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Microalgae produce a variety of bioactive components that provide benefits to human and
animal health. Cryptophytes are one of the major groups of microalgae, with more than 20
genera comprised of 200 species. Recently, cryptophytes have attracted scientific
attention because of their characteristics and biotechnological potential. For example,
they are rich in a number of chemical compounds, such as fatty acids, carotenoids,
phycobiliproteins and polysaccharides, which are mainly used for food, medicine,
cosmetics and pharmaceuticals. This paper provides a review of studies that assess
protective algal compounds and introduce cryptophytes as a remarkable source of
bioactive components that may be usable in biomedical and pharmaceutical sciences.
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INTRODUCTION

In recent years, commercial and scientific attention has remarkably boosted the interest in natural
products from aquatic organisms, especially algae - both macroscopic algae and microalgae.
Microalgae are broadly considered as good sources of fiber, minerals, antioxidants, vitamins,
pigments, steroids, lectins, polysaccharides, proteins, polyunsaturated fatty acids and other lipids
(Blunt et al., 2012; Aditya et al., 2016). These products can be commercially used in a variety of
applications, for example in human and animal nutrition, in cosmetics and beauty products, and for
the synthesis of antibacterial, antiviral, antimicrobial and anticancer drugs (Cardozo et al., 2017;
Rizwan et al., 2018).

The conversion of light energy into chemical energy by CO2 fixation is ten times higher in
microalgae than in terrestrial plants, making the production efficiency of microalgae outstanding.

Currently, the commercial production of microalgae has been reported roughly 5,000 tons per
year of dry matter (Raja et al., 2008). Almost 110 commercial products of microalgae are found in the
Asia-Pacific area (Sathasivam et al., 2019). Of the estimated 200,000–800,000microalgal species, only
about 35,000 strains are scientifically described (Cheng and Ogden, 2011), only few of which are
commercially employed.

Cryptophyte algae form one of the major groups of phytoplankton, with more than 20 genera
composed of 200 species (Clay et al., 2015). They are unicellular, eukaryotic algae generated from
secondary endosymbiosis between a single-cell eukaryote host and a red algal predecessor
(Greenwold et al., 2019) (Figure 1). The red algal ancestor has provided the cryptophyte plastid,
and the ancestors’ genome forms the nucleomorph found in the plastid (Figures 2A,B). Depending
on their accessory pigments, cryptophytes are bluish, reddish, brownish or green in color.
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Cryptophytes do not possess a cell wall, but like all chromophyte
algae, they have an extra pair of membranes around their plastids.
Active movements are enabled by two flagella (Figure 2).
Cryptophytes are significant primary producers in both
freshwater and marine habitats, and proven to be a highly
important food source for secondary producers due to their
exceptionally good fatty acid, sterol and amino acid profiles
and concentrations that meet the needs of consumers (Brett
et al., 2009; Martin-Creuzburg and Von Elert, 2009; Clay
et al., 2015; Peltomaa et al., 2017). Thus far, nine
cryptomonads organelle genomes have been sequenced and
published, which includes three nucleomorph, one nuclear,
three plastid and two mitochondrial genomes (Douglas, 1992;
Kim et al., 2015).

Growth rates of most cryptophytes are considered as fairly
slow (well below 0.8 div. day−1), and they may therefore be
ignored in commercial terms. Nonetheless, in appropriate
environments some strains possess higher growth rates, e.g.
1.2 div. day−1 (Lewitus and Caron, 1990). Due to their small
cell size (below 500 µm3), the cell biomass of cryptophytes is low
in comparison with of many diatoms and dinoflagellates, which
may give an incorrect impression of the gain of effective biomass:
cryptophytes lack heavy cell wall structures made of silica or
cellulose, and thus most of the entire biomass is useable. Further,
cryptophyte cells can be broken and processed more easily than
diatoms or dinoflagellates for commercial applications (Scholz
et al., 2014). Cryptophytes from the TPG (Teleaulax/Plagioselmis/
Geminigera) and RHO (Rhodomonas/Rhinomonas/Storeatula)
clades have been suggested as possible species for
biotechnological purposes in the areas of health improvement,

solar energy exploitation, and aquaculture (Lee et al., 2019). The
aim of this review is to summarize the promising microalgal
compounds, with special emphasis on compounds derived from
cryptophyte algae. These compounds could be useful in
nutraceuticals and in medical and pharmaceutical applications
for producing natural drugs and other biomedical materials.

METHODOLOGY

Four databases, i.e. PubMed, Sciencedirect, MDPI and
ResearchGate, were used in the search for relevant studies.
Search words were: “cryptophytes,” “algal bioactive
compounds,” “cryptophyte pigments,” “cryptophyte
carbohydrates,” “cryptophyte vitamins,” “cryptophyte
phytosterols,” “cryptophyte polyphenols” and “cryptophyte
MAAs.” There was no time limitation because of the scarce
literature about cryptophytes. Of the received hits only basic
information on the bioactive compounds, and their applications
in medicine and pharmacology were selected to write this review
article.

BIOACTIVE COMPOUNDS OF
CRYPTOPHYTES

Fatty Acids
Fatty acids are carboxylic acids with long aliphatic chains, which
are either branched or straight, and can be saturated or
unsaturated. Depending on the number of double bonds, FAs
are categorized as monounsaturated FAs (MUFAs, with one
double bond), or polyunsaturated FAs (PUFAs, with ≥2

Figure 1 | Evolution of cryptophytes according to pigment, ultrastructure
and molecular phylogenic data. Chl, chlorophyll; PBS, phycobilisome; LHC,
light harvesting complex (adapted from Green 2001).

Figure 2 | (A): Cryptophyte cell structure. P, plastid; NM, nucleomorph;
MT, mitochondrion (adapted from Hoef-Emden 2008). (B): Photo of a
cryptophyte Rhinomonas nottbecki n. sp. taken by Janne-Markus Rintala.
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double bonds). Moreover, PUFAs are classified as omega-3 (ω-3)
or omega-6 (ω-6) fatty acids based on the position of the first
double bond from the methyl end. In algae, the fatty acid carbon
skeleton mostly varies from C12 to C24 with one or more double
bonds. A wide range of FAs and their oxidized products of
nutritional and chemo-taxonomic importance are found in
algae, but their FA profiles are species dependent, i.e. FA
production is genetically determined (Kumari et al., 2013).

