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Cancer is one of the most common life-threatening illness and it is the world’s second
largest cause of death. Chemotherapeutic anticancer drugs have many disadvantages,
which led to the need to develop novel strategies to overcome these shortcomings.
Moreover, tumors are heterogenous in nature and there are various biological barriers
that assist in treatment reisistance. In this sense, nanotechnology has provided new
strategies for delivery of anticancer therapeutics. Recently, delivery platforms for
overcoming biological barriers raised by tumor cells and tumor-bearing hosts have
been reported. Among them, amphiphilic block copolymers (ABC)-based self-
assembled nanocarriers have attracted researchers worldwide owing to their unique
properties. In this work, we addressed different biological barriers for effective cancer
treatment along with several strategies to overcome them by using ABC-based self-
assembled nanostructures, with special emphasis in those that have the ability to act as
responsive nanocarriers to internal or external environmental clues to trigger release of
the payload. These nanocarriers have shown promising properties to revolutionize
cancer treatment and diagnosis, but there are still challenges for their successful
translation to clinical applications.

Keywords: amphiphilic block copolymers, cell uptake, intracellular trafficking, stimuli-responsive nanocarriers,
drug delivery, nanomedicine, tumor microenvironment barriers

INTRODUCTION

Cancer is the world’s second largest cause of death, endangering tens of millions of people. Albeit the
substantial development of significant drugs has advanced; their delivery is far from satisfactory
(Zhou et al., 2020). Moreover, anticancer drugs have many disadvantages (undesirable
biodistribution, low specificity, limited targeting, inefficient cellular uptake, produce side/toxic
effects) (Yin et al., 2016; Avramović et al., 2020). These limitations have prompted the development
of novel strategies to overcome these shortcomings. Advanced nanotechnology has provided new
approaches for efficient delivery of anticancer therapeutics and supposed to be a promising tool
against this illness (Chan, 2017). Nevertheless, considering the relatively few nanomedicine choices
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available in clinical trials, this promise has apparently fizzled
(Huo et al., 2019). Some failures originate from safety issues
respect to long term exposure to engineered materials despite the
advancements made to understand their nanotoxicity (Yan et al.,
2019). Also, tumor multifaceted nature clarifies why most
nanomedicines have not prevailing in clinical trials (Kievit and
Zhang, 2011; Ernsting et al., 2013). It has been proposed that
tumors are heterogenous in nature, possessing various biological
barriers that assist in treatment resistance. Recent observations
into the tumor niche indicate that many obstacles still exist and
insufficient attention is given to their biological consequences
when novel nanomedicines are designed (Huo et al., 2019). As a
result, in the last decade new delivery platforms to overcome
biological barriers caused by tumor cells and tumor-bearing hosts
have been evaluated.

Many delivery systems on nanoscale with significant
achievements have been reported to date. Among them,
amphiphilic block copolymers (ABC)-based self-assembled
nanocarriers (SAN) for delivery of anticancer therapeutics have
attracted researchers worldwide owing to their unique chemical
and physical properties, improved biocompatibility, tunable
compositions, extended blood circulation, and facile
functionalization (Yin et al., 2016; García et al., 2018; García
and Quiroz, 2018; García, 2019b). With the advancements in
polymer chemistry, different ABC with preferred number and
monomer type, each having different hydrophobic and
hydrophilic properties have been synthetized (Yorulmaz Avsar
et al., 2019). By tailoring monomer combinations, SAN with
upgraded properties to overcome biological barriers can be
obtained. ABC can self-assemble into distinctive nanostructural
arrangements among which micelles and more recently polymer
vesicles (also termed as polymersomes) are the most reported (Yin
et al., 2016; García and Quiroz, 2018; García et al., 2018). Inspired
by their promising properties, nanomedicines could be intended to
successfully mimic, improve or interact with these cross-talks for
improving cancer therapy.

In this review, we addressed different biological barriers for
numerous anticancer therapeutic moieties for effective cancer
treatment along with several strategies to overcome them by using
ABC-based SAN, with special emphasis in those that have the ability
to act as responsive nanocarriers to internal or external environmental
clues, producing on-demand triggered release of the payload.

BIOLOGICAL BARRIERS AND STRATEGIES
TO OVERCOME BARRIERS FOR
EFFECTIVE DELIVERY OF ANTICANCER
THERAPEUTIC

Cancer nanomedicine efficacy is measured primarily by how
much drug can reach to the tumor-site. The properties of the
biological barriers are diverse and represent both a challenge as
well as an opportunity to develop tailor-made drug delivery
system to effectively reach the target site. Distinct biological
barriers and their peculiarities (Figure 1A), and strategies to
overcome them are discussed in the following section.

Opsonization/Sequestration by the
Mononuclear Phagocytic System
After intravenous administration, nanocarriers are exposed to a
several sequential hurdles that must be overcome in order to
efficiently reach therapeutic levels of drugs at disease sites,
avoiding nonspecific uptake in healthy organs (Blanco et al.,
2015; Chevalier et al., 2017). As per the literature, when
nanocarriers are intravenously administered, they can interact
with thousands of proteins. Biological media consists of
numerous active biomolecules such as lipids, nucleic acids,
proteins, and blood plasma contains roughly 3,700 identified
proteins (Lazarovits et al., 2015; Chen et al., 2017). Protein corona
effect i.e. due to the presence of charge on nanocarriers can result
into interaction with oppositely charged serum protein. Thus,
nanocarriers or the targeting moiety decorated over nanocarriers
get buried in protein corona resulting into prevention of
nanocarriers’s interaction with the targeted receptor in cancer
cells (Tonigold et al., 2018). Opsonins are key proteins in the
blood serum that promotes elimination of vulnerable
nanocarriers by marking them off for an immune response.
The major part of opsonized nanocarriers are cleared within
seconds by a receptor-mediated mechanism because of the
phagocytic cells in the liver, lymph nodes, and spleen of the
mononuclear phagocyte system, contributing to nonspecific
distribution of nanocarriers in healthy organs (Blanco et al.,
2015; Chevalier et al., 2017).

