL265X and are all similarly
characterized by muscle weakness and atrophy, with halved
lifespan compared to WT controls (Boon et al., 2009; Patten
et al., 2014). To further increase the fish survival, the human
SMN2 gene has been inserted in the genome of smnY262X fishes:
such insertion increased SMN protein levels and slightly
improved the animal survival (Hao et al., 2011).

Among the vertebrate models, Mus musculus is the most
valuable one, especially for the Phenotypic screening. Murine
and human genes display 90% of homology, even though mouse
has just 20 chromosome pairs, while humans 23. Mouse genome
has been widely manipulated to develop several neuromuscular
disease models (transgenic, knockin, chimeras, and knockout),
including SMA (Mouse Genome Sequencing Consortium et al.,
2002; Fisher and Bannerman, 2019), taking into account that
mice possess only one Smn gene and none SMN2 gene copies
(Monani, 1999). Some of the SMA murine models recapitulate
the human severe disease form (type I), such as SMN− and
FVB.SMN2;Smn− (referred also as Burghes’ severe model
incipient congenic); other ones (such as FVB.SMNΔ7 model)
mimic the intermediate disease form (type II); milder forms (type
III and IV) have been also developed [respectively, SmnA2G (also
referred as Burghes type III model incipient congenic) and Smn1c,

and FVB.Cg-Smn1<tm1Msd> Tg (SMN2)566Ahmb/J] (Osborne
et al., 2012; Edens et al., 2015; Eshraghi et al., 2016). Moreover
there is also the “SMA-like” murine model, mainly referred as
Taiwanese model: these animals, carrying the Smn−/−SMN2
genotype, are classified into the three pathological SMA form
groups (type 1, 2 or 3) based on their phenotypes (Hsieh-Li et al.,
2000).

The most used SMA murine model for DS/DR is certainly the
SMNΔ7 mouse: it is a triple homozygote, characterized by
selective spinal MN degeneration, progressive muscle atrophy,
reduced body weight, early (from postnatal day 5, P5) motor
performance impairment, and premature death (around P14)
compared to WT littermates (Edens et al., 2015; Simon et al.,
2017; Kannan et al., 2018; Rimer et al., 2019; Tejero et al., 2020).
The other available SMAmodels are generally excluded from DS/
DR studies, since they die too early (by P5, or even embryonic,
respectively in the case of FVB.SMN2;Smn− and SMN−) or too
late [Smn A2G and Smn1c, and FVB. Cg-Smn1<tm1Msd> Tg
(SMN2)566Ahmb/J], hence making difficult to evaluate the tested
compound efficacy or requiring excessively extended
observational studies.

PATHWAYS TARGETED BY DRUG
SCREENING AND DRUG REPOSITIONING
APPROACHES IN SPINAL MUSCULAR
ATROPHY

As stated, only three drugs are currently authorized for
administration to patients. To further increase the available
therapeutic options, DS/DR approaches can be pivotal since
they can identify new or repurposed effective drugs.

Obviously, the attention is primarily focused on targeting
pathways involved in SMN-specific transcription regulation.
However, current expert opinions suggest not neglecting SMN-
independent cascades and different cell targets, such as pathways
involving degradation processes, cytoskeletal modulation, cell
signaling and oxidative mechanisms (Figure 2). Below we
describe natural, chemical and/or FDA-approved compounds,
which have been discovered and tested through DS/DR studies,
classifying them on the basis of their molecular mechanisms of
action. The entirety of the described compounds are also resumed
in Table 1.

Direct and Indirect Modulation of Survival
Motor Neuron 2 Transcription
During the last years, many studies are aiming to identify new
SMN-dependent approaches, more effective and less invasive
than the available ones.

SMN2 pre-mRNA splicing modulators (as Nusinersen) can
significantly improve child health status. In this context,
Branaplam is the first small compound orally administered
and it is currently in phase II clinical trial (involving SMA type
1 patients; ClinicalTrials.gov identifier NCT02268552). It was
developed by improving effectiveness, bioavailability and safety
of pyridinazine, discovered as hit compound by High-throughput
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screening in NSC34 cell line with SMN2 mini-gene reporter
inclusion (Palacino et al., 2015; Cheung et al., 2018). In detail, it
stabilizes U1 snRNP binding with 5′ splice site, leading to exon
seven inclusion in SMN2 mRNA, thus increasing SMN2-derived
FL-SMN level (Palacino et al., 2015; Shorrock et al., 2018). Another
small molecule, known as RG7800, was discovered using a similar
screening. PTC Therapeutics, in collaboration with Roche,
identified RG7800, then tested in the MOONFISH clinical trial.
However, the trial was preventively stopped between phase I and II
because of a RG7800-dependent eye toxicity observed in a long-
term concomitant treatment study performed in monkeys
(Identifier: NCT02240355) (Naryshkin et al., 2014; Kletzl
et al., 2019). Therefore, RG7800 was optimized developing a
new oral drug, RG7916, known as Risdiplam, which was tested
in different cell lines and animal models (mice, rats, and
monkeys) (Poirier et al., 2018; Ratni et al., 2018). Risdiplam
is currently under evaluation in the four clinical studies
mentioned above in Spinal Muscular Atrophy Approved
Drugs (Kletzl et al., 2019; Haniff et al., 2020).

From the beginning of 21st century until now, other synthetic,
inorganic and natural compounds were discovered via DS
approaches, acting as splicing modifiers and up-regulators of
SMN2-derived FL-SMN. Among them, the 2,4-
diaminoquinazoline class was found by Jarecki and coll., after
the remarkable screening of 550,000 synthetic compounds using

NSC-34 cell line containing the SMN2 promoter β-lactamase
reporter gene (Jarecki et al., 2005). The quinazoline analog
compound RG3039 is a DcpS inhibitor that assured an overall
improvement of disease phenotype when tested on Taiwanese
and 2B/− and on SMA2B/−mice (Gogliotti et al., 2013). Based on
this experimental evidence, Repligen conducted a clinical trial
which initially provided successful results, but, following the take-
over by Pfizer, the phase I trial was suspended on June 2014,
because of a limited SMN increase in SMA children blood (Pfizer
Pulls Plug on Repligen SMA Collaboration, 2015).

In addition, SMN2 modulators such as Sodium vanadate,
small molecules (LDN-76070 and LDN-75654) and Brucea
Javanica extract were originally identified via cell-signaling
assays, but they gave insufficient results to be tested in SMA
mice (Zhang et al., 2001; Cherry et al., 2013; Baek et al., 2019). In
particular, Sodium vanadate showed to be effective in Taiwanese
type III SMA mice when administered in combination with the
detoxification agent L-ascorbic acid: however, their effects remain
to be confirmed in more severe mouse models of SMA (Zhang
et al., 2001; Liu et al., 2013; Seo et al., 2013). While Brucea
Javanica has been recently tested on SMAΔ7 mice and the
available preliminary results still require more detailed studies,
LDN-76070 and LDN-75654 administration in the same mouse
model increased lifespan, motor functions and SMN protein
levels (Cherry et al., 2013; Baek et al., 2019).

FIGURE 2 | Involved and converging pathways targeted by DS and DR. The drugs identified by DS and DR influence and converge on a limited number of cellular
and molecular pathways, that in turn act on specific districts, in particular involving MNs, NMJs and skeletal muscles. Created with BioRender software. DR, drug
repositioning; DS, drug screening; MN, motor neuron; NMJ, neuromuscular junction; SMN, survival motor neuron.
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TABLE 1 | List of compounds discovered by DS or DR approaches for SMA treatment.