Omega-3 and omega-6 fatty acids – especially
eicosapentaenoic acid (EPA, 20:5 ω-3) and docosahexaenoic
acid (DHA, 22:6 ω-3) are vital for normal cell activities.
However, most consumers, including humans, cannot
synthesize these essential long-chain PUFAs (LCPUFAs)
themselves, and their capability of bioconversion is very
limited. Thus, EPA and DHA need to be obtained from the
diet (Burdge and Calder, 2005). Due to their biologically essential
role, omega fatty acids have entered the biomedical and
nutraceutical fields, where they are being used for treating
various ailments such as obesity, cardiovascular diseases
(CSD), arrhythmia, strokes, high blood pressure, dementia,
asthma, and improving renal diseases and rheumatoid arthritis
(Ryckebosch et al., 2012). For example, high consumption of EPA
and DHA restricts the metabolites of arachidonic acid (AA, 20:4
ω-6) and inhibits inflammation. In addition, a balanced ω-6/ω-3
ratio is one of the most essential dietary agents to prevent obesity
(Simopoulos, 2016). Omega fatty acids play an important role in
normal fetal brain development and growth of infants (Jubies
et al., 2012). The amount of EPA and DHA in the bloodstream of
children with autistic spectrum disorders or attention deficit
hyperactivity disorder (ADHD) had been lower than in
control children (Calder, 2018). Deficiency of ω-3 can lead to
dry skin, fatigue, heart conditions, poor memory and even
schizophrenia (Pawelczyk et al., 2016; Andrade et al., 2018).
According to the study of (Sanchez-Villegas et al., 2018),
moderate intake of omega-3 PUFA can effectively preserve
against depression irrespective of the presence of
cardiometabolic disturbances, sex differences or life-style
habits. Therefore, EPA supplementation is suggested as a vital
anti-depressant treatment. Supplementation studies using
omega-3 have indicated the decline in mortality due to fewer
sudden cardiac deaths from reduction of arrhythmogenesis
(Martins et al., 2013; Appleton et al., 2015; Maki et al., 2017).
EPA functions as a precursor for substances like prostaglandin-3,
thromboxane-3, and leukotriene-5 group. Further, EPA takes
part in our defense system against inflammation by neutralizing
the pro-inflammatory function of other similar molecules.
Another remarkable merit of EPA is its ability to prevent clots
from forming in the blood, which results in improvement of heart
health, blood circulation and decreased risk of thrombosis (Gray
and Bolland, 2014). DHA with antioxidant activities is the most
valuable fatty acid for brain health; it helps the cognition and
connection between neurons, and has beneficial aspects related to
our mind including attention, imagination, memory, reasoning
and judgment (Andrade et al., 2018). When alpha-linolenic acid
(ALA, 18:3 ω-3) and linoleic acid (LA, 18:2 ω-6) values are less
than 0.5% of energy, this can lead to impaired barrier function
and wound healing as well as poor neurological and visual

development in infants (Bird et al., 2018). From the ω-6 fatty
acids, gamma-linolenic acid (GLA, 18:3 ω-6) is an essential
fatty acid presenting anti-inflammatory properties.
Arachidonic acid (AA) can be effective in controlling
neurological diseases such as Alzheimer’s disease (Rapoport
et al., 2007) and autism (Bell et al., 2004), and can play
significant roles in muscle development - especially for
individuals practicing physical exercise (Standley et al., 2013).
However, the proportion of ω-6 FAs is too high in the western
diet, which poses several negative health consequences. The balance
of ω-6/ω-3 FA is important in reducing the risk for coronary heart
disease, and is beneficial to bone health and skeletal growth
(Simopoulos, 2008).

Thus far, fish have been the main source of essential LCPUFAs
for humans. Alternative sustainable sources for the LCPUFAs are
necessary to fulfill the need of the growing human population,
since the marine fishing industry has reached its maximal
production capacity. As fish do not have efficient enzymatic
mechanisms for the synthesis of LCPUFAs, they accumulate
these in their bodies through the consumption of microalgae,
which are the principal producers of the healthy FAs (Ghosh
et al., 2015). Thus, microalgae which contain approximately 30%
of lipids are very attractive as natural replacements for fish and
fish oil food supplements for humans (Andrade et al., 2018).
Moreover, fish oil is inappropriate for some people who have fish
allergies, for vegetarians, and for those who may dislike fish oil
due to its possible unpleasant odor or the concerns for lipid-
soluble environmental pollutants (Cuellar-Bermudez et al., 2015).
Thus, supplementary products made from microalgae can be
superior over the currently widely used fish oil (Ward and Singh,
2015). However, only certain microalgae can synthesize EPA and
DHA and can therefore be used for commercial LCPUFA
production.

One of the microalgal groups that are high in PUFA is
cryptophytes. In fact, all cryptophytes regardless of the species
have been shown to be rich in EPA (C20H30O2) or DHA
(C22H32O2) and other ω-3 PUFAs, i.e. alpha-linolenic acid
(ALA, 18:3 ω-3, C18H30O2) and stearidonic acid (SDA, 18:4 ω-3,
C18H28O2) (Table 1) (Barreira et al., 2015). However, compared
to marine cryptophytes, freshwater species contain less DHA

TABLE 1 | Cryptophyte species with high amounts of ω-3: ALA (alpha-linolenic
acid), SDA (stearidonic acid), EPA (eicosapentaenoic acid) and DHA
(docosahexaenoic acid).