One most established strategy to mitigate the effect of protein
corona involves the nanocarrier functionalization with
amphiphilic or hydrophilic polymers, such as poly (ethylene
glycol) (PEG) (Bros et al., 2018). PEG forms strong adhered
hydration layer, which sterically avoid the interaction/adsorption
of serum protein (Huo et al., 2019). PEG-decorated nanocarrriers
reduce their recognition by the components of the mononuclear
phagocytic system, increasing their blood circulation time (Xiong
et al., 2009; Naeye et al., 2010). Zwitterionic ligands
(i.e., sulfobetaine and carboxybetaine) have also been explored
as antifouling agents (Kane et al., 2003; Tsai et al., 2004; Shao and
Jiang, 2014; Li et al., 2018). These strategies are different since
stacking of PEG chains is driven by Van der Waals forces and
hydrophobic interactions, resulting into hard to form an ideal
self-assembled monolayer; whereas zwitterionic ligands exhibit
strong electrostatic interactions within their molecules, resulting
into dense packing and minimizing protein adsorption on their
surface. Additionally, charges on zwitterionic polymers can
prompt strong hydration which retards protein adsorption
(Huo et al., 2019).

Vascular Flow
Blood vessels at tumor site develop gaps between endothelial cells
during angiogenesis process through which nanocarriers can
easily pass for reaching tumors by EPR effect. However, this
effect is now in dispute in clinical trials since nanocarriers have
shown moderate therapeutic efficacy. It could have happened due
to heterogeneity of EPR effect in humans. For instance, mouse
xenograft models develop tumor very fast and endothelial cells in
blood vessels tend to present many fenestrations. Aversely,
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tumors in humans develop very slowly and not all tumor vessels
develop inter-endothelial gaps (Li J.-X. et al., 2020). Recently,
Matsumoto et al. demonstrated that tumor blood vessels form
transient opening and closing as they dynamically generate
vascular bursts, resulting into eruption and vigorous fluid
outflow into tumor interstitial space which ultimately lead to
nanocarrier extravasation (Matsumoto et al., 2016). In contrast,

Sindhwani et al. proposed that extravasation takes place via
interconnected vesiculovacuolar organelles (trans-endothelial
pathway), revealing that 97% of nanocarrier extravasation
occurred through this pathway (Sindhwani et al., 2020).

Different strategies to overcome tumor vascular barrier and
improve accumulation of nanocarriers at tumor site can be use. 1)
Enhancing tumor vascular permeability: a) physical stimulation

FIGURE 1 | (A) Main and sequential biological barriers (after intravenous administration) faced to therapeutic delivery nanocarriers for effective cancer therapy: a)
they may undergo opsonization and uptake bymacrophages of themononuclear phagocytic system; b) nonspecific distribution that lead accumulation of nanocarriers in
other healthy organs such as spleen, livers and lungs, and extravasation and renal clearance faced by nanocarriers smaller than 5–6 nm; c) flow in blood vessels and
endothelial surfaces; d) cancer microenviroment, including interstitial fluid pressure (IFP); e) cellular internalization and endosomal escape; and f) upon entry into
tumor cells, multidrug resistant (MDR) system, including drug efflux pumps that remove anticancer therapeutics from the tumor cell. (B) Schematic representation of
tumor environment and summary of internal and external stimuli for triggered delivery of anticancer therapeutics from self-assembled nanocarriers.
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viz. hyperthermia (Liu et al., 2018), ultrasound (Ho et al., 2016)
and radiation (Potchen et al., 1972) allow increasing the local
vascular permeability through which nanocarriers can efficiently
pass (Ding et al., 2019). b) Use of disruptive agents (i.e., nitric
acid) (Qin and Gao, 2019). It has been demonstrated that nitric
acid can dilate blood vessels, elevate blood flow and also open
tight junctions between endothelial cells (Maeda et al., 2013). 2)
Targeting tumor vasculature: tumor cells overexpress distinctive
biomarkers compared to normal endothelial cells; thus, active
targeting of nanocarriers to tumor endothelial cells can overcome
this barrier (Li J.-X. et al., 2020).

Tumor Microenvironment
After crossing the vascular barrier, nanocarriers come across
tumor microenvironment barrier composed by dense
extracellular matrix (ECM), high interstitial fluid pressure
(IFP) and stromal cells (Ding et al., 2019). ECM is a complex
molecular structure mainly consisting of collagen network,
proteoglycan, glycosaminoglycan, microfiber elastin and other
polysaccharides with distinct biochemical and physical properties
(Koláčná et al., 2007; Lu et al., 2012). Nanocarriers cannot cross
this barrier because of the following reasons: 1) densely packed
gel-like structure of tumor ECM increased lysyloxidase levels and
the presence of integrin receptors with high viscosity (Barua and
Mitragotri, 2014); 2) ECM has pores with 40 nm in size; thus,
nanocarriers larger than 60 nm exhibit difficulties to cross this
barrier (Zhang et al., 2018); 3) cancer cell density compresses the
ECM and increases the IFP (solid tumors � 5–40 mmHg,
pancreatic tumor � 75–130 mmHg whereas normal IFP �
0–3 mmHg) (Miao et al., 2015). Moreover, stromal cells that
consist of cancer-associated fibroblasts (CAF) are mostly found in
tumor microenvironment. CAF produce dense ECM, facilitate
the tumor growth, and angiogenesis as they secrete cytokines viz.
interleukin (IL)-6, hepatocyte growth factor and vascular
endothelial growth factor, which hinder delivery of
nanocarriers to target site (Kalluri, 2016). Also, CAF may
express receptors similar to tumor cells to which nanocarriers
can be targeted, leading to off target distribution (Sherman et al.,
2014; Miao et al., 2016).