Molecular mechanism Compound Molecular class DS/DR Original target
disease
(for DR)

Clinical trial phase Ref. And/or clinical trial

Direct and indirect modulation of
SMN2 transcription

Branaplam (LMI070; NVS-101) Pyridazine-derivative DS — Active, not recruiting-phase
II clinical trial for SMA

NCT02268552

RG7800 (RO6885247) Small molecule DS — Stopped-phase I/II clinical
trial for SMA

NCT02240355

Risdiplam (RG7916; RO7034067) Small molecule (RG7800
derivative)

DS — Currently in phase II clinical
trial for SMA

NCT02913482 (Firefish),
NCT02908685 (Sunfish),
NCT03032172 (Jewelfish),
NCT03779334 (Rainbowfish),
NCT04256265, NCT04177134

RG3039 (PF-06687859;
D157495)

Quinazoline DS — Suspended after phase I
clinical trial for SMA

Gogliotti et al. (2013)

Sodium vanadate Inorganic sodium salt DS — — Liu et al. (2013)
LDN-76070 Small molecule DS — — Cherry et al. (2013)
LDN-75654 Small molecule DS — — Cherry et al. (2013)
Brucea javanica Simaroubaceae family’s

medicinal plant
DS — — Baek et al. (2019)

Sodium butyrate Organic sodium salt DR — Recruiting-clinical trial for
diabetesmellitus, type1; several
completed-trials (for shigellosis;
gut health, SCFA metabolism,
breast cancer, alcohol
dependence, contact
dermatitis, obesity)

Chang et al. (2001)

Sodium phenylbutyrate Sodium butyrate analogue DR Urea cycle disorder FDA-approved Andreassi et al. (2004)
Completed-clinical trial in SMA NCT00528268 (STOPSMA),

NCT00439218 (NPTUNE02)
and NCT00439569
(NPTUNE01)

Valproic acid Synthetic derivative of
propylpentanoic acid

DR Seizures; status epilepticus; bipolar
disorder; migraine; schizophrenia

FDA-approved Kissel et al. (2011)
Completed-clinical trial in
SMA

NCT00481013, NCT00374075

Trichostatin A (TSA) Natural derivative of
dienohydroxamic acid

DR Mycosis Recruiting-clinical trials for
tumors, seizures,
osteoarthritis, anemia,
infertility, ischemic stroke,
opioid dependence

Avila et al. (2007)

Many completed-trials
including infectious diseases

Vorinostat (suberoylanilide
hydroxamic acid; SAHA)

Synthetic hydroxamic acid
derivative

DS/DR Cutaneous T-cell lymphoma FDA-approved Hahnen et al. (2006)

Panobinostat (LHB589) Cinnamic hydroxamic acid
analogue

DR Multiple myeloma FDA-approved Garbes et al. (2009)

(Continued on following page)
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TABLE 1 | (Continued) List of compounds discovered by DS or DR approaches for SMA treatment.

Molecular mechanism Compound Molecular class DS/DR Original target
disease
(for DR)

Clinical trial phase Ref. And/or clinical trial

Celecoxib Cyclo-oxygenase 2 inhibitor DR Osteoarthritis, rheumatoid arthritis in
adults; juvenile arthritis; ankylosing
spondylitis, colorectal polyps; pain;
dysmenorrhea; cardiovascular risk
reduction

FDA-approved NCT02876094
Recruiting-phase II clinical
trial for SMA

Hydroxyurea (Hydroxycarbamide) Ribonucleoside diphosphate
reductase inhibitor

DR Chronic myelogenous leukemia;
polycythemia vera; cervical, head, neck
and ovarian cancers; melanoma; sickle
cell anemia

FDA-approved Grzeschik et al. (2005)
Three completed-clinical trial
for SMA

NCT00485511, NCT00568698,
NCT00568802

Aclarubicin Oligosaccharide anthracycline
antineoplastic antibiotic

DS/DR Acute myeloid leukemia FDA-approved Andreassi et al. (2001)

Moxifloxacin Synthetic fluoroquinolone
antibiotic

DS/DR Respiratory tract, skin and skin structure,
intra-abdominal and GI infections,
endocarditis, tuberculosis,
nongonococcal urethritis, plague,
meningitis and other CNS infections

FDA-approved Konieczny and Artero (2020)

Rigosertib Synthetic benzyl styryl sulfone
analogue

DS/DR Chronic myelomonocytic leukemia Currently in phase III clinical
trial for chronic
myelomonocytic leukemia

Son et al. (2019)
NCT02562443

Indoprofene (K4277) Cyclooxygenase (COX)
inhibitor

DS/DR — Recalled from the market Kim et al. (2020)

Cell death and degradation
pathways

Levetiracetam (LEV; (S)-α-ethyl-2-
oxo-pyrrolidine acetamide)

Pyrrolidine DR Seizures FDA-approved Ando et al. (2019)
NCT00324454

Liuwei dihuang extract (LWDH) Chinese herbal formula DR Kidneys, liver and asthma; geriatric
diseases

— Tseng et al. (2017)

Bortezomib Dipeptide boronic acid
analogue

DR Multiple myeloma FDA-approved Foran et al. (2016)

Z-Phe-Ala fluoromethyle ketone
(Z-FA-FMK)

Cysteine proteases
irreversible inhibitor

DS — — Wang et al. (2019)

E64d Cysteine protease inhibitor DS — — Wang et al. (2019)
Edaravone Pyrazolone DR Amyotrophic lateral sclerosis FDA-approved Sun et al. (2019)
L-carnitine Amino acid derivative DR Primary and secondary carnitine

deficiency; end-stage renal disease
FDA-approved Kissel et al. (2011)
Completed phase II clinical
trial for combinatorial
treatment with valproic acid
in SMA

NCT00227266, NCT00661453

Mitochondria-related pathways Olesoxime (TRO19622) Cholesterol-like structure DR Amyotrophic lateral sclerosis Completed phase III clinical
trial for ALS

Bordet et al. (2007)

Active, not recruiting-phase
II clinical trial for SMA

NCT01302600, NCT02628743
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TABLE 1 | (Continued) List of compounds discovered by DS or DR approaches for SMA treatment.