Species FA (% of total)

ALA SDA EPA DHA

Chroomonas salina 10.8 30.3 12.9 7.1
Cryptomonas sp. 25.1 30.7 12.0 6.6
Rhodomonas sp. 25.2 22.6 8.7 4.6
Chroomonas mesostigmatica 13.5 17.4 20.5 1.7
Guillardia theta 56.7 25.5 19.9 3.0
Hemiselmis sp. 53.2 20.5 21.2 5.1
Proteomonas sulcata 58.5 16.2 12.7 12.6
Storeatula major 41.9 32.1 16.0 10.0
Teleaulax acuta 46.2 13.4 26.0 14.3
Teleaulax amphioxeia 43.3 20.5 23.6 12.7

(adapted from Barreira et al., 2015; Patil et al., 2007).
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(Patil et al., 2007). At the species level, for example, Chroomonas
mesostigmatica has been introduced as promising strain for EPA
extraction, whereas Storeatula major has shown promise for both
EPA and DHA production (Peltomaa et al., 2018). In addition to
ω-3 PUFAs, cryptophytes also produce ω-6 PUFAs, which are
beneficial especially for dietary products (Huerlimann et al.,
2010).

Sterols
Sterols are an important family of lipids that are biosynthesized
by all eukaryotic organisms (Desmond and Gribaldo, 2009).
Cholesterol, the prominent sterol in animals, is scarcely found
in plants. Alternatively, plants are composed of certain types of
phytosterols, which are functionally and structurally similar to
cholesterol (Hernandez-Ledesma and Herrero, 2014). Unlike
cholesterol, humans have to obtain phytosterols from their diet
since they cannot produce them endogenously (Tasan et al.,
2006). Up to now, higher plants have been the major industrial
source of phytosterols (Fernandes and Cabral, 2007), but
phytosterols are also found in algae (Hernandez-Ledesma
and Herrero, 2014). Sterol distribution in microalgae presents
a large number of structures that reflect distinct differences in

sterol biosynthetic pathways (Nes, 2011). Sterol compound
differs according to the algal strain, and can be modified by
temperature, light intensity and growth phase. Together these
features make microalgae a potential and promising source of
phytosterols for health benefits (Galasso et al., 2019). Since
phytosterols can act as secondary messengers, similar to
hormones, they affect cellular processes including
neurotransmission and development (Francavilla et al., 2010).
Phytosterols derived from microalgae have been shown to have
anti-cancer, anti-inflammatory, antioxidant or anti-
cholesteroligenic (Hwang et al., 2014; Cabral and Klein,
2017), immunomodulatory (Caroprese et al., 2012), anti-
diabetic (Lee et al., 2004) and antibacterial properties (Luo
et al., 2015). Additionally, evidence suggests that phytosterols
offer protection against nervous system disorders like
Alzheimer’s disease and autoimmune encephalomyelitis
(Ahmed et al., 2015). The phytosterols derived from
microalgae can decrease the dietary cholesterol absorption
and thus prevent hypercholesterolemia (Chen et al., 2014;
Luo et al., 2015). By becoming incorporated into the cell
membrane, phytosterols can alter the activity of some
membrane-bound enzymes and the signal transduction in

TABLE 2 | Bioactivities of phytosterols derived from cryptophytes.

Identified phytosrerols Cryptophytes species Phytosterol content
(µg/mg

dry weight)

Biological activity

Crinosterol Chroomonas mesostigmatica 0.93 Anti-aging
Hemiselmis sp. 0.43
Rhodomonas salina 0.14
Storeatula major 0.24
Teleaulax amphioxeia 0.45

Brassicasterol Chroomonas mesostigmatica 0.02 Cholesterol
Cryptomonas ovata — Lowering
Rhodomonas minuta — Anti-aging
Guillardia theta 0.31
Hemiselmis sp. 1.11
Proteomonas sulcata 0.71
Rhodomonas salina 0.84
Storeatula major 0.72
Teleaulax acuta 0.35

Stigmasterol Storeatula major — Thyroid-inhibitory
Guillardia theta 0.36 Antioxidant
Cryptomonas ovata
Rhodomonas minuta

— Hypoglycaemic

— Cholesterol-lowering
Anti-cancer
Anti-inflammatory
Anti-osteoarthritic

Campesterol Cryptomonas marssonii — Cholesterol-lowering
Anti-cancer
Anti-angiogenic
Antioxidant

β-Sitosterol Cryptomonas marssonii — Anti-cancer
Anti-inflammatory
Analegesic activity
Antihelminthic
Antimutagenic

(adapted from Luo et al., 2015; Peltomaa et al., 2018).
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pathways that cause tumor growth (Lopes et al., 2013). Further,
algae-derived phytosterols have been shown to have anti-
diabetic activity in diabetic rats, suggesting that they could
have potential in the prevention of type 2 diabetes in
humans (Lee et al., 2004).

Five different phytosterols including crinosterol (C28H46O),
brassicasterol (C28H46O) (the major sterol in cryptophytes),
β-sitosterol (C29H50O; BS) campesterol (C28H48O) and
stigmasterol (C29H48O) have been found in cryptophytes
(Table 2) (Taipale et al., 2016; Peltomaa et al., 2017). BS
possesses a skin conditioning influence used in anti-aging
cosmetic products, moisturizer, sunscreen and body wash
(Han et al., 2014). BS also plays a crucial role in modulating
antioxidant enzymes and human estrogen receptor (Song et al.,
2000), as well as in blood vessel formation, thus having wound
healing potential (Moon et al., 1999). Moreover, BS has been used
in the treatment of hyperlipidemia, and has antipyretic effects and
immune-modulating activities in HIV-infected patients (Sayeed
et al., 2016). While crinosterol and brassicasterol are used as anti-
aging factors (Sun et al., 2014), stigmasterol is often regarded as
the most valuable phytosterol due to its anti-inflammatory effects
and health-promoting benefits (Gabay et al., 2010; Tang et al.,
2011). Benefits of stigmasterol have been shown in the therapy of
rheumatic diseases as an anti-stiffness factor; it also has noticeable
anti-osteoarthritic and anti-catabolic features (Gabay et al., 2010).