For overcoming this barrier, physical methods, such as
ultrasound, phototherapy and hyperthermia, can be used
since they disrupt ECM. However, these methods can affect
normal healthy nearby tissues (Eggen et al., 2014). Enzymes viz.
hyaluronidase (Zhou et al., 2016) and collagenase (Kuhn et al.,
2006) constitute another strategy. They can effectively degrade
the hyaluronan in tumor ECM and reduce IFP, enhancing
nanocarrier penetration. microenvironment, such as stimuli-
responsive (García, 2019b) or size-switching (Cabral et al.,
2011) delivery platforms, are other strategies for enhancing
cancer therapy. Size-switching nanocarriers are those with
large particle size in blood circulation, which when become
in contact with tumor tissue switch their size to small to
effectively extravasate, leading to deep penetration (Cabral
et al., 2011). Because of the advancements in the
development of stimuli-responsive nanocarriers, in Stimuli-
Responsive Self-Assembled Nanocarriers Nanocarriers they are
described.

Furthermore, it has to be addressed that an additional
important feature of tumor microenvironment is the overall
immunosuppressive microenvironment because of the
presence of numerous immune cells viz. dendritic cells (DC),
tumor associated macrophages (TAM, including M1-
immunostimulatory and M2-immunosuppressive phenotypes),
natural killer (NK) cells, B and T lymphocytes, which have
complex and diverse roles (Zhou et al., 2020). M2 phenotype
is primarily triggered in tumors in response to hypoxic condition
and facilitate metastasis, angiogenesis and decrease in immune
response of T cells. Targeting TAM and switching fromM2 toM1
phenotype, which reverse the immune suppression, can be an
efficient anticancer strategy for preventing tumor progression
(Zhang B. et al., 2017). Myeloid-derived suppressor cells and
regulatory T-cells are also responsible for immune suppression
(Munn and Bronte, 2016). They generate large amount of IL-10,
arginine-1 and NO; and IL-10 and transforming growth factor
(TGF)-β, respectively, which directly suppresses T cell function
and release granzyme and perforin to destroy effector T cells,
resulting into immunosuppression (Talmadge and Gabrilovich,
2013). Additionally, prostaglandin E-2, programmed death-1
molecule, TGF-β and IL-10 could suppress the antigen cross
presenting ability of DC. Tumor cells also downregulate NK cells
to prevent exposure of tumor necrosis factor-related apoptosis
inducing ligand (Waldhauer and Steinle, 2008). Due to decrease
trafficking in tumor sites (including downregulation of cluster of
differentiation (CD) 62L on CD8+ T cells, the adhesion molecules
VCAM-1 and ICAM-1, and IL-12) and lack of activation caused
by the aforementioned immunosuppressive tumor
microenvironment, the CD8+ T cells are not able to exhibit an
inhibitory response against tumors (Buoncervello et al., 2019).
Thus, targeting immune cells or immune related specific
molecules could reshape the immune microenvironment and
increase the treatment efficacy.

Cellular Membrane
This membrane not only supplies nutrients to cells but also acts as
one of the barrier for cellular internalization of nanocarriers
(Choudhury et al., 2019), which is mostly based on their
physicochemical properties and the protein corona that coated
them. Therapeutic moieties with low molecular weight and
lipophilic nature cross the membrane lipid bilayer by passive
diffusion while molecules with higher molecular weight require
active transportation (Blanco et al., 2015). Furthermore,
numerous factors of nanocarriers (particle size, shape, surface
charge, and hydrophobicity) affect cellular internalization. The
particle size determines the type of endocytosis through cell
membrane. Shape structure other than sphere, viz. anisotropy
and original orientation are critical for nanocarrier uptake
through cellular membrane. Also, this parameter can have
dramatic effects on targeting, circulation, internalization,
immune cell association, and adhesion (Champion et al., 2007;
Sharma et al., 2010; Truong et al., 2015). Mechanical properties
can also affect cell adhesion/penetration. Enhanced permeability
and retention (EPR) effect is favored if nanocarriers exhibit good
flexibility. Their elasticity increases their chances of penetration
between endothelial cancer cells and also, in targeted drug release,
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nanocarriers’ flexibility is a key factor in the interaction with
cellular receptor-mediated endocytosis (Anselmo et al., 2015).

Multidrug Resistant System
MDR is a state of resistance toward structurally and/or
functionally different therapeutic moieties and grouped into
five classes: 1) increase efflux of drugs, primarily via adenosine
triphosphate-driven extrusion pumps of adenosine triphosphate-
binding cassette superfamily, such as breast cancer resistance
proteins, MDR-associated protein 1, and P-glycoprotein, which
form a unique defense system against anticancer drugs and exo-
and endotoxins, significantly reducing intracellular concentration
of drugs or endogenous toxins; 2) decrease influx of drugs; 3)
DNA repair activation; 4) inactivation of apoptosis pathways with
parallel activation of antiapoptotic cellular defensive
compartments; 5) metabolic modification and detoxification.

MDR hinders to reach tumor-site by drug in the concentration
and at the time required. Hence, only a fraction of dose remains
into the cancer cells, while the remaining is removed by MDR
(Choudhury et al., 2019; Huo et al., 2019).

AMPHIPHILIC BLOCK COPOLYMERS AND
SELF-ASSEMBLED NANOCARRIERS

Self-assembly process refers to the spontaneous association of
ordered and well-organized systems, which occurs under kinetic
and thermodynamic conditions, allowing local and specific
molecular interactions to form stable and perfectly structured
aggregates. Electrostatic or hydrophobic interactions, hydrogen
bonding, π-π aromatic-stacking, and van der Waals forces
contribute to keep the molecules organized, achieving the
minimal energy in the nanocarriers (Yadav et al., 2020).