Molecular mechanism Compound Molecular class DS/DR Original target
disease
(for DR)

Clinical trial phase Ref. And/or clinical trial

Cytoskeleton dynamics, endocytic
pathway and channel modulators

SRK-015 Monoclonal antibody — — Active, not recruiting-phase
II clinical trial for SMA

NCT03921528

Fasudil Heterocyclic aromatic organic
compound

DR Cerebral vasospasm; cerebral ischemic
symptoms

PMDA approved in Japan Bowerman et al. (2012)
Recruiting-phase II clinical
trial for ALS

NCT03792490, eudra-CT-nr.:
2017-003676-31

Y-27632 Rock inhibitor — — — Hensel et al. (2017)
Fampiridine (Fampyra; 4
aminopyridine)

Aromatic amine DS/DR Multiple sclerosis FDA-approved Sleigh et al. (2011)
Completed-phase III clinical
trial in SMA

Reldesemtiv (CY 5021;
CK-2127107)

Small molecule DR Chronic obstructive pulmonary disease;
amyotrophic lateral sclerosis

Currently in phase II clinical
trial for COPD; ALS and SMA

Ramdas and Servais (2020)
NCT02644668

Hormones signaling pathways Somatotropin (growth hormone) Hormone DR Chronic renal failure; turner and prader-
Willi syndromes; growth disorders

FDA-approved pilot study
for SMA

NCT00533221, NCT01369901

Protirelin Thyrotropin releasing
hormone analogue

DR Epilepsy; spinal cord injury;
spinocerebellar ataxia; neonatal
respiratory distress

FDA-approved Tzeng et al. (2000)

Taltirelin hydrate (TA-0910) Thyrotropin releasing
hormone analogue

DR Spinocerebellar degeneration disease Recruiting-phase IV clinical
trial for SDD

Ohuchi et al., (2016)
NCT0410774

Prednisolone Synthetic glucocorticoid DR Adrenocortical insufficiency;
adrenogenital syndrome; hypercalcemia;
thyroiditis; rheumatic, ocular, oral,
hematologic disorders; collagen,
dermatologic, lung, gastrointestinal,
neoplastic and liver diseases; asthma;
pericarditis; multiple sclerosis;
myasthenia gravis¸ organ transplants;
nephrotic syndrome

FDA-approved Quattrocelli et al. (2017)

Neurotransmitters’ modulation Riluzole Benzothiazole derivative DR Amyotrophic lateral sclerosis FDA-approved Dimitriadi et al. (2013)
Completed phase III clinical
trial for SMA

NCT00774423 (ASIRI)

Ceftriaxone Third generation
cephalosporin antibiotic

DR Acute otitis media; endocarditis;
meningitis; septicemia; antibiotic
prophylaxis; bone, joint, gastrointestinal,
intra-abdominal, respiratory tract, skin
and urinary tract infection

FDA-approved Nizzardo et al. (2011)

Lamotrigine Synthetic phenyltriazine DR Lennox–Gastaut syndrome; bipolar
disorder and mood episodes

FDA-approved Nascimento et al. (2010)

Gaboxadol hydrochloride Synthetic compound DS — — Sleigh et al. (2011)
Gabapentin GABA chemical analogue DR Postherpetic neuralgia; partial-onset

seizures; peripheral neuropathic pain;
painful diabetic neuropathy

FDA-approved Merlini et al. (2003)
Two clinical trials completed
on SMA type II and III
patients
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TABLE 1 | (Continued) List of compounds discovered by DS or DR approaches for SMA treatment.

Molecular mechanism Compound Molecular class DS/DR Original target
disease
(for DR)

Clinical trial phase Ref. And/or clinical trial

Neuromuscular junction
stabilization

Amifampridine (pyridine-
3,4-diamine, 3,4-diaminopyridine,
3,4-DAP)

Organic compound pyridine-
derived

DR Lambert-Eaton myasthenic syndrome
(LEMS)

FDA-approved NCT03781479, NCT03819660
Recruiting-phase II for SMA

Tideglusib (NP-12, NP031112) Small heterocyclic
thiadiazolidine-based
molecule

DS/DR Alzheimer’s disease; progressive
supranuclear palsy; congenital myotonic
dystrophy

Completed phase II clinical
trial for Alzheimer’s disease;

Makhortova et al. (2011)

Not yet recruiting phase III
clinical trial for congenital
myotonic dystrophy

NCT03692312

Salbutamol (albuterol) Selective beta2-adrenergic
receptor agonist

DR Asthma, chronic obstructive pulmonary
disease

FDA-approved Frongia et al. (2019)
Recruiting-clinical trial for
SMA in French register

NCT04177134

DR, drug repositioning; DS, drug screening; FDA, Food and Drug Administration; SMA, spinal muscular atrophy. Natural, chemical and FDA-approved compounds are classified by their mechanism of action. The SMA clinical study phases
and the relative trial identifiers (NTC number from ClinicalTrials.gov) are indicated; when lacking, clinical trials referring to other pathologies, together with the most recent references to experimental SMA studies, are shown.
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In addition, histone deacetylase (HDAC) inhibitors, revealed
by DR studies, could be promising also in case of SMA. Several
FDA-approved HDAC inhibitors (sodium phenylbutyrate,
valproic acid, Vorinostat, trichostatin A, and Panobinostat) or
not yet approved (sodium butyrate) have been investigated for
SMA treatment (Chang et al., 2001; Sumner et al., 2003;
Andreassi et al., 2004; Hahnen et al., 2006; Avila et al., 2007;
Garbes et al., 2009). In addition to promoting SMN2
transcription, they can affect the expression of many other
genes (Calder et al., 2016; Poletti and Fischbeck, 2020). In
combination with Nusinersen, HDAC inhibitors exerted
synergistic effects, further enhancing the expression of SMN2
in human SMA fibroblasts (Pagliarini et al., 2020). Importantly,
this combinatorial strategy could lead patient benefits,
hypothesizing lower or less frequent Nusinersen doses, and
consequently reducing repeated intrathecal administrations
and high costs (Poletti and Fischbeck, 2020; Ramdas and
Servais, 2020).

Other FDA-approved drugs arisen from DR studies and able
to modulate SMN2 are celecoxib and Hydroxyurea; they are both
important enzymatic inhibitors. Celecoxib is a non-steroidal anti-
inflammatory cyclo-oxygenase two inhibitor, mainly used to treat
rheumatoid arthritis and osteoarthritis (Seibert et al., 1994; Lipsky
and Isakson, 1997). Its potential role in SMA therapy was
deepened by Farooq’s lab, which focused on p38 MAPK
pathway and showed that it upregulates cytoplasmic HuR
protein, in turn able to stabilize mRNA-binding, also involving
SMN (Farooq et al., 2013). Celecoxib, tested on Human neuron-
committed teratocarcinoma (NT2) and mouse motor neuron-
derived (MN-1) cell lines and on SMAΔ7 mice, induced the
SMN2-derived FL-SMN mRNA stabilization. In addition, since
it crosses the BBB, celecoxib is an optimal candidate for SMA
therapy; indeed, it is currently in phase II clinical trial (Identifier:
NCT02876094 (Farooq et al., 2013; Wadman et al., 2020).
Instead, Hydroxyurea, a ribonucleoside diphosphate reductase
inhibitor, prevents the exit from cell cycle G1/S phase and
promotes fetal hemoglobin production. For these reasons, it is
used to treat many neoplasias such as melanoma, chronic
myelogenous leukemia, polycythemia vera, cervical and
ovarian cancers, head and neck tumors, and sickle cell anemia
(Rodgers et al., 1990; Madaan et al., 2012). Due to its gene
interaction ability, Hydroxyurea was evaluated as therapeutic
candidate for SMA, showing excellent results in
lymphoblastoid cell lines isolated from type I, II, and III SMA
patients (Grzeschik et al., 2005). However, three clinical trials
(Identifiers: NCT00568698, NCT00568802, and NCT00485511)
did not confirm its efficacy in improving motor functions of SMA
types II or III (Wadman et al., 2020).