Carotenoids
Carotenoids are considered as the most varied and extensive
pigments which are found in nature. They are lipid soluble carbon
compounds with a common C40 backbone structure of isoprene
units (terpenoid). They are classified into two groups: carotenes
(hydrocarbon carotenoids, like β-caroten and lycopene) and
xanthophylls (oxygenated carotenoids, such as lutein,
zeaxanthin and astaxanthin) (Gong and Bassi, 2016). Thus far,
600 different carotenoids have been identified that have various
biological activities in algae, bacteria, plants and animals (Polivka
and Sundstrom, 2004).

Many of the effective medical and nutritional studies show
that the antioxidant properties of carotenoids can play a
remarkable role in decreasing the prevalence of many diseases;
specifically those affected by light (Cardozo et al., 2017), as
carotenoids directly create photoprotection against UV light in
the skin (Aust et al., 2005). Since carotenoids show antioxidant
benefits and nutritional value for hair and skin, they are applied as
effective ingredients with biological functions in cosmetics such
as creams and lotions (Stahl and Sies, 2012). The benefits that
carotenoids offer to human health are lower risk of inflammation,
heart disease and type 2 diabetes, cancer prevention, improved
eye health and protection of neurons (Novoveska et al., 2019).
According to some reports, a diet rich in carotenoids is connected
to a reduced risk of various kinds of cancers such as lung and
stomach, ocular diseases (eye diseases) like cataract and age-
related macular degeneration (AMD) and cardiovascular diseases
(Krinsky and Johnson, 2005; Moeller et al., 2006). For example,
astaxanthin shows anti-hypertensive properties and can influence
the reduction of blood pressure and heart strokes in rats, whereas
β-carotene could prevent the activation and nuclear translocation

of transcription factors (Sathasivam and Ki, 2018). The use of
synthetic antioxidants in the European Union countries is under
strict regulation, because of their possible potential health risks.
Thus, natural antioxidants can be used as safe alternatives in the
industry (Gouveia et al., 2010). The increasing interest for natural
and organic beauty products boosts the commercial potential for
carotenoids extracted from microalgae.

Cryptophytes have carotenoids that are useful in different
industries, specifically in medicine and pharmacy. The major
carotenoid in cryptophytes is called alloxanthin (C5H4N4O2)
(Ansotegui et al., 2003; Cunningham et al., 2018) (Table 3), and
is present e.g. in the marine cryptophytes Teleaulax acuta and
Hemiselmis sp. (Seoane et al., 2005). Cryptophytes also contain
other kinds of carotenoids, including α-carotene (C40H56)
(Table 3), crocoxanthin (C40H54O), monadoxanthin
(C40H54O2), cryptoxanthin (C40H56O) (Margulis and
Chapman, 2009), lutein (C40H56O2) and lycopene (C40H56).
The amount of α-carotene in Cryptomonas sp. and
Hemiselmis virescens has been 0.28 and 0.1 mg/g dry weight
respectively (Allen et al., 1964). Cryptoxanthin, which is another
interesting carotenoid of cryptophytes, is intimately connected
to β-carotene in terms of structure, with only an addition of a
hydroxyl group. Cryptoxanthin is a member of carotenoids
class, which are known as xanthophylls. In the human body,
cryptoxanthin is converted to vitamin A (retinol) and is hence
called provitamin A. Like other carotenoids, it is an antioxidant
and can help to block free radical damage to cells and DNA, as
well as stimulate the repair of oxidative damage to DNA
(Lorenzo et al., 2009). Recent studies suggest that
β-cryptoxanthin (3-hydroxy-β-carotene) could conceivably
play as a chemopreventive factor against lung cancer (Lian
et al., 2006). Similarly, α-carotene exhibits anti-carcinogenic
and anti-diabetic activities (Sathasivam and Ki, 2018). Lutein
and its derivatives are found only in red algae (mainly
macroalgae), cryptophytes, euglenophytes,
chlorarachniophytes and green algae (Takaichi, 2011). It
accumulates preferentially in the macula lutea (area of the
retina near the optic disk that provides central vision),
protecting the retina from oxidative damage from UVR.
Lutein can also improve skin elasticity, and has antioxidant,
anti-inflammatory, photoprotection and anti-carcinogenic
activities (Woodside et al., 2015). Lycopene is a rare algal
carotene, identified by visible and mass spectrometry and
cochromatography as a trace constituent in Cryptomonas

TABLE 3 | Cryptophyte species with the carotenoids α-carotene and alloxanthin

Strains α-carotene (pg cell−1) Alloxanthin (pg cell−1)

Chroomonas sp. 6.2 9.8
Cryptomonas acuta 6.9 7
Cryptomonas irregularis 5.9 6.4
Cryptomonas ovata 2.7 2.8
Cryptomonas curvata 5.6 7.6
Rhodomonas falcata 3.5 3.6
Rhodomonas salina 0.5 0.5
Storeatula sp. 4.1 4

(adapted from Cunningham et al., 2018).
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ovata (Pennington et al., 1985). The biological functions of this
composition include photoprotection and radioprotection
against gamma-radiation-induced cellular damages. It is also
a strong antioxidant with antiradical activity. According to
(Kong et al., 2010), lycopene performs a principal role in
chronic diseases including cardiovascular disease,
neurodegenerative disorders, cancer and atherosclerosis.