SAN are easy to prepare, flexible and low-cost materials that
have gained popularity for biomedical application in cancer
(Berbezier and De Crescenzi, 2015; García and Quiroz, 2018).
Moreover, their preparation involves generally large-scale
techniques. Top-down and bottom-up approaches can be
employed. While the former involves the transformation of a
block of matter into a structured and organized nanostructure,
the later requires the assembly of basic units/monomers for
arriving at the nanocarrier structures through non-covalent
interactions. Regardless of being weaks, altogether these
interactions become the main force of the assembly process.
Even though it is important to consider the balance between
attractive driving, repulsive and directional forces (Yadav et al.,
2020), simple but effective bottom-up approach is the most
employed method. By tailoring experimental parameters
different types of nanocarriers with distinctive morphologies
and high performance for therapeutic purposes can be readily
and selectively produced (Fratoddi et al., 2016; García and
Quiroz, 2018). SAN represent a promising tool for targeted
drug delivery, especially in personalized cancer treatments.
They allow a site-directed delivery of anticancer therapeutics,
increasing treatment efficacy and safety by modifying their
physicochemical characteristics (i.e., size, shape, solubility,
permeability) (García, 2019b; Yadav et al., 2020).

STIMULI-RESPONSIVE SELF-ASSEMBLED
NANOCARRIERS

Even though passive and active targeting strategies contribute to
intracellular accumulation of anticancer therapeutics,
nanocarrier delivery performance can be improved by
incorporating appropriate trigger responsiveness. Cutting-edge
and emerging research focuses comprise the development of SAN
since they can recognize some environmental clue, internal and/
or external stimuli (Figure 1B), inducing physical/chemical
changes and triggering cargo release in dose-, spatial-, and
temporal-controlled manners (García, 2019b). Table 1
describes several examples of stimuli-responsive SAN and their
application in cancer therapy.

External Stimuli-Responsive Nanocarriers
As stated, different strategies to overcome biological barriers for
delivery of anticancer therapeutics, such as hyperthermia (Liu
et al., 2018), ultrasound (Ho et al., 2016) and radiation (Potchen
et al., 1972) are used. Interestingly, they can be also explored in
the design of SAN that can be remotely controlled for triggering
cargo delivery.

Light-Responsive Nanocarriers
Light irradiation, with variable intensity and wavelength, is an
easy and low-cost exogenous stimulus. At a specific time and
location, the disassembly of nanocarriers can be induced upon
exposure to certain wavelengths, such as ultraviolet, visible, and
near-infrared (NIR) (Che and van Hest, 2016; Johnson and
Preman, 2018; García, 2019b). Light-responsive SAN
frequently incorporate ABC with photo-sensitive moieties viz.
azobenzene (Blasco et al., 2013a; Blasco et al., 2013b; Blasco et al.,
2014; Xia et al., 2014; Pearson et al., 2015; Bai et al., 2018; Hu et al.,
2018), spiropyran (Wang B. et al., 2014; Wang X. et al., 2015;
Kwangmettatam and Kudernac, 2018), o-nitrobenzyl (Jin et al.,
2014; Liu et al., 2014; Yamamoto et al., 2019), chromophores
(Hribar et al., 2011; Song et al., 2011; Yan et al., 2011; He et al.,
2013; Lin et al., 2013; Ding et al., 2015; Tang et al., 2020). They
behave as light-cleavable linkers or induce light-sensitive
degradation or conformational changes (García, 2019b). Drug
release may be controlled by adjusting three main parameters:
light intensity, wavelength, and exposure time. NIR-responsive
SAN have been widely studied for non-invasive and on-demand
drug delivery therapy (García, 2019b; Li F. et al., 2020) since tissue
and skin exhibit minimum absorbance in the range 650–900 nm
(Yin et al., 2016; Johnson and Preman, 2018; García, 2019b).
Light-responsive SAN have also been studied for photothermal/
photodynamic cancer therapy. The incorporation of gold-based
nanostructures into SAN is useful for hyperthermia-based
therapy (Liao et al., 2015).

Magnetic-Responsive Nanocarriers
Magnetic-responsive SAN have been evaluated in cancer therapy
and/or diagnosis for magnetically triggered cargo release,
magnetic resonance imaging, hyperthermia and magnetic
guidance (Che and van Hest, 2016; Thambi et al., 2016; Hu
et al., 2017; García, 2019b). High penetration, ease of control,
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TABLE 1 | Amphiphilic block copolymers and stimuli-responsive self-assembly-based delivery systems for cancer therapy.

Stimulus Type of
nanocarrier

Nanocarrier building
blocks

Therapeutic agent
loaded/Cargo

Type of
tumor

Stage of
development

Ref

Light Micelles Poly(AzoMA)-b-poly(β-AcGalEtMA) Nile red Melanoma In vitro (A375 cells) Pearson et al.
(2015)

Light Photochromic polymersomes PEO-b-PSPA DAPI Cervical cancer In vitro (HeLa cells Wang X. et al.
(2015)

Light Polymersomes CB[8]-MMV-b-TBA-Azo Rhodamine B, DOX and 5(6)-
carboxyfluorescein

Breast, lung and
prostate cancer

In vitro (A549, MDA-MB-231, and PC-3
cancer cells; HUVEC and L-O2 normal

cells)

Hu et al. (2018)

Light/pH Multi-compartment vesicles and complex
micelles

β-CD-acylhydrazone-DOX and Azo-
PDMA-FA

DOX Breast cancer In vitro (MCF-7 cells) Bai et al. (2018)

Light/pH PIC micelles PDMNBMA-b-PCBMA FITC and BSA Lung cancer In vitro (A549 cells) Jin et al. (2014)
Light (NIR)/
GSH

Micelles PCL-SS-BPLP and biotin-PEG-
cypate

DOX and cypate Liver and lung cancer In vitro (HepG2 cell) and in vivo (C57BL/6
mice, Lewis lung cancer)

Zhang et al.
(2019)

Light (NIR)/
ROS

Polymersomes PPS -b-PEG ZnPc and DOX Melanoma In vitro (A375 cells) Tang et al. (2020)

Magnetic field Polymersomes PTMC-b-PGA γ-Fe2O3 and DOX Cervical cancer In vitro (HeLa cells) Oliveira et al.
(2013)

Magnetic field Asymmetrical vesicles R-PGA-b-PCL [R is FA or DTPA] DOX and gadolinium [Gd(III)] Liver cancer In vitro (SMMC-7721 cancer cells and
(L02) normal cells)

Liu Q. et al. (2015)