Although DS and DR are often carried out separately, their
combination allowed to discover unusual drugs for
neurodegenerative disease treatment. For example, Aclarubicin,
an oligosaccharide anthracycline antineoplastic antibiotic, used in
case of Acute Myeloid Leukemia treatment (Mitrou, 1990), was
identified in 2001 via High-throughput screening on SMA type I
fibroblast cell line and NSC-34 cell line containing SMN2
minigene reporter: Aclarubicin increases SMN2 exon seven
inclusion, upregulating FL-SMN expression. Indeed,

Aclarubicin seems to act as a transcriptional activator,
inducing by indirect pathways SMN2 exon seven inclusion
(Morceau et al., 1996; Andreassi et al., 2001). Likewise,
Moxifloxacin, a synthetic fluoroquinolone antibiotic used to
treat several infections, was identified by performing High-
throughput screening study in a Drosophila SMN2 minigene
reporter model, as described above (Konieczny and Artero,
2020). Moxifloxacin modulates SMN2 splicing by promoting
exon seven inclusion and crosses the Drosophila BBB;
moreover, it increases FL-SMN expression in HeLa cell lines.
The authors showed that Moxifloxacin exerts a dose-dependent
increase of Serine/arginine Rich Splicing Factor 1 (SRSF1) levels
promoting the SMN2 exon seven inclusion (Konieczny and
Artero, 2020).

Finally, Rigosertib and Indoprofene have been also proposed
for SMA therapy, after DS identification. Rigosertib is a synthetic
benzyl styryl sulfone analogue currently in phase III clinical trial
for chronic myelomonocytic leukemia care (Garcia-Manero et al.,
2016); it acts as a SMN2 splicing modifier, as suggested by a
screening of small molecules carried out on C33A cell lines
containing a SMN2-luciferase minigene reporter and SMA
type I fibroblast cell lines (Son et al., 2019). Similarly,
Indoprofene is a cyclooxygenase (COX) inhibitor, used as
analgesic and anti-inflammatory drug (Paeile et al., 1989): it
can increase SMN levels both in SMN2-luciferase cells and in
type I SMA patient fibroblasts, and enhance the viability of a
transgenic Type I SMA mouse model (Monani, 2000). Moreover,
while showing also positive effects mediated by PDK1/AKT
pathway on muscle wasting as demonstrated in aged mice
(Kim et al., 2020), up to now it was never tested in clinical
trials for SMA.

Cell Death and Degradation Pathways
The above-mentioned approaches are merely SMN-dependent
strategies, but there are numerous studies suggesting that further
cellular mechanisms can affect the severity of SMA. Indeed, DS
and DR approaches represent a valid strategy to identify
molecules also acting on SMN-independent pathways.

Recent studies suggest that the lack of SMN increases the
cleavage of caspase-3, and triggers the apoptotic pathway and
MN degeneration (Piras et al., 2017; Maretina et al., 2018;
Schellino et al., 2018). In this context, the repositioning of
the anti-epileptic drug Levetiracetam (trade name Keppra)
decreased the cleaved-caspase three expression in SMA-
iPSCs-MNs (Ando et al., 2019). Likewise, Bax and Bcl-xL
proteins, respectively mediating anti- and pro-apoptotic
pathways, seem to be influenced by SMN lack, with
consequent downstream effects. The expression levels of Bax
are significantly increased in the spinal cord of SMA mice, and
the overexpression of Bcl-xL increases SMN-reduced MN
survival (Garcera et al., 2011) and can extend SMA mice
lifespan (Tsai et al., 2006; Tsai et al., 2008). Moreover, a
decrease in the levels of Bcl2 in postmortem spinal cord
from SMA I fetuses and SMAΔ7 mice was reported (Soler-
Botija et al., 2003; Tsai et al., 2008; Piras et al., 2017). Based on
this evidence, some authors proposed the repositioning of the
water extract of Liuwei dihuang (LWDH-WE): despite not being
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FDA approved, it is a herbal formula widely used in the
traditional Chinese medicine as treatment for kidney and
liver disorders, asthma and geriatric diseases (Sangha et al.,
2012; Tseng et al., 2014). When tested on Parkinson’s disease
(PD) mouse models, it improved their motor activity,
suggesting its use also for SMA treatment (Tseng et al.,
2014; Tseng et al., 2017). Indeed, LWDH-WE was able to
attenuate SMN deficiency-induced down-regulation of Bcl-2
and decreased cytosolic cytochrome c and cleaved caspase-3;
the drug also counteracted cell death in NSC34 cells thanks to
its SMN-promoting and antiapoptotic activities (Tseng et al.,
2017).

Moreover, the ubiquitin/proteasome system is also altered in
SMA, due to SMN lack (Powis et al., 2016). DS-based
comparative proteomics revealed a significantly decrease of
ubiquitin-like modifier activating enzyme 1 (UBA1) level in
SMA mice. Since SMN directly influences UBA1 level, and its
overexpression in SMA mice improves motor functions and
increases their survival (Wishart et al., 2014; Powis et al.,
2016), several works suggest to pharmacologically modulate its
levels to influence SMA progression (Patten et al., 2014; Maretina
et al., 2018). On the other hand, by using repositioning strategy
involving the use of proteasome inhibitors, it was showed that the
chemotherapy drug Bortezomib blocks SMN degradation in
peripheral tissues and improves motor functions in SMAΔ7
mice (Kwon et al., 2011; Foran et al., 2016).

Other degradation pathways have been recently investigated.
Wang and collaborators tested different drugs from a small
library and demonstrated the involvement of both non-
lysosomal (calpain 1/2) and lysosomal cysteine proteases
(CTSL/CTSB) in degrading SMN proteins (Wang et al., 2019).
In particular, establishing a versatile SMN2-GFP reporter cell line,
they identified a novel role of the cysteine protease inhibitor Z-FA-
FMK: this compound increased the level of functional SMN by
inhibiting the protease-mediated degradation of both FL-SMN and
delta7 SMN. Z-FA-FMK and the analogous compound E64days,
previously used as Alzheimer’s disease (AD) and brain injury
treatments, rescued MN degeneration in SMA, suggesting that
inhibiting protease-mediated degeneration could be a potential
therapeutic for SMA (Wang et al., 2019).

Finally, the repositioning of Edaravone and the Acetyl-L-
carnitine (both drugs effective in oxidative stress modulation)
has been also evaluated. Edaravone (3-methyl-1-phenyl-2-
pyrazolin-5-one), a free radical scavenger, showed efficacy in
acute brain infarction and in ALS, and worldwide it is now
approved for the treatment of both these pathologies in several
countries (Jackson et al., 2019; Sun et al., 2019). Edaravone
reversed oxidative stress-induced apoptosis and inhibited
mitochondrial reactive oxygen species upregulation in SMA-
iPSCs-derived spinal MNs (Ando et al., 2017). Instead, the
L-carnitine is an anti-oxidant natural compound involved in
cellular lipid peroxidation and known to inhibit mitochondrial
damage and mitochondrial-mediated apoptosis both in vitro and
in vivo (Bigini et al., 2002). Its exogenous administration in the
acetylated form (Acetyl-L-carnitine, ALC), alone (Merlini et al.,
2002, 2010; Wadman et al., 2020) or in combination with the
valproic acid (Swoboda et al., 2010; Kissel et al., 2011; Wadman

et al., 2020), was tested in two different SMA trials. However, on
one hand, although the administration of ALC alone seemed
effective, it did not allow to draw a final conclusion due to a too
small cohort of SMA patients (Merlini et al., 2010); on the other
hand, the combinatorial treatment of ALC with valproic acid
compared to placebo did not reach significant improvements of
motor function and muscle strength (Swoboda et al., 2010; Kissel
et al., 2011; Wadman et al., 2020).