Phycobiliproteins
Phycobiliproteins (PBPs) are a group of colored proteins that are
located in phycobilisomes (PBS), and act as photosynthetically
active pigments. They can be easily extracted as pigment-protein
complexes (Figure 3). PBPs are classified into three groups in
accordance with the existence of diverse chromophores (Ducret
et al., 1998): 1) phycoerythrin (PE: λmax 480–570 nm); 2)
phycocyanin (PC: λmax 590–630 nm) and 3) allophycocyanin
(APC: λmax 620–665 nm). Recently, numerous studies have
discovered bioactivities of different phycobiliproteins showing
several antioxidant and radical scavenging activities, as well as
anti-inflammatory and anti-cancer activities (Stengel et al., 2011;
Ravi et al., 2015; Jiang et al., 2017). PBPs include aspects relevant
in human medicine including antimicrobial, neuroprotective and
hepatoprotective properties (Richa et al., 2011). PBPs can provide
great protection to kidney cells against oxidative stress and
cellular damage created by mercuric chloride HgCl2 (Ughy
et al., 2015). They play a substantial role in the commercial
sector, as they have several applications. PBPs are widely used as
natural pigments in numerous food and cosmetic industry
products such as jellies, dairy products, chewing gum
(Santiago-Santos et al., 2004), lipstick, sun-protecting cream
and eye shadow pallets (Sonani et al., 2016). A number of
studies suggest that PBPs also have health promoting abilities,

andmay therefore provide a range of pharmaceutical applications
related to e.g. their anti-aging, anti-Alzheimer and anti-cancer
activities (Batista et al., 2006; Sonani et al., 2016). Phycoerythrin
has been reported to have antifungal, antibacterial, antioxidant
and dermatoprotective activities (Verma et al., 2018), whereas
antibacterial, immune system modulating, anti-cancer (prostate,
breast and cervix), melanogenesis inhibiting and hematological
roles have been reported for PC (Soni et al., 2015). Additionally,
the consumption of edible algae containing PC has health
promoting activities including prevention of inflammation,
degradation of plasma lipid concentration through reduction
in cholesterol absorption and inhibition of oxidative stress via
blocking lipid peroxidation (Ku et al., 2013). In hamsters that
were fed a diet supplemented with PC, fatty lesion development
and cardiac production of superoxide anion were considerably
reduced (Riss et al., 2007).

PBPs are the major light-harvesting pigments of cryptophytes
(Sidler, 1994). As cryptophytes contain one biliprotein, either PC
or PE (Figure 4) and no APC, the path of energy transfer is
different from red algal and cyanobacterial phycobiliproteins; in
the absence of allophycocyanin in cryptophytes, chlorophyll C2

acts as an intermediate between the biliprotein and chlorophyll a
(Hill and Rowan, 1989). The cryptophyte biliproteins are named
based on different wavelengths and their respective absorption
maxima (e.g. phycoerythrin 545−PE545 and phycocyanin
630−PC630) (Table 4).

The marine cryptophyte Rhodomonas and the fresh water
cryptophyte Cryptomonas are promising candidates for the
production of PE, a red-colored PBP used as a fluorescent
probe and analytical reagent, as well as a natural dye in food,
beauty products and cosmetics (Chaloub et al., 2015;
Cunningham et al., 2018). Moreover, the genus Chroomonas
has been reported as a great source of PC (Cunningham et al.,
2018), a blue light-harvesting phycobiliprotein applied as
colorant in cosmetic and with antitumor, antioxidant and
anti-inflammatory activities in medicine (Liu et al., 2016).
Compared with other phycobilisome containing algae, such as
red algae and cyanobacteria, a significant advantage of
cryptophytes is the presence of only one type of biliprotein in
one species. This, together with the lack of a cell wall, makes the
unit functions associated with cell disruption and downstream
processing of PE easy and economically feasible (Chaloub et al.,
2015).

Mycosporine-like Amino Acids
MAAs are a family of intracellular compounds protecting aquatic
organisms against solar radiation. These UV-absorbing
compounds are water soluble and low molecular weight
components (<400 Da). Their chemical structure is based on
either a cyclohexenone (wavelength maxima (λmax) 310 nm in
ultraviolet-B) or cyclohexenimine (λmax: 360 nm in ultraviolet-A)
ring structure with amino acid substituents (Karentz et al., 1991).
Biosynthesis of MAAs occurs via a branch of the shikimic acid
pathway. Thus far, 20 MAAs have been identified from different
organisms (Carreto and Carignan, 2011), of which some
examples are presented in Figure 5. They are present
intracellularly in many marine and freshwater organisms

Figure 3 | Schematic structure and function of phycobiliproteins in light-
harvesting. PE, Phycoerythrin; PC, Phycocyanin and APC, Allophycocyanin
(adapted from Heldt et al., 2011).
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(Rezanka and Temina, 2004). Although other marine organisms
obtain MAAs by diet and bacterial association, algae
biosynthesize MAAs themselves (Carroll and Shick, 1996).

In addition to their role as a sunscreen, MAAs act as
antioxidants (Dunlap and Yamamoto, 1995). Skin
pigmentation is an endogenous and protective structure
against the damages resulted from high exposure to sunlight,
since melanin absorbs a broadband of UV-radiation and removes
one of the main UV-induced cellular subsequences, reactive
oxygen species (ROS) (Brenner and Hearing, 2008). A large
number of UV filters are produced around the world yearly
due to the consumer demand for sunscreen in lotions, lipsticks,
moisturizers and facial makeup. Considering the possible impact

of MAAs on the skin, a study including 20 middle-age women
reported that a cream containing 0.005% MAAs obtained from
red algae can counteract UV-A effects and develop skin
smoothness (Morone et al., 2019). Mycosporine-glycine has
been reported to have proper antioxidant activity, providing
some preservation against photooxidative stress derived by
ROS (Cardozo et al., 2017). Additionally, MAAs are regarded
as anti-cancer factors because of their anti-proliferative activities
on neoplastic cells, and their antioxidant activities involved in the
suppression of tumor proliferation (Chrapusta et al., 2017). The
anti-photoaging role of MAAs has been examined; based on
in vitro analysis; asterina-330 can significantly decrease the lipid
peroxidation, which affects initiating and mediating of the aging
process (Coba et al., 2009). Moreover, porphyra-334 shows
inhibitory potential on the UV-increased activity of elastase
leading to elastin decomposition and wrinkle formation (Ryu
et al., 2014). The microalgal-derived shinorine, mycosporine-
glycine and porphyra-334 exhibit inhibitory effects on the
expression of inflammation-related genes, hence showing anti-
inflammatory potential (Rosic, 2019).

