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INTRODUCTION

Strokes are the fifth leading cause of death and disability in the United States (Zhou et al., 2018). This
hypoxic event forces surrounding tissue to switch to anaerobic glycolysis and produce lactic acid,
leading to acidosis (Rehncrona, 1985). The primary ion channels responsible for sensing acidosis are
acid-sensing ion channels (ASICs) (Waldmann et al., 1997). Studies have shown that ASICs are
involved in both physiological and pathological conditions (Chu and Xiong, 2012; Kellenberger and
Schild, 2015). Among ASICs, the ASIC1a subtype is most sensitive to acidosis; it has high expression
in the brain, and activation reveals calcium permeability (Xiong et al., 2004; Chu et al., 2014; Gründer
and Pusch, 2015). We have shown that activation of ASIC1a during brain ischemia triggers neuronal
injury, and deletion of ASIC1a generates neuroprotection (Xiong et al., 2004). Activation of ASIC1a
also induces membrane depolarization (Jiang et al., 2009), subsequently leading to activation of other
ion channels and receptors such as the N-methyl-D-aspartate (NMDA) receptor. Thus, ASIC1a-
NMDA receptor interaction contributes to acidosis-mediated ischemic brain injury (Gao et al., 2005;
Isaev et al., 2008). Recently, studies from the Xu laboratory have demonstrated an additional
mechanism by which acidosis could induce neuronal necroptosis through activation of ASIC1a, one
independent of its ion-conducting function (Wang et al., 2015). They reported that acidosis caused
receptor-interacting serine/threonine-protein kinase 1 (RIPK1) to interact with the C terminus (CT)
“death motif” of ASIC1a protein, triggering phosphorylation of RIPK1 and resulting in neuronal
necroptosis, independent of intracellular calcium levels. This demonstrated the crucial involvement
of ASIC1a-RIPK1 activation in ischemic brain injury.

ASIC1A AUTO-INHIBITION PREVENTS NEURONAL NECROPTOSIS

Arecent study reported in theNature Communications (Wang et al., 2020) from theXu laboratory expanded
their previous findings and found that the cytoplasmic N terminus (NT) and CT of the ASIC1a protein
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interact in order to prevent necroptosis under normal physiological
conditions. They showed that when an exposed derivative protein of
the CT (known as CP-1-2) was released into cortical neurons, it
recruited RIPK1 and induced necroptosis, even at physiological pH.
They hypothesized that the CT of ASIC1a binds to the NT at
physiological pH, preventing it from leading to necroptosis, like
CP-1-2 did. Using the Förster resonance energy transfer technique,
they observed the interactions between the CT and the NT and found
that exposure to an acidic solution caused the masked NT and CT to
separate. Returning to physiological pH of 7.4 reversed this separation.
From this observation, they speculated that acidosis causes the CT and
NT to unbind which lead to the binding of CT to RIPK1, resulting in
necroptosis. To prove this prediction, they truncated the NT off in
ASIC1a and found that neurons with this truncation underwent
necroptosis at physiological pH, further suggesting that the NT
binds to the CT under non-acidic conditions, inhibiting
necroptosis. Furthermore, they examined the free NT, which
spontaneously binds to a protein known as N-ethylmaleimide-
sensitive fusion ATPase (NSF) during acidosis. They found that
when NSF binds to the free NT, it prevents it from rebinding to
the exposed CT, thus allowing the free CT to interact with and activate
RIPK1, triggering necroptosis. To test this hypothesis, they used
shRNA to knockdown the NSF protein and found that the
neurons with less NSF expression revealed an attenuated acidosis-
induced necroptosis. They also examined four negatively charged
glutamate residues, which are able to bind to positively charged
lysine residues on the CT death motif during physiological
conditions, on the distal NT of ASIC1a protein. By mutating the
glutamate residues to alanine, they fully removed all electrostatic
interaction between the NT and CT. Freeing of these two ends
resulted in increased levels of necroptosis. In order to prevent
necroptosis during acidosis, they synthesized the peptide NT1-20,
mimicking the NT of ASIC1a and found that when CP-1-2 was
introduced into neurons, NT1-20 was able to bind to it, preventing
RIPK1 activation, and blocking necroptosis. Pretreatment with the
NT1-20 peptide before exposing ASIC1a to pH 6.0 also significantly
attenuated necroptosis. Finally, they injected the peptide NT1-20 into
mouse lateral ventricles and found that it significantly reduced
ischemic brain damage in an experimental stroke mouse model. In
this studies, tags were added to the synthetic NT1-20 and CT ASIC
peptides in order for them to get into to cytoplasmof the cells and have
their effect. Collectively, their study suggests that synthetic peptides,
such as NT1-20, may mimic auto-inhibition of ASIC1a, effectively
attenuating acidosis-induced necroptosis during ischemic brain injury.

DISCUSSION

Although previous studies have examined how ASIC1a induces
neuronal damage in stroke (Xiong et al., 2004; Gao et al., 2005;
Zhou et al., 2019), multiple sclerosis (Vergo et al., 2011), and

spinal cord injury (Mazzone et al., 2017), this study from the
Xu laboratory opens a new avenue to a potential therapeutic
pathway by targeting ASIC1a auto-inhibition (Wang et al.,
2020). Future studies are needed to investigate agents that
could target the ASIC1a auto-inhibition pathway. One
potential subject is the use of NT1-20 in preventing neuronal
death. While NT1-20 seems like a promising peptide in
preventing the CT from recruiting RIPK1, other functions
of the peptide should also be examined. The NSF protein plays
a critical role in fusing synaptic vesicles (Whiteheart et al.,
1994; Belluzzi et al., 2016), so it is important to explore the
consequences of inactivating it. Because knockdown of the
NSF protein significantly reduced acidosis-induced
necroptosis, it could be a potential therapeutic target
against ischemic brain injury, but the consequences of
inhibiting the NSF protein should be further investigated as
it may interfere with synaptic vesicle fusion. RIPK1 is known
to play a critical role in ASIC1a-mediated necroptosis by
binding to the CT during ASIC1a activation (Wang et al.,
2015). Selective inhibitor of RIPK1 such as necrostain-1 has
been applied in stroke (Zhang et al., 2016), traumatic spinal
cord injury (Wang et al., 2014), and amyotrophic lateral
sclerosis (Re et al., 2014; Ito et al., 2016) and reveals
protection in CNS diseases (Degterev et al., 2019; Yuan
et al., 2019). The efficacy and selectivity of both direct ASIC
inhibitors and RIPK1 inhibitors in preventing ASIC1a from
committing acidosis-induced necroptosis should be studied
carefully, as such inhibitors have had promising results in
other pathways mediated by RIPK1 (Mifflin et al., 2020).
ASIC1a plays an important role on its ion-conducting
function such as synaptic plasticity, learning, and memory
(Huang et al., 2015). Studies from the Xu laboratory uncovered
an ion conduction-independent function of ASIC1a
responsible for ischemic brain injury. Their study sheds
new lights on potential therapeutic intervention of ASIC1a-
mediated ischemic brain injury. Thus, targeting the auto-
inhibition of ASIC1a without affecting its physiological
function becomes a desirable strategy in treatment of stroke
patients.
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