Mitochondria-Related Pathways
Mitochondria are organelles highly impacted at the very early
stage of many neurodegenerative diseases, to the point to be
considered as a possible unifying trait in the pathogenesis of these
disorders (for an extended review see Stanga et al., 2020).
Mitochondrial dysfunctions are reported as important
pathological mechanisms in MN disorders (Patten et al.,
2014). In SMA, mitochondrial impairment occurs in many
tissues, both at the level of central and peripheral nervous
system. This is probably due to the fact that i) mitochondria
are particularly present in axons of neuronal cells, heart cells and
skeletal muscles, and ii) SMN is ubiquitously expressed in the
body. Indeed, SMN deficiency has been correlated to oxidative
stress, mitochondrial dysfunction and deregulation of
bioenergetic pathways. Therefore, treatments targeting
mitochondria could represent a new promising solution not
only for SMA, but also for many other disorders (Panuzzo
et al., 2020).

Also in the case of mitochondria-related pathways, DR and DS
approaches helped in the identification of promising drugs
targeting mitochondria in SMA. Drugs targeting mitochondrial
proteins and channels, such as the Na+/Ca2+exchanger
(Annunziato et al., 2020), could be promising in the SMA
treatment: the modulation of NCX2 (sodium calcium
exchanger isoform 2) expression, by microRNA-206
administration in SMAΔ7 mice, delayed the disease
progression and improved behavioral performance in mice
(Valsecchi et al., 2020).

Another example is Olesoxime, originally evaluated for
diabetes since able to promote the survival of the pancreatic
β-cells, which are particularly rich in mitochondria. Interestingly,
DR studies revealed important positive effects also for SMA.
Indeed, Olesoxime is able to bind proteins of the outer
mitochondrial membrane: there, it reduces its permeability
when exposed to stress (Pruss et al., 2010) preventing, in turn,
apoptosis by reducing release of pro-apoptotic factors and
maintaining energy production (Kariyawasam et al., 2018). In
this way, Olesoxime can preserve the integrity of MNs (Bordet
et al., 2007). Moreover, Olesoxime showed neuroprotective and
neuroregenerative effects in several animal models of motor nerve
degeneration and in a transgenic mouse model of severe SMA
(SmnF7/F7; NSE-Cre mice; mutant mice carrying a deletion of
Smn exon seven directed to neurons): daily administrations of
Olesoxime extended the survival of the treated mice (Bordet et al.,
2010). Taken together, these data suggest that Olesoxime might
maintain MN function and might be a therapeutic drug in the
treatment of SMA. However, unfortunately, oral administration
of Olesoxime in phase II trial for SMA (and phase III for ALS)
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failed, because it did not show sufficient efficacy (Bordet et al.,
2007; Swalley, 2020).

Cytoskeleton Dynamics, Endocytic
Pathway and Channel Modulators
The exploitation of modern DS and DR approaches also allowed to
identify new treatments aimed at improving or maintaining
integrity and functionality of SMA axons/NMJs. In this context,
perturbations of cytoskeleton dynamics, known to impair SMA
MN neurogenesis, have been studied (Bowerman et al., 2007);
therefore, the overexpression or inhibition of cytoskeletal
remodeling modulators represent intriguing therapeutic strategies.

One of the main actin dynamics regulator is the RhoA-ROCK
pathway. ROCK is a serine-threonine kinases and a downstream
effector of the RhoA small GTPase. The RhoA/ROCK pathway is
mainly involved in shape regulation and neuronal cells
movement (extension and branching), by acting on the
cytoskeleton dynamics (growth, differentiation, and retraction)
and critically influencing MN synapse functions. An aberrant
upregulation of RhoA/ROCK pathway was observed in SMA
neuronal cell models and in SMA patients fibroblasts (Bowerman
et al., 2007; Bowerman et al., 2010; Nölle et al., 2011; Koch et al.,
2018). Moreover, the profilin IIa upregulation (due to SMN-
deficiency) causes an upstream dysregulation of RhoA/ROCK
pathway (Maretina et al., 2018). This evidence suggests that
ROCK inhibition can induce beneficial effects in SMA, as
already demonstrated for several neurodegenerative diseases
(Hensel et al., 2015), including SMA: indeed, Y-27632 and
Fasudil are two RhoA/ROCK inhibitors, able to extend
lifespan and improve motor functions in Taiwanese and
SMN2B/− SMA mice (Bowerman et al., 2010; Bowerman
et al., 2012; Bowerman, 2014; Hensel et al., 2017).

Hensel tested the combination of Y-27632 with an ERK
pathway inhibitor, using an automated MN cell-bodies High-
throughput detection screening on primary spinal cord cultures.
The simultaneous inhibition of both pathways induced
synergistic beneficial effects, significantly increasing MN
viability, with respect to the single inhibition of one of them
(Hensel et al., 2017).

Fasudil is a vasodilator drug, used for the treatment of cerebral
vasospasm and delayed cerebral ischemic symptoms after
aneurysmal subarachnoid hemorrhage. In Japan its use has been
approved by the Pharmaceuticals andMedical Devices Agency since
1995 (Shibuya and Suzuki, 1993; Zhao et al., 2006) and is currently
tested in clinical studies for disorders such as the Raynaud
phenomenon, atherosclerosis and ALS (ROCK-ALS trial,
NCT03792490, Eudra-CT-Nr.: 2017-003676-31). Interestingly,
Fasudil improved survival and promoted skeletal muscle
development in SMA Smn2B/− mice, restoring the correct
function of actin in MNs and supporting the formation of
functional NMJs (Bowerman et al., 2012; Koch et al., 2018).
Therefore, while Y-27632 is mainly used as an experimental
biochemical tool in the study of ROCK signaling pathways, the
ongoing clinical study of Fasudil for ALS patients could pave the way
for the therapeutic evaluation of ROCK inhibitors inMNdiseases by
strengthening its DR in SMA field (Bowerman et al., 2017).

In addition, several SMA modifiers have been proposed as
SMA therapy in combination with SMN-enhancing treatments.
In particular, the contribution to SMA pathogenesis of Plastin 3
(PLS3) and Neurocalcin Delta (NCALD) proteins has been
deeply evaluated. PLS3 is a Ca2+-dependent actin-binding
protein, important for axonogenesis by increasing F-actin
levels, and acting as positive regulator of endocytosis process.
PLS3 is a powerful modifier of SMA: high levels of PLS3 have
been reported in unaffected subjects carrying SMN1 mutations;
moreover PLS3 overexpression increased cell survival, supported
neurite overgrowth and restored impaired endocytosis in vitro
and in vivo SMA models (Oprea et al., 2008; Hosseinibarkooie
et al., 2016a; Alrafiah et al., 2018; Maretina et al., 2018). PLS3
overexpression, combined with the subcutaneous injection of
ASOs, has been recently confirmed to improve the survival of
SMA mice, motor functions and NMJ size. Since their beneficial
synergistic effects were greater than those obtained with ASO
administration alone, further DS studies are recommended to
better define effective therapeutic combinatorial strategies
(Hosseinibarkooie et al., 2016b; Kaifer et al., 2017).