Magnetic field Micelles PNIPAM-b-PCL-b-PNIPAM Fe3O4 nanoparticles and
paclitaxel

Breast cancer In vitro (MCF-7 cells) Pourjavadi et al.
(2019)

Temperature Micelles PFAAM-b- PFPAM Paclitaxel Liver cancer In vitro (A549 and Bel 7402 cells) Chen et al. (2013)
Temperature Micelles PNIPAM-b-HTPB-b-PNIAM Campothecin Breast cancer In vitro (MDA-MB231) Luo et al. (2014)
Temperature Polymersomes PVCL-b-PDMS-b-PVCL DOX Lung cancer In vitro (A549 cells) Liu F. et al. (2015)
Temperature Micelles PE-PCL-b-PNIPAM-FA and PE-

PCL-b-PNVCL-FA
DOX Glioblastoma In vitro (C6 glioma cells) and in vivo (C6

glioma tumor rat model)
Panja et al. (2016)

Temperature Polymersomes PMVC-PVPON DOX — In vivo (C57BL/6J mice) Kozlovskaya et al.
(2019)

Temperature/
pH

Micelles PNIPAM-co-PCL and PNIPAM- co-
N,N-dimethylacrylamide-b-lacitde

Adriamycin Stomach cancer In vitro (N-87 cells) Li W. et al. (2011)

Ultrasound Micelles Plurconic P123/Plurconic F127 Curcumin Breast cancer In vitro (MDA-MB-231 and 4T1 cells) and
in vivo (BALB/c mice, 4T1)

Wu et al. (2017)

Ultrasound/
pH

Polymersomes PEO-b-P(DEA-stat-MEMA) DOX Cervical cancer In vitro (HeLa cells) and in vivo (BALB/c
nude mice, HeLa cells)

Wei P. et al.
(2020)

pH Polymersomes PLL-CA/PEG-DOX DOX Breast cancer In vitro (MCF-7 cells) Zhu et al. (2012)
pH Micelles mPEG-b-P(CL-co-DCL) DOX Liver cancer In vitro (HepG2 cells) Deng et al. (2014)
pH Micelles PGA-b-PLA DOX Melanoma In vitro (A375 cells) and in vivo (Balb/c

nude mice, A375 cells)
Wang Q.-M. et al.
(2014)

pH Polymersomes PEG-b-PTTAMA Nile red and DOX Cervical cancer In vitro (HeLa cells) Wang L. et al.
(2015)
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TABLE 1 | (Continued) Amphiphilic block copolymers and stimuli-responsive self-assembly-based delivery systems for cancer therapy.

Stimulus Type of
nanocarrier

Nanocarrier building
blocks

Therapeutic agent
loaded/Cargo

Type of
tumor

Stage of
development

Ref

pH Micelles PEG-b-PAU-b-PEG DOX Breast cancer and
leukemia

In vitro (MCF-7/ADR and RAW 264.7 cells) Huang et al.
(2015)

pH Chimeric polymersomes Acupa-PEG-PTMBPEC-PSAC BSA, cytochrome C, and
granzyme B

Prostate cancer In vitro (LNCaP and PC-3 cells) and in vivo
(nude mice)

Li et al. (2015)

pH PIC micelles PEG-b-PLL DOX Liver cancer In vitro (HepG2 cells) and in vivo (xenograft
human HepG2 hepatoma-bearing nude
mouse)

Zheng et al.
(2020)

pH Micelle Dex-g-(DOX + BTZ)/cRGD
(polysaccharide-di-drugs conjugate)

DOX and BTZ Melanoma In vitro (B16F10 cells) and in vivo
(melanoma-allografted BALB/c mice)

Li D. et al. (2020)

Enzyrme Polymersomes GFLGF peptide-containing mPEG-
b-PDLLA

Fluorescein Breast cancer In vitro (SKBR3 cells) Lee et al. (2011)

Enzyrme Polymersomes Dex-PDP or DEX-CAR Rhodamine-B and
camptothecin

— In vitro (MEFs cells) Pramod et al.
(2012)

Enzyrme Polymersomes Dex-PDP or DEX-CAR DOX and camptothecin Breast and colon
cancer

In vitro (MCF7 and DLD1, cells) Pramod et al.
(2014)

Enzyme Nanoassemblies mPEG-Pep-PCL and FA-PEG-PCL Camptothecin Melanoma In vitro (B16 cells) and in vivo (ICR mice,
B16 cells)

Yu et al. (2015)

Enzyme Nanoassemblies PCL-b-carboxylic PCL DOX Breast and cervical
cancer

In vitro (MCF7 and HeLa cells) Malhotra et al.
(2016)

Enzyrme Micelles PEG-GPLGVRGDG-P(BLA-co-Asp) DOX Fibrosarcoma In vitro (HT1080 cells) Ke et al. (2016)
Enzyme Nanoassemblies l-Tyrosine Poly(ester-urethane)s DOX and camptothecin Cervical cancer In vitro (HeLa and WT-MEF cells) Aluri and

Jayakannan
(2017)

Enzyrme Nanoassemblies PEG- GFLG-GEM Gemcitabine (GEM) Breast cancer In vitro (4T1 cells) Zhang C. et al.
(2017)

Enzyme/pH Polymersomes Dex-IM-PDP DOX Breast cancer In vitro (MCF7 cells) Pramod et al.
(2015)

ROS Polymersomes PEG-b-PPS Gardiquimod and ovalbumin — In vitro (mouse bone marrow-derived
dendritic cells)

Scott et al. (2012)

ROS Polymersomes P[(HPMA) -b-(ROS1/2)] DOX Lymphoma In vitro (EL4 T cells) and in vivo (C57BL/6J
mice, EL4 T cells)

Jag̈er et al. (2020)

ROS/pH Polymersomes PEO-b-PNBMA DOX and paclitaxel Cervical cancer In vitro (HeLa and RAW 264.7) Deng et al. (2016)
GSH Micelles mPEG-SS-PzLL DOX Breast cancer In vitro (MCF7 cells) Wen et al. (2011)
GSH Shell-detachable micelles PCL-SS- PEEP DOX Breast cancer In vitro (MCF-7/ADR) Wang et al. (2011)
GSH Polymersomes PEG-b-PLL-SS-PCL DOX and camptothecin Squamous

carcinoma
In vitro (SCC7 cells) Thambi et al.