The photoprotective UV filtering and antioxidant role of
MAAs have also been supported by affirming the high
photostability and the release of heat to the medium as the
leading pathway of the photoexcited molecules (Conde et al.,
2007). The most comprehensive study (152 algal species) on
MAAs in microalgae reported that high amounts of these
compounds are found in dinoflagellates, cryptophytes,
prymnesiophytes and raphidophytes (Jeffrey et al., 1999;
Rezanka and Temina, 2004). In the study of (Llewellyn and
Airs, 2010), Rhodomonas baltica possess MAAs compounds
with high levels at 310 nm; the λmax at 310 nm is consistent
with structures of mycosporine-glutamine (M-Glu, C13H19NO8),
mycosporine-taurine (M-Tau, C13H19NO8), mycosporine-serine

Figure 4 | Chemical structure of PE and PC (adapted from Wilk et al., 1999; Hoseini et al., 2013).

TABLE 4 | Classification of cryptophytes based on biliprotein type and PBP
concentration.

Genus Biliprotein Type PBP (pg cell−1)

Cryptopmonas PE565 or none 2.3–40.4
Rhodomonas PE545 2.6–13.9
Rhinomonas 3.3
Storeatula 14.6
Guillardia 0.9
Hanusia 1.9
Plagioselmis —

Teleaulax —

Geminigera 6.6
Proteomonas 1.2–10.3
Hemiselmis PC615, PC630 0.2–1.6

PC577 or PE555 0.5
Chroomonas PC630 or PC645 6–12.2
Komma PC645 —

Flacomonas PC569 —

(adapted from Tanifuji & Onodera, 2017; Cunningham et al., 2018).
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(M-Ser, C10H17NO7S) and mycosporine-glycine (M-Gly,
C10H15NO6). M-Gly has been reported to have antioxidative,
anti-inflammatory and antiaging activities (Suh et al., 2014;
Ngoennet et al., 2018). M-Gly purified from macroalgae
Porphyra yezoensis has considerable effect on the wound
healing process in humans (Choi et al., 2015). Additionally,
M-Tau with antioxidant activity exhibits efficient protective
ability toward cell damaged by ROS (Zhang et al., 2007).

These provide new insights into the application of
mycosporine-like amino acids in the cosmetic sectors.

Polysaccharides
Polysaccharides, especially sulfated exopolysaccharides (EPS),
form a group of important high molecular weight biopolymers
released from microorganisms like microalgae into the
environment during their growth (Liu et al., 2016). Evaluation

Figure 5 | Chemical structure of some MAAs and their maximum absorption (λmax) (adapted from Chrapusta et al., 2017).
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of structures, compositions, functions and characteristics of EPS
are necessary for understanding their production mechanism and
attributes for promising applications. The primary compositions
of EPS contain lipids, polysaccharides, nucleic acids (DNA) and
proteins. Various factors such as nutrient availability, strain,
species and physiology affect diversity of polymers in EPS and
the numbers of particular compounds (Xiao and Zheng, 2016).
They act as antiviral factors, health foods and antioxidants. They
present anti-inflammatory properties, drag-reducing substances
and play a considerable role in the immunomodulatory system
(Raposo et al., 2013).

Most algal polysaccharides (agars, carrageenans, alginates)
used in different industries are gained from macroalgae.
However, it has been shown that the polysaccharides from
some marine microalgae show antiviral bioactivity against
various kinds of viruses, including mammalian viruses
(Radonic et al., 2010). Investigations of sulfated
polysaccharides (sPS) from marine microalgae, especially ones
produced by the red microalga Porphyridium, report the antiviral
activity of sPS. The mechanisms of activity are not yet entirely
understood, but can relate to the anionic nature of the sPS.
Sulfate polysaccharides are able to prohibit infection by
different viruses via preventing infiltration of viral particles
into host cells. However, there are also other mechanisms,
such as the restriction of binding/adsorption, or even
duplication throughout the early phases of the virus cycle,
which may be involved in the antiviral activities of sPS
(Raposo et al., 2014).

In addition to their function as dietary fiber, sulfated
polysaccharides secreted from microalgae have the ability to
protect systems against oxidative and radical stress factors by
prohibiting the activity and accumulation of reactive chemical
species and free radicals (Sun et al., 2009). Polysaccharides from
marine microalgae, including Porphyridium, Phaeodactylum and
Chlorella stigmatophora, have shown pharmacological attributes,
like anti-inflammatory effects, and function as
immunomodulatory factors. Studies have proven the direct
stimulating significance of Phaeodactylum tricornutum on the
immune cells by the positive phagocytic activity (Guzman et al.,
2003). One notable feature of polysaccharides is the potentiality
to suppress tumor cell growth. The homopolysaccharide of
Gymnodinium impudicum with its immunomodulatory
properties prevented the growth of tumor cells, both in vitro
and in vivo (Yim et al., 2004). In a recent study (Gardeva et al.,
2014), intense anti-tumour activity has been reported by the
polysaccharide of Porphyridium cruentum. This sulfated polymer
effectively controlled Graffi myeloid tumor division in vitro and
in vivo. Polysaccharides have immunostimulating effects that
cause inhabitation of tumor cell activity. For example, EPS
from Porphyridium has potential as an anticancer agent that
inhibits the growth of different cancer cell lines (Gardeva et al.,
2014). EPS from unicellular algae are also considered as possible
candidates in reducing coronary heart disease because of their
hypocholesterolaemic effects (Dvir et al., 2009), anti-adhesive and
anti-inflammatory activities, prevention of tumor cell growth and
immunomodulatory effects (Raposo et al., 2015). The production
of sulfated exopolysaccharides from the red microalga P.

cruentum, the cyanobacterium Spirulina, and the cryptophyte
Chroomonas have already shown potential for commercial
exploitation (Nie et al., 2002; Bermudez et al., 2004; Keidan
et al., 2009).