Analogous positive results have been obtained by combining
NCALD and ASO treatment (Riessland et al., 2017). Riessland’
group identified NCALD as a potential SMAmodifier by Genome-
Wide Linkage and Transcriptome-Wide differential expression
analysis performed on samples of SMA type 1 patients and fully
asymptomatic people, both carrying homozygous SMN1 deletions
(Riessland et al., 2017). Furthermore, this work demonstrated the
role of NCALD as negative regulator of endocytosis, since its
knockdown effectively ameliorated these dysfunctions,
supporting motor axon development and improving MN
circuitry and NMJ presynaptic function in SMA models (worm,
zebrafish, andmice) (Riessland et al., 2017). Given this evidence, DS
and DR approaches confirmed their important contribution in
revealing potential SMA disease modifiers involved in the
modulation of different signaling pathways.

Another important example comes from Sleigh’s group, that
in 2011, using a SMA type III C. elegans model, screened
1040 FDA-approved compounds of the NINDS library, to
identify effective drugs targeting nerve/muscle activity (Sleigh
et al., 2011). The results of this analysis suggested 4-
aminopyridine (4-AP) as a candidate drug for SMA treatment:
it is a dose-dependent potassium channel blocker, able to restore
demyelinated neuron conductance and enhance synaptic
transmission (by increasing pre-synaptic calcium influx into
neurons). Administration of 4-AP rescued mutant C. elegans
motility (Sleigh et al., 2011). Interestingly, 4-AP is the active
ingredient of Fampiridine drug, also named Ampyra or Fampyra
respectively in United States and Europe, and approved by FDA
and EMA in 2011. It is already administered to multiple sclerosis
and Lambert-Eaton myasthenic syndrome patients; but it has
been also tested for spinal cord injury and PD (Jensen et al., 2011;
Pérez Luque et al., 2015; Acorda Therapeutics Inc., 2017).

Therapeutic strategy of drug targeting signaling pathways
involving Ca2+ influx modulation has been developed
specifically to enhance muscle functions, as suggested by
Citokinetics-Astellas ongoing trial of Reseldemtiv. Reldesemtiv,
previously known as CY 5021 andCK-2127107, is a selective small-
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molecule fast skeletal muscle troponin activator, to date in trials for
chronic obstructive pulmonary disease and ALS treatment
(Shefner et al., 2018; Rossiter et al., 2019). It improves muscle
contractility by increasing the affinity between troponin C and
Ca2+, providing a therapeutic target for several skeletal muscle-
related diseases, including SMA. Indeed, FDA attributed to
Reldesemtiv the orphan drug designation as potential SMA
therapeutic (Orphan designation: Reldesemtiv, Treatment of
SMA, 2019). Its efficacy and tolerability in increasing muscle
contraction force was demonstrated respectively in preclinical
studies and phase one SMA trials (Calder et al., 2016). The
following phase 2 trial (Identifier: NCT02644668) confirmed
Reldesemtiv efficacy, when orally administered to patients with
SMA types II, III, and IV, without observing dose-limiting
safety or tolerability issues. A confirmatory phase 3 study is
planned in the next years (Rudnicki et al., 2018; Ramdas and
Servais, 2020).

Hormone Signaling Pathways
The negative effects of SMN-deficiency, although mainly
involved in MN impairment, also extend, as multisystem
pathologies, to other components of the motor circuits and
modulators of skeletal muscle development and function
(Zhou et al., 2016). Among the others, the pharmacological
modulation of various hormones and their signaling pathways
is being studied in order to minimize muscle atrophy and injury
by acting on neuronal regeneration, peripheral reinnervation and
muscle growth (Tuffaha et al., 2016; Lopez et al., 2019). In
addition, these drugs, mostly already approved by the FDA,
could quickly be suitable for clinical translation.

For example, the administration of hypothalamic and pituitary
hormones [growth hormone (GH) and thyrotropin releasing
hormone (TRH)] or synthetic glucocorticoids (e.g.,
prednisolone), administered in case of several neuromuscular
diseases can exert beneficial effects on muscle functions
(Wadman et al., 2020). Indeed, GH induces insulin-like
growth factor-1 (IGF-1) secretion at muscle and liver level:
then, IGF-1 stimulates the physiological growth of long bones
and soft tissues and muscle development, whereas in case of
trauma, it supports muscle regeneration by promoting myogenic
differentiation and myocyte hypertrophy (Tritos and Klibanski,
2016). GH administration is already clinically employed in
chronic renal failure, Turner and Prader-Willi syndromes,
growth disorders; furthermore, it has been studied for its
beneficial effects in enhancing nerve regeneration and muscle
reinnervation, following peripheral nerve injuries (Tuffaha et al.,
2016; Lopez et al., 2019). Therefore, a DR for these natural or
synthetic hormones can be suggested for SMA treatment.

Indeed, several studies have shown that intracerebral
injections of IGF-1 in SMA mice supported survival and
improved motor functions, preventing muscle atrophy and
preserving NMJs (Bosch-Marcé et al., 2011; Shababi et al.,
2011; Tsai, 2012; Tsai et al., 2014; Wadman et al., 2020);
however, similar results have not yet been obtained in SMA
patients (Kirschner et al., 2014).

Beneficial effects of TRH tripeptide, Glu-His-Pro-NH2, have
been also observed in SMA skeletal muscles (Wadman et al.,

2020). The TRH, in addition to stimulate the release of thyroid-
stimulating hormone, seems involved in neuronal activity by its
association with serotonin (Tzeng et al., 2000). Its synthetic
analogs, i.e., Protirelin and Taltirelin hydrate, have been used
to treat epilepsy, spinal cord injury, spinocerebellar ataxia, and
neonatal respiratory distress (Shimizu et al., 1989; Tzeng et al.,
2000; Urayama et al., 2002). Since TRH has been found in the
spinal MNs, its role in the pathogenesis of MN diseases has been
suggested, even if a TRH-based trial in ALS was unsuccessful
(Brooks et al., 1987). However, its beneficial effects on motor
functions and electromyographic results of SMA type II/III
patients have been reported in different studies (small groups
of infants with SMA type I in children with types II and III) and in
a clinical trial (Takeuchi et al., 1994; Tzeng et al., 2000; Wadman
et al., 2020).

Also the repositioning of a synthetic glucocorticoid drug
prednisolone, currently used for Duchenne muscular dystrophy
treatment, has been recently suggested for SMA therapy
(Hoolachan et al., 2019). Prednisolone is also employed for the
treatment of a wide spectrum of inflammatory conditions, involving
allergies, autoimmune disorders and cancers (Gambertoglio et al.,
1980; Frey, 1987). The beneficial effects of intermittent dosage of
prednisolone in recovering skeletal muscles from injury, promoting
sarcolemmal repair and limiting atrophic remodeling have been
showed in the treatment of Duchenne muscular dystrophy patients
and also in other neuromuscular diseases models (such as acute
muscle injuries and muscular dystrophy mouse models) (Beenakker
et al., 2005; Matthews et al., 2016; Quattrocelli et al., 2017).
Moreover, prednisolone promotes the expression of Klf15, a
transcription factor involved in muscle homeostasis and
deregulated in pre-symptomatic SMA mice: this can further
justify the positive effects, observed in SMA mice, including the
improvement of muscle trophism and functioning and lifespan
extension. Thus, this suggests that further investigations on the
possibility of prednisolone repositioning as SMA therapy (Walter
et al., 2018; Hoolachan et al., 2019).

Nevertheless, the studies were not completely free of bias, and
further evaluations are required, in particular regarding TRH
(Wadman et al., 2020). However, SMA-specific DS and DR
studies concerning such hormone-based therapies still seem to
be promising, as suggested by different works on SMA models
reporting the benefits of their administration and recommending
further related screenings (Kato et al., 2009; Ohuchi et al., 2016;
Wadman et al., 2020).