(2012)
(Continued on following page)
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TABLE 1 | (Continued) Amphiphilic block copolymers and stimuli-responsive self-assembly-based delivery systems for cancer therapy.

Stimulus Type of
nanocarrier

Nanocarrier building
blocks

Therapeutic agent
loaded/Cargo

Type of
tumor

Stage of
development

Ref

GSH Different hierarchical nanoassemblies
(spheres, large compound vesicles, smooth
disks, and staggered lamellae)

PEG-b-PCPTM Camptothecin Liver and lung cancer In vitro (HepG2 and A549 cells) Hu et al. (2013)

GSH Micelles PCL-SS-PDMA and PCL-SS-
PDMA/DNA

DOX and DNA Cervical cancer and
oral carcinoma

In vitro (HeLa, KB and CAL-27 cells) Li et al. (2014)

GSH Polymersomes PEG–PAA– PDEA and
PEG–PAA(SH)–PDEA

BSA and and cytochrome C Breast and cervical
cancer

In vitro (MCF-7 and HeLa cells) Sun et al. (2014)

GSH Polymersomes cNGQ-PEG-P(TMC-DTC) DOX Lung cancer In vitro (A549 cells) and in vivo (orthotopic
A549 human lung cancer xenografts in
nude mice)

Zou et al. (2016)

GSH Micelles mPEG-SS-paclitaxel and mPEG-
SS-DOX conjugates

DOX and paclitaxel Lung cancer and
melanoma

In vitro (A549 and B16 cancer cells) and in
vivo (B16 mouse melanoma model)

Zhao et al. (2017)

GSH Polymersomes FA-PCL-SS-PEG-SS-PCL DOX and paclitaxel,
P-glycoprotein inhibitor
tariquidar

Breast cancer In vitro (MCF-7/ADR cells) Qin et al. (2018)

GSH Polymersomes and micelles PNIPAM-b-PDS-b-PNIPAM and
PTEGMA-b-PDS-b-PTEGMA

DOX Cervical cancer In vitro (HeLa cells) Bej et al. (2018)

GSH Nanoassemblies Xyl-SS-curcumin 5-Fluorouracil and curcumin Colorectal cancer In vitro (HT-29 and HCT-15 cells) Kumar et al.
(2020)

GSH Polymersomes TBP-PEG-P(TMC-DTC) DOX Colorectal cancer In vitro (HCT-116 cells) and in vivo (Balb/c
nude mice, HCT-116 cells)

Wei Y. et al.
(2020)

GSH Chimeric polymersomes HA-RCP- granzyme B Granzyme B Multiple myeloma In vitro (NALM-6, K562, MM1S, and LP1
cells) In vivo (nude mice, LP1 cells)

Zhong et al.
(2020)

Acronyms’ details: AzoMA, 4-[4-[(4-Methoxyphenyl)azo]phenoxy]ethanol; β-AcGalEtMA, 2-(2,3,4,6-Tetra-O-acetyl-β-d-galactopyranosyl)ethyl methacrylate; DOX, doxorubicin; Azo-PDMA-FA, azobenzene-
terminated poly(2-(dimethylamino)ethyl methacrylate); β-CD, β-cyclodextrin; PEG, poly(ethylene glycol); isoAZO/C18, 4-isobutyloxyazobenzene units (AZO) and hydrocarbon chains (C18); CB [8], cucurbit [8] uril;
MMV, maleimide-modified methylviologen; PSPMA, poly(spiropyran ether methacrylate); PEO, poly(ethylene oxide); SPA, spiropyran (SP)-based monomer containing a carbamate linkage; DAPI, 4′,6-diamidino-
2-phenylindole; PDMNBMA, poly(N,N-dimethyl-N-(2-(methacryloyloxy)ethyl)-N-((2-nitrobenzyl)oxy)-2-oxoethanaminium bromide); PCBMA, poly(carboxybetaine methacrylate); BSA, bovine serum albumin;
PBC, poly(benzyl carbamate); PDMA, poly(N,N-dimethylacrylamide); PCL, poly(caprolactone), SS, disulfide bond; BPLP, biodegradable photoluminescent polymer; ZnPc, Zinc phthalocyanine photosensitizer;
PPS, poly (propylene sulfide); PNIPAM, poly-N-isopropylacrylamide; PTMC, poly(trimethylene carbonate); PGA, poly(L-glutamic acid); P2VP, poly(2-vinylpyridine); FA, folic acid; DTPA,
diethylenetriaminepentacetatic acid; CS, chitosan; P(tBA-co-AA), poly(t-butyl acrylate-co-acrylic acid); PFAAM, P(folate-allylamine-co-NIPA-co-acrylamide-co-octadecyl acrylate); PFPAM, and P(folate-PEG-
acrylic acid-co-NIPA-co-acrylamide-co-octadecyl acrylate); HTPB, hydroxyl-terminated polybutadiene; PE, pentaerythritol; PNVCL, poly(N-vinylcaprolactam); PDMS, polydimethylsiloxane; PMVC, poly(3-methyl-N-vinylcaprolactam); PVPON,
poly(N-vinylpyrrolidone); P(DEA-stat-MEMA), poly(2-(diethylamino)ethyl methacrylate)-stat-poly(methoxyethyl methacrylate); Fc, ferrocene; PLL, poly(l-lysine); P(CL-co-DCL), poly(ε-caprolactone-co-γ-dimethyl maleamidic acid; BTZ,
bortezomib; Dex, dextran; cRGD, cyclo-(Arg-Gly-Asp-D-Phe-Lys) peptide; CA, cholate; PTTAMA, poly(2-((((5-methyl-2-(2,4,6-trimethoxyphenyl)-1,3-dioxan-5-yl)methoxy)carbonyl)amino)ethyl methacrylate); PAU, poly(acetal urethane); mPEG,
methoxy PEG; PDLLA, poly(D,L-lactide); GFLG, glycyl phenylalanyl leucyl glycine tetra-peptide; PBLA, poly(β-benzyl l-aspartate); Pep, metalloproteinase-2 and metalloproteinase-9; PDP, Ethyl 2-(3-pentadecylphenoxy)acetate; CAR, 2-(3-
pentadec-7-enyl)phenoxy)acetic acid; ROS monomer 1 and 2: 4- aminophenylboronic acid pinacol ester and 4- (hydroxymethyl)phenylboronic acid pinacol ester, respectively; P(HPMA), azide-terminated poly([N-(2-hydroxypropyl)]-
methacrylamide); PzLL, poly(e-benzyloxycarbonyl-L-lysine); PEEP, poly(ethyl ethylene phosphate); Xyl, xylan; PCPTM, reduction-cleavable camptothecin prodrug monomer; PDEA, poly(2-(diethyl amino)ethyl methacrylate); P(TMC-DTC)),
poly(trimethylene carbonate-co-dithiolane trimethylene carbonate); cNGQGEQc, cyclic peptide cNGQGEQc; PDS, poly(disulfide); PTEGMA, poly(triethyleneglycol)methylethermethacrylate; TBP, transferrin binding peptide CGGGHKYLRW; HA,
hyaluronic acid.
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noninvasive nature, and absence of energy dissipation are their
main characteristics (García, 2019b). Commonly, ferromagnetic,
paramagnetic or superparamagnetic (i.e., magnetite and
maghemite) nanoparticles are incorporated into self-assemblies
(Lecommandoux et al., 2005; Krack et al., 2008; Mart et al., 2009;
Kim et al., 2010; Yang et al., 2010; Hickey et al., 2011; Meeuwissen
et al., 2011; Sanson et al., 2011; Oliveira et al., 2013; Roger et al.,
2014; Van Rhee et al., 2014; Liu Q. et al., 2015).