Reports of EPS production and characterization of
cryptophytes is rare. There is a handful of articles on this
topic, and only few of them show profiling results. However,
the profiling of the EPS secreted by a tropical cryptophyte,
Cryptomonas tetrapyrenoidosa, has been made for two
different fractions isolated by anion exchange chromatography
(Table 5) (Giroldo et al., 2005). In that study, Fraction 1 eluted
with 0.5 M NaCl while Fraction 2 eluted with 1.0 M NaCl.
Fraction 1 had fucose, galactose, N-acetyl glucosamine and
mannose as the main components, whereas galactose and
glucuronic acid were the main EPSs in Fraction 2.
Additionally, the EPS of Cryptomonas obovata (also a tropical
strain) has been described (Table 5) (Giroldo et al., 2005). The
EPS profiles were generally similar between the two strains, but
the proportions were quite distinct. The main EPS of C. obovata
was the sulfated fucose-rich polysaccharide; this strain was also
rich in N-acetyl galactosamine (GlcNAc; Table 5). Studies
indicate that fucose-containing sulfated polysaccharides from
algae potentially act as skin-cancer preventive factors (Ale
et al., 2011) and a strong anticoagulant (Raposo et al., 2015).
N-acetyl galactosamine can have cytoprotective activities to
restore the integrity and normal operation of the mucous
membrane in humans, and act as an inexpensive and non-
toxic treatment for inflammatory bowel disease (Chen et al.,
2010). Moreover, GlcNAc can improve skin health by increasing
the proliferation and collagen expression of skin fibroblasts (Chen
et al., 2008), in addition to its moisturizing properties (Bissett
et al., 2007). Finally, polysaccharides such as rhmanose, xylose,
glucose and glucuronic acid derived from these cryptophytes have
had antioxidant, antibacterial, antiviral, antilipidemic,
antiglycemic and infection prevention potential (Raposo et al.,
2015).

Vitamins
Vitamins - vital organic micronutrients - cannot be directly
synthesized by animals in sufficient quantities. Therefore,
animals must gain them from external sources. These

TABLE 5 | Carbohydrate composition and total polysaccharide of C.
tetrapyrenoidosa and C. obovata.

C. tetrapyrenoidosa C. obovata

Carbohydrate
composition (%)

% Total polysaccharide

Fraction 1 Fraction 2

Rhamnose 9.0 0.8 15.3
Fucose 24.3 8.6 41.6
Xylose 4.7 0.4 2.7
Mannose 15.4 0.8 3.6
Galactose 13.7 36.0 4.4
Glucose 3.5 0.5 2.1
Glucuronic acid 4.1 47.0 4.3
N-acetyl galactosamine 8.6 0.27 26.9

(adapted from Giroldo et al., 2005; Giroldo & Vieira, 2002).

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 11 | Article 6188369

Abidizadegan et al. Biomedical Applications of Cryptophyte Algae

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


compounds are necessary for urgent metabolic functions, and act
as precursors for essential enzyme cofactors (Weels et al., 2017).
Microalgae are an unexplored source of almost all kinds of
vitamins including pro-vitamin A (α- and β-carotene,
apocarotenoids), vitamin C (ascorbic acid), vitamin E
(tocopherols and tocotrienols), vitamin D, and some vitamins
of the B group (particularly B1 and B12) (Uribe et al., 2017;
Galasso et al., 2019). Natural and synthetic retinoids (a class of
compounds including vitamin A and the main apocarotenoid
produced in algae) have been mainly represented in preventing
the growth and development of various sorts of tumors, including
skin, breast, oral, lung, prostatic and bladder cancers (Altucci and
Gronemeyer, 2001; Jonas et al., 2015). Vitamin C shows valuable
health effects, such as cancer and atherosclerosis prevention, and
serves as an immunomodulatory agent, for instance for the
prohibition of tuberculosis (Nunes-Alves et al., 2014).
According to studies, vitamin C has a significant effect on the
prevention of gastric cancer (Granger and Eck, 2018). Vitamin D
plays an important role in a vital process of calcium absorption
and metabolism for bone health and homeostasis, and it is
beneficial in cancer prevention and anti-neurodegenerative
effects. This vitamin also regulates calcium and phosphate
metabolism and is essential for maintaining bone health, i.e.
for preventing osteomalacia and osteoporosis (Feldman et al.,
2014). Vitamin E inhibits lipoprotein oxidation processes that
have a role in the growth of cancer in mice. Furthermore, it
improves endothelial function and reduces vascular damage
(Corina et al., 2019). High levels of Vitamin B12 are attributed
to reduced risk of breast cancer, and can act on DNA repair and
histone methylation (Gruber, 2016).

The green microalga Dunaliella tertiolecta has vitamin B12, B2,
E and provitamin A. Moreover, the green microalga Tetraselmis
suecica is a potential source of vitamin B1, B3, B5, B6, and C
(Fabregas and Herrero, 1990). Chlorella species have generally
been detected to contain vitamin B7 in high concentrations, and
around 9–18% of Chlorella strains have been reported to contain
vitamin B12 (Koyande et al., 2019). Chlorella and Spirulina
contain high concentrations of B9 (folic acid), a principal
vitamin to cell formation and bone and teeth development.
Further, B9 maintains normal metabolism and preservation of
skin membranes (Becker, 2007). The amount of vitamin C varies
in algae, and a study on algal species reported a significant
amount of vitamin C (C6H8O6) in the cryptophyte
Cryptomonas maculata (6.45 pg cell−1) (Brown and Miller,
1992). Thiamine (B1, C12H17N4OS+) concentration in the
cryptophyte Rhodomonas salina has been shown to be about
358.8 nmol g cell−1 (Sylvander et al., 2013). However,
cryptophytes are not reported to be rich in other vitamins.

Phenolic Compounds
Phenolic compounds are secondary metabolites and, due to their high
production under stress in organisms, are frequently identified as
stress compounds. Phenolics have chemical protecting mechanisms
against UV radiation (Coba et al., 2009) and metal contamination
(Connan and Stengel, 2011). Chemically, polyphenols are classified
into several classes, such as phenolic acids, flavonoids, isoflavonoids,
stilbenes, lignans, and phenolic polymers (Ozcan et al., 2014).