Neurotransmitters’ Modulation
Impairment of synaptic transmission has been also widely
reported in SMA, suggesting that the pharmacological
modulation of synaptic plasticity mechanisms could represent
another therapeutic target and sustain the survival of MNs.

Different studies aimed at characterizing alterations of
neurotransmission and abnormalities in SMA spinal circuitries
both in vitro and in vivo models revealed hyperexcitability and
loss of afferent proprioceptive synapses on MNs (Mentis et al.,
2011; Gogliotti et al., 2012; Zhou et al., 2016; Bowerman et al.,
2018), suggesting an impairment of glutamatergic synaptic
transmission (Bowerman et al., 2018; Sun and Harrington,
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2019). Impaired glutamate transport and excitotoxicity are
involved in the pathogenesis of many MN diseases, as
already well known for ALS (Rothstein et al., 1995). Such
perturbations can also contribute to SMA disease, by
enhancing MN death: thus, Riluzole and ceftriaxone, two
different kind of drugs able to influence glutamatergic
signaling and both FDA-approved for ALS (albeit with
modest efficacy), have been proposed as repurposed
compounds in clinical SMA trials. Riluzole exerts its anti-
glutamatergic action, by enhancing the uptake of glutamate
into astrocytes and by inhibiting its release blocking voltage-
gated Na+ currents, thus preventing the neurotransmitter
accumulation in the extracellular space and degeneration of
MNs by excitotoxicity. When administered to SmnF7/F7; NSE-
Cre mice SMA mice, Riluzole significantly attenuated disease
progression (Haddad et al., 2003). Similarly, in a small phase I
clinical study with enrolled SMA type I infants, Riluzole was
proved to be safe and able to mitigate the natural course of the
disease (Russman et al., 2003; Wadman et al., 2020). Although
some aspects of Riluzole mechanism of action still need to be
clarified in SMA, Dimitriadi and coll. proved that the drug acts
on Ca2+-activated K channels, thus determining the
improvement of MN functionality in several SMA models
(Dimitriadi et al., 2013).

Ceftriaxone (a β-lactam antibiotic, also known as Rocephin) is
used for the treatment of a number of bacterial infections (Koster,
1986; Schito and Keenan, 2005). Given its potential to reduce
glutamate toxicity by modulating glial glutamate transporters
(GLT1, EAAT2) (Calder et al., 2016; Ramalho et al., 2018),
ceftriaxone efficacy has been tested in several MN disease
models. Its administration in SMNΔ7 mice provided
neuroprotective effects by modulating the glutamate
transporter GLT1, the transcription factor Nrf2 and SMN
protein levels, improving neuromuscular phenotype and
increasing animal survival (Nizzardo et al., 2011). Therefore,
also considering the safety and tolerability of ceftriaxone
administration in ALS patients, the potential repositioning of
β-lactam antibiotics as a treatment for SMA has been suggested
(Nizzardo et al., 2011; Cudkowicz et al., 2014; Calder et al., 2016).

Another successful DR concerns the glutamate inhibitor
Lamotrigine, commonly used for the treatment of various
neuropsychiatric disorders and epilepsy. Its prolonged
administration to adult type II and III SMA patients (Ng
et al., 2008; Naguy and Al-Enezi, 2019) prevented the
deterioration of motor functions for almost 5 years of
treatment (Nascimento et al., 2010; Wadman et al., 2020).

Moreover, the imbalance in excitatory/inhibitory signaling
have been also speculated in SMA. In particular, the
enhancement of GABAergic neurotransmission in C. elegans
SMA models was able to correct the locomotor dysfunctions
(Wu et al., 2018). Moreover, in the work of Sleigh et al., a chemical
library DS highlighted the rescuing of phenotypic dysfunction by
Gaboxadol, a potent agonist of a specific extrasynaptic GABAA
receptor subtype (Sleigh et al., 2011). Gaboxadol has been
proposed for the treatment of insomnia (Mathias et al., 2005;
Roth et al., 2010) and two neurological development disorders,

Fragile X syndrome and Angelman syndrome (Identifier:
NCT04106557), in which it improves behavioral and motor
dysfunctions by enhancing GABAergic transmission (Cogram
et al., 2019; Keary et al., 2020). Its repositioning for SMA
treatment could be also suggested. Likewise, Gabapentin
(Neurontin), a FDA-approved drug whit a molecular
structure similar to GABA, acts by inhibiting calcium
channels. Gabapentin is used for the treatment of different
forms of neuropathic pain, for anxiety disorders and
alcoholism (Field et al., 1997; Caraceni et al., 2004; Pfizer
Inc., 2009; Moore et al., 2011; Levine et al., 2019).
Considering the neuroprotective effect of gabapentin in nerve
damage-induced chronic neuropathic pain (Wiffen et al., 2017),
two different clinical trials were conducted enrolling SMA type
II and III patients (Miller et al., 2001; Merlini et al., 2003). These
trials confirmed a significant gabapentin-dependent
improvements in the so-called “leg megascore” (calculated by
summing knee flexion, knee extension and foot extension
scores) and muscle strength, recommending further studies
to evaluate prolonged administration of the drug in SMA
patients (Merlini et al., 2003; Wadman et al., 2020).

Neuromuscular Junction Stabilization
The NMJ represents the interaction core between the motor nerve
terminal and the skeletal muscle fiber. SMN, neurotrophic factors
(Stanga et al., 2016), “auxiliary proteins” (as neuregulins,
dystrophin-glycoprotein complex, ErbB receptors, Wnts),
miRNAs (as miRNA-9 and miRNA-206) and agrin (a heparan
sulfate proteoglycan) seem to contribute to maturation and/or
stabilization of NMJs (Valsecchi et al., 2015; Boido and Vercelli,
2016; Boido et al., 2018; Guarino et al., 2020). Given this evidence,
DS and DR approaches have been proposed to improve NMJ
development/stabilization in SMA patients.

To this purpose, Amifampridine, a FDA-approved drug used
to treat Lambert-Eaton myasthenic syndrome, is a promising
compound. Its efficacy has been also tested in Myasthenia Gravis
(MG) patients: indeed, although Amifampridine acts on
presynaptic terminal blocking K+ channels regulating ACh
release, its positive effects were also observed in postsynaptic
disorder such as MG (Bonanno et al., 2018). Since NMJs show
both presynaptic and postsynaptic defects in SMA,
Amifampridine can be considered a possible candidate to
improve overall conditions of SMA patients (Hoolachan et al.,
2019): to this aim, the recruiting-phase II clinical trial
NCT03781479 is currently ongoing (Maddison et al., 1998;
Hoolachan et al., 2019).

Similar effects are expected from Tideglusib, a glycogen
synthase kinase 3 beta (GSK-3β) inhibitor, not yet FDA-
approved, mainly investigated for AD and progressive
supranuclear palsy treatments (Lovestone et al., 2015;
Stamelou et al., 2016). However, Tideglusib was also proposed
for a clinical trial on congenital myotonic dystrophy (Identifier
NCT02858908, completed in January 2018) in whom excellent
results were obtained with improvement in muscle growth
(Horrigan et al., 2018); moreover, another trial is ongoing
(Identifier NCT03692312). In addition, an image-based
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screening of chemical libraries showed that GSK-3β chemical
inhibitors and short hairpin RNAs increase SMN protein levels
and block cell death (Makhortova et al., 2011). Altogether, these
data suggest that Tideglusib, likewise Amifampridine, could be a
valuable drug candidate for SMA treatment (Hoolachan et al.,
2019).