Temperature-Responsive Nanocarriers
Temperature is the most widespread stimulus to trigger the
specific responsiveness of SAN for applications in cancer
nanomedicine (Mu et al., 2019). Local temperature is slightly
higher in solid tumors than in normal tissues; hence, nanocarriers
may accumulate into the tumor by adjusting the thermo-
responsiveness of ABC (phase transition temperature: upper or
lower critical solution temperatures, UCST and LCST,
respectively) (Ward and Georgiou, 2011) to be between body
and tumor temperature (Onaca et al., 2009; Thambi et al., 2016;
García, 2019b). Poly-N-isopropylacrylamide (PNIPAM) as block,
with LCST � 32 °C (Che and van Hest, 2016), has been widely
evaluated in ABC-based SAN (Qin et al., 2006; Onaca et al., 2009;
Xu et al., 2009; Moughton and O’Reilly, 2010; Li G. et al., 2011; Li
W. et al., 2011; Chen et al., 2013; Luo et al., 2014; Che and van
Hest, 2016; Panja et al., 2016; Hu et al., 2017; García, 2019b).
Magnetic nanocarriers that incorporated PNIPAM have also
been reported, exhibiting dual responsiveness as well as
usefulness for hyperthermia therapy (Bixner et al., 2016).
Despite plenty PNIPAM-based nanocarriers have been
described so far, their translation to clinical applications is
still controversial, since preclinical studies indicated systemic
toxicity (Johnson and Preman, 2018). Alternatively,
poly(N-vinylcaprolactam)-containing ABC have been evaluated
(Liu F. et al., 2015; Kozlovskaya et al., 2019). Moreover, the wide
variety of polymers and possible conjugations for synthetizing
thermo-sensitive ABC allow broad horizons in the development
of temperature-responsive SAN for cancer therapy.

Ultrasound-Responsive Nanocarriers
Ultrasound is a promising stimulus due to its easy
administration, low-cost, and deep tissue penetration by
tuning the frequency, duty cycles and time of exposure. It
has been used as adjuvant in cancer treatment, behaving as a
sensitizer to improve chemotherapy and overcome drug
resistance (Thambi et al., 2016; Hu et al., 2017; García,
2019b). Ultrasound induces bubbles and air-containing
assemblies can trigger drug release and ultrasound-targeted
cancer imaging (Zhou et al., 2006).

Electric Field-Responsive Nanocarriers
Electric field- or voltage-responsive SAN have shown interesting
properties as well. This stimulus may produce changes in charge
or polarity of ABC, affecting their chemical composition or
structure, and evoking disassembly with the subsequent cargo
release (Yan et al., 2010; Jang et al., 2014; García, 2019b; Li F. et al.,
2020). Further studies are still needed to better understand their
usefulness for cancer therapy.

Internal Stimuli-Responsive Nanocarriers
Endogenous stimuli-responsive SAN exploit the characteristics of
tumor microenvironment, which are completely different from
normal tissue physiology; thus, allowing cargo release in a
programmed manner to specific intracellular stimuli viz. low
pH, redox state, reactive oxygen species (ROS), and enzymes
(García, 2019b).