Due to their therapeutic functions, phenolic compounds have
recently gained the interest of consumers and functional food
manufactures. Extracted phenolic compounds show a vast array
of activities, such as anti-radical, UV-protection and anti-HIV,
and they act as inhibitors of melanin formation. They also have
been reported to have anti-adipogenic activities, and
neuroprotective effects, and a potential treatment of
Alzheimer’s disease (Stengel et al., 2011). An extensive review
(Cornish and Garbary, 2010) shows the promising applications of
polyphenols, including algae as antioxidants, in human health
and nutrition. Food that is rich in antioxidants has been
supported to prevent cardiovascular disease (CVD) that
represent a multiprocess disorder including oxidative stress,
inflammatory dysfunction, and vascular remodeling. A clear
association between the consumption of seaweed by Japanese
people and reducing risk of mortality by CVDs has also been
detected (Shimazu et al., 2007). Further, polyphenols extracted
from the brown macroalga Ecklonia sp. reduced UVB-induced
skin tumor improvement in mice notwithstanding whether the
polyphenols were used topically or as a dietary component,
suggesting that the activity of these algae-based antioxidants is
uninfluenced by digestive processes (Hwang et al., 2006).
Phlorotannins, a type of tannins that are a class of astringent,
polyphenolic biomolecules, have been detected to have repressive
effects on HIV-1 reverse transcriptase activity, which means that
they can fight against human immunodeficiency viruses (Ahn
et al., 2004). They also involve in the development of anti-allergic
compounds similar to phlorofucofuroeckol-B, which show an
impact on histamine release (Sugiura et al., 2007), and has a
protective effect against diabetes (Lee and Jeon, 2013).
Additionally, they protect cells from radiation-induced injury
(Shin et al., 2014), which is another indication of their efficacy in
anti-oxidative protection.

Several classes of flavonoids, such as isoflavones, flavanones,
flavonols, and dihydrochalcones are found in microalgae
(Manach et al., 2004). Flavonoids contain a broad spectrum of
health-promoting effects and are fundamental components in a
diversity of nutraceutical, pharmaceutical, medicinal and
cosmetic applications (Andrade et al., 2018). Flavonoid-rich
foods have been shown to have about 50% reduction in the
risk of dementia, a delay in the Alzheimer’s disease and decrease
the risk of developing Parkinson’s disease (Vauzour et al., 2010).
Accordingly, the potential pharmaceutical applications of algal
polyphenols have been widely investigated because of their anti-
cancer, photo-aging preventing and anti-inflammatory effects
(Thomas and Kim, 2011; Li et al., 2014; Machu et al., 2015).

A specific class of flavonoids, 2-styrylchromones (2-SC, C17

H12 O2), was extracted from the marine cryptophyte
Chrysophaeum taylori in 1986 by W. H. Gerwick (Gomes
et al., 2010). Certain analogues of these components have been
synthesized and assessed in biological systems, showing that both
the natural and synthetic compounds possess a myriad of
biological activities (Table 6) including anti-allergic, anti-
tumor (Li et al., 2007), antioxidant, antimicrobial, antiviral,
anti-inflammatory (Madhava Rao et al., 2016), antifungal,
hepatoprotective (Pinto et al., 2015), anti-infective, immune
system promoting and skin protective from UV radiation
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TABLE 6 | Some biological activities of 2-styrylchromones.

Biological activity Specific effect (s) Chemical structure

Antiallergenic Inhibition of histamine release from passively sensitized rat peritoneal cells

Antitumor Cytotoxicity to tumor cell lines

Tumor-specific cytotoxic effect and tumor-specific antiproliferative effect

Antiproliferative effect against human carcinoma cell lines

Antiviral Activity against human rhinoviruses (HRV)

Antioxidant Protective activity against the tert-butylhydroperoxide from proxidant hepatotoxicity in rat hepatocytes and scavenging
impact of ROS and reactive nitrogen species

Anti-inflammatory Inhibition of COX-1 activity

Inhibition of LTB4 production in human neutrophils

(adapted from Gomes et al., 2010).
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(Gomes et al., 2010; Tungmunnithum et al., 2018). This clearly
demonstrates the ability of cryptophytes to produce complex
phenolic compounds. Characterization, recognition and
exploration of phenolic compounds in microalgae is
indispensable, specifically since they may possess unique
phenolic compounds (Safafar et al., 2015).

CONCLUSION AND FUTURE
PERSPECTIVES

Microalgae offer a promising source of various protective and
bioactive compounds, which could help protect humans as well as
the environment. Cryptophytes are productive in suitable growth
conditions, and are biologically active and chemically unique,
thus representing secondary metabolites that could be widely
used in nutraceuticals, cosmetics and pharmaceuticals. Therefore,
they could be used in biomedical applications to maintain or
recover human health. The chemical composition of algae is
genetically determined, and not all species are capable of
producing all compounds. Cryptophytes are fully packed with
bioactive compounds; they are extremely rich in ω-3 PUFA,
especially in EPA and DHA, as well as in phytosterols.
Moreover, they have high-value pigments, i.e. carotenoids and
PBPs. They offer, as yet, nearly unexplored source of EPS,
vitamins and phenolic compounds with several antioxidant,
anti-inflammatory, anti-cancer, anti-Alzheimer’s and other
health-promoting effects. Due to their exceptional chemical
composition, cryptophytes are already proven to be
particularly important food sources in aquatic ecosystems.
However, this potential group of algae is nearly untapped in
biotechnology. Cryptophytes do not have a recalcitrant cell wall,

so compared to many of the already commercially employed
algae, they are easier to break and process more for commercial
purposes, which also promotes the use of these exceptional algae.

The review highlights the importance of bioactive
compounds derived from cryptophyte algae for medical,
pharmaceutical, cosmeceutical and food sciences, and it
aims to provide new directions for future research. There is
little literature associated with cryptophytes, their bioactive
components and their functions. In future, further research is
needed on the isolation of various bioactive compounds and
their efficiency from a growing number of cryptophyte strains.
There is also the need to compare the cryptophyte results with
information gathered from other algal species. Furthermore, it
is essential to determine the optimal growth conditions for the
extraction of high quality and sustainable bioactive
compounds for commercial use.
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