DS also allowed the development and identification of
myostatin-follistatin modulators. Myostatin, a member of the
transforming growth factor β (TGFβ) superfamily of growth
factors, is primarily expressed by skeletal muscle cells, where
acts as a negative regulator of muscle mass. Follistatin binds and
inhibits myostatin and other members of the TGFβ family,
contributing to the correct balance of muscle protein
metabolism (Lee and McPherron, 2001). Dysregulation of
myostatin-follistatin signaling pathway has been studied in
several neuromuscular diseases, including SMA (Mariot et al.,
2017; Shorrock et al., 2018). Myostatin expression is impaired in
serum and muscle biopsies of SMA patients (Mariot et al., 2017),
and its inhibition with intramuscular injection of AAV1-
follistatin or muSRK-015P monoclonal antibody ameliorated
muscle mass functions in different models of SMA mice (Feng
et al., 2016; Long et al., 2019). Therefore, preventing myostatin
activation has been widely suggested as therapeutic approach in
SMA. To this aim, Scholar Rock developed several laboratory-
made monoclonal antibodies against myostatin: by carrying out a
phenotypic screening on a dexamethasone-induced muscle
atrophy murine model, the SRK-015 antibody was proved as
able to fully prevent muscle function loss (Pirruccello-Straub
et al., 2018). Given this evidence, it has been tested in two
groups of SMNΔ7 mice (which received different pharmacologic
restoration of SMN, to reflect early or late therapeutic intervention)
leading to positive effects by increasing muscle mass and function
(Long et al., 2019). The efficacy of SRK-105 is currently evaluated
in a phase 2 trial (TOPAZ, Identifier: NCT03921528) involving
type II and III SMA patients (see Scholar Rock Reports First
Quarter, 2020). Finally, another FDA-approved drug, successfully
repositioned for SMA therapy, is Salbutamol (also known as
albuterol; brand name Ventolin), widely used to reduce
bronchospasm in some respiratory pathological conditions
(i.e., asthma and chronic obstructive pulmonary disease). As a
short-acting compound with selective agonist activity on β2-
adrenergic receptors, Salbutamol has been evaluated for its
possible beneficial effects on impaired SMA neuromuscular
synaptic transmission and NMJ functions. It has been shown
that Salbutamol determines a rapid and significant increase of
FL-SMNmRNA and protein in SMA fibroblasts, predominantly by
promoting exon seven inclusion in SMN2 transcripts (Angelozzi
et al., 2008): these results were further confirmed in peripheral
blood leukocytes of SMA type II–III patients (Tiziano et al., 2010).
Moreover, when administered to SMA type II and III patients,
Salbutamol induced an overall improvement of motor
performances and lung/inspiratory functions and a reduction of
the perceived fatigue, suggesting further studies on the molecular
mechanisms underlying these effects and its influence on muscles
and NMJs (Pane et al., 2008; McCullagh et al., 2011; Giovannetti
et al., 2016; Khirani et al., 2017; Frongia et al., 2019; Wadman et al.,
2020).

CONCLUSION

The traditional process for drug discovery (starting from preclinical
testing to several clinical trial phases) is a time andmoney consuming
procedure that, possibly, after 10–15 years could bring to a new
potential molecule for the targeted disease (Kraljevic et al., 2004). In
the last years, DS and DR became powerful strategies for finding new
molecules and/or for giving a new birth to drugs already in use for
other purposes. For sure, the development of potent computational
approaches, the collection of omics data (genomics, proteomics or
metabolomics) and the availability of databases, in combination with
new biological experimental approaches, represent the key forDS and
DR success and exploitation worldwide. Altogether, DS and DR
represent a challenging field, which requires constant technological
update but is extremely promising.

In this work, we reviewed both the models used for the
screenings and the molecules identified by DS/DR in the context
of SMA; exploring these approaches could represent a potential
interesting market, especially for rare disorders such as SMA.

Moreover, interestingly, we highlighted that the molecules
until now identified by DS/DR are involved and act on a limited
number of molecular pathways (Figure 2). This indirectly
contributes to shed light on the pathogenesis of SMA,
clarifying which molecular cascades, organelles and cellular
structures (including cell degradation, cytoskeletal dynamics,
neurotransmitter and channel modulation) are particularly
affected by SMN lack, and may represent therapeutic targets
in combination or alternative to the SMN-dependent approaches.

Unexpectedly, pathways involving the transcription factor
nuclear factor-κB (NF-κB), calpains and autophagy are not still
be directly targeted by DR/DS studies, although they are known to
be strongly related to SMA pathogenesis and their direct
modulation already demonstrated to be effective. Indeed, NF-
κB, it is known to play a fundamental role in the survival of
neuronal cells (Bhakar et al., 2002) and is able to induce the
release of different neurotrophic factors which are decisive for the
survival of cultured MNs (Mincheva et al., 2011). In severe SMA
mice, it has been observed that NF-κB is less expressed and its
inhibition, by lentiviral delivery, causes the decrease of SMN
protein levels (Arumugam et al., 2018). Calpains, a family of
calcium-dependent proteases, are able to regulate the expression
of SMN protein by direct cleavage. This has been observed both in
muscle cells (Walker et al., 2008; Fuentes et al., 2010) and in MNs
cells (de la Fuente et al., 2020): indeed, calpains’ activation
induces SMN cleavage in MNs, while its knockdown or
inhibition increases SMN level and prevents neurite
degeneration. In vivo, the treatment with calpeptin, a calpain
inhibitor, improves both lifespan and motor function of SMA
mice (de la Fuente et al., 2019). Interestingly, calpain levels and
activity are linked to autophagy, a finely tuned process which is
fundamental for the maintenance of cellular homeostasis and
which has already been observed as altered in SMA (Piras et al.,
2017). Calpain reduction by lentiviruses in SMA cultured MNs
can induce the expression of LC3-II, a well-known marker of
autophagy (Periyakaruppiah et al., 2016). The activation of
autophagy has also been observed after SMN reduction,
underlining its important role in SMA pathophysiology
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(Garcera et al., 2013; Custer and Androphy, 2014). Although,
current DS/DR studies did not yet identify molecules or drugs
directly acting on NF-kB, calpain and autophagy.

Furthermore, the research field of biomarkers, besides
supporting diagnosis it is important i) for evaluating the
efficacy of new molecules, and ii) for revealing both specific
and cross-disease pathological mechanisms: for this reason, it is
largely exploited for neurodegenerative disorders such as SMA,
ALS, and AD (Lanni et al., 2010; Stanga et al., 2012; Kariyawasam
et al., 2018; Stanga et al., 2018a; Stanga et al., 2018b).

However, besides the positive aspects deepened in this review,
it is evident that DS/DR methodologies still need to be further
improved. Indeed, sometimes, the promising molecules identified
in preclinical studies then fail to assure an equivalent efficacy in
human patients or, if effective, can encounter difficulties in the
patenting phase (Cagan, 2016; Mohs and Greig, 2017; Pushpakom
et al., 2018): a higher methodological standardization together with
more stringent parameters could further implement the validity
and the success of these powerful screening approaches.
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