pH-Responsive Nanocarriers
Extracellular pH of tumor is ∼6.5–7.2, whereas in normal tissues
and other biological fluids is ∼7.4. pH is even lower in
intracellular endosomes (5.5–5.0) and lysosomes (4.0–4.5).
ABC with acid-cleavable bonds or ionizable groups are
intended SAN to carry and control cargo release at the low
pH in the tumor microenvironment (Rodríguez-Hernández
and Lecommandoux, 2005; Zhan et al., 2011; Du et al., 2012;
Li et al., 2012; Wang L. et al., 2015; García, 2019b). ABC based on
hydrolysis-susceptible aliphatic polyesters, such as poly(lactic
acid) or poly(e-caprolactone) as hydrophobic blocks, can be
used for obtaining pH-sensitive SAN (Ahmed et al., 2006;
Deng et al., 2014). Several acid-cleavable linkers
(i.e., hydrazone, imine, ortho ester, and acetal) can also be
used. ABC with weak acidic groups such as carboxylic or
sulfonic acids (i.e., poly(acrylic acid), poly(methacrylic acid))
and/or weak basic groups such amines [i.e., poly (β-amino
ester), poly(lysine), poly(histidine)] allow preparing pH-
sensitive SAN, which can suffer alterations in conformation or
solubility via ionization (Hu et al., 2017; ; García, 2019a; García,
2019b). These groups can be incorporated into the main or
pendant chains of ABC providing to SAN with tunable
degradation kinetics (Du and Armes, 2005; Zhu et al., 2012;
Wang L. et al., 2015; Huang et al., 2015; Che and van Hest, 2016;
Hu et al., 2017). Triblock-containing ABC have also reported in
pH-responsive SAN for anticancer therapeutic delivery (Dan and
Ghosh, 2013; Li et al., 2015). Moreover, polypeptide-based ABC
that self-assemble into polymersomes, also called pepsomes, have
been evaluated for cancer therapy (Chécot et al., 2002; Kukula
et al., 2002; Rodríguez-Hernández and Lecommandoux, 2005;
Sanson et al., 2009; Sanson et al., 2010; Hu et al., 2017).
Oppositely charged ABC that contain a PEG block and an
aniomer/catiomer block were reported as well (Anraku et al.,
2010). Polymersomes based on them, termed as polyion
complexes/PICsomes (Hu et al., 2017), have exhibited tunable
membrane permeability and long blood circulation (Anraku
et al., 2010).

Enzyme-Responsive Nanocarriers
Cancer can cause altered expressions of different enzymes
(Thomas and Jeong, 2019). Specific enzymes viz. peptidases,
elastase, thermolysin (Habraken et al., 2011), penicillin-G
amidase (Harnoy et al., 2014), lysosomal esterase (Pramod
et al., 2014; Pramod et al., 2015; Malhotra et al., 2016) have
been evaluated for triggering anticancer drug release from
enzyme-sensitive SAN (Che and van Hest, 2016; Hu et al.,
2017). ABC based on GFLG and GPLGVRGDG peptide
sequence have also been used for cancer therapy since they
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can be cleaved by cathepsin B (Lee et al., 2011; Zhang C. et al.,
2017) and metalloproteinase enzyme (Yu et al., 2015; Ke et al.,
2016), respectively. Despite significant advances in enzyme-
responsive SAN for delivery of anticancer therapeutics, this is
a relatively new area of research and remains to be evaluated
(Thambi et al., 2016).

Reactive Oxygen Species- and Redox-Responsive
Nanocarriers
ROS (i.e., H2O2, ONOO

−, HO·, O2
−, and 1O2) (Yin et al., 2016;

García, 2019b) are associated with cancer cell growth. They
reflect a disruption of redox homeostasis because of either
higher ROS production or lower ROS-scavenging capacity in
cancer cells than normal cells (Trachootham et al., 2009).
Abnormal redox states in tumors and the distinctive
characteristics from their surroundings encouraged site-
specific delivery of anticancer therapeutics from ROS-
responsive SAN (Napoli et al., 2004; Scott et al., 2012; Hu
et al., 2017; García, 2019b). Boronic esters exhibit ROS
responsiveness for H2O2-induced degradation (Song et al.,
2013; Deng et al., 2016; Greten and Grivennikov, 2019; Jag̈er
et al., 2020). Moreover, selenium-(Ma et al., 2010) and
tellurium-containing (Wang et al., 2016) ABC are emergent
materials for developing ROS-responsive SAN; however, their
toxicity after degradation needs to be further studied (Cao et al.,
2015). In addition, extracellular environments, such as body
fluids and cell surface, have a lower glutathione (GSH)
concentration (2–20 µM) than cytosol and nuclei (10 mM).
Particularly, redox potential of cancer cells is 100- to 1,000-
fold higher than other normal cells; hence, triggered
intracellular delivery of anticancer therapeutics in this
reductive environment can be achieved (Che and van Hest,
2016; García, 2019b). The incorporation of disulfide bonds in
the middle/side chain of ABC or in a cross-linker provide redox
responsiveness to SAN. Tumor-relevant GSH concentration
cleavages these bonds, inducing nanocarrier disassembly and
cargo release into cancer cells (Wen et al., 2011; Thambi et al.,
2012; Hu et al., 2013; Jia et al., 2014; Li et al., 2014; Sun et al.,
2014; Wen and Li, 2014; Che and van Hest, 2016; Thambi et al.,
2016; Zou et al., 2016; Hu et al., 2017; Zhao et al., 2017; Bej et al.,
2018; Qin et al., 2018; García, 2019b; Kumar et al., 2020; Wei Y.
et al., 2020; Zhong et al., 2020).

CONCLUDING REMARKS AND FUTURE
TRENDS

Cancer treatment mainly relies on the use of anticancer drugs;
however, their disadvantages negatively impact in therapeutic
success. Besides, to reach the tumor-site they need overcome
different biological barriers. However, these barriers can be
overcome by developing well-designed nanocarriers. Several
efforts have been made to comprehensively understand the
ability of ABC to self-assemble into nanocarriers and
disassemble depending on different environmental stimuli.
Representative examples of ABC-based stimuli-responsive
SAN were reviewed and their applications for delivery of
anticancer therapeutics were highlighted. As stated, the
incorporation of stimuli-triggered responsiveness allows them
recognizing changes in external/internal environment, inducing
on-demand release behavior in spatial-, temporal-, and dose-
controlled fashions. Even though these nanocarriers have shown
promising properties to revolutionize cancer therapy and
diagnosis, there are still challenges for their successful
translation to clinical applications. Their biocompatibility,
long-term toxicity and immunogenicity need be more studied
for establish their safety profile, and advanced in vivo studies are
also required to better understand nanocarrier-organism
interaction. Considering scalable/reproducible manufacturing
process, significant efforts in design, synthesis, and optimization
of ABC and their self-assemblies are needed.
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