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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory immune-mediated disease of the central nervous system
(CNS) characterized by damage of myelin-forming oligodendrocytes and destruction of myelin itself,
leaving denuded axons without trophic and metabolic support and prone to degeneration (Nave,
2010). Clinically, this results in neurological disability and progression from the relapsing-remitting
form of the disease to the irreversible chronic progressive one (Franklin and ffrench-Constant, 2008).
Current therapies are immunomodulatory drugs that efficiently reduce the number and severity of
debilitating immune-mediated attacks at initial stages (Comi et al., 2017), but are not effective in the
presence of extensive axonal degeneration. Therefore, early therapeutic strategies promoting the
formation of new oligodendrocytes and myelin sheaths around demyelinated axons are highly
needed (Franklin and ffrench-Constant, 2017). Importantly, the major source of new myelinating
oligodendrocytes, i.e., NG2-glia, traditionally defined as oligodendrocyte precursor cells (OPCs)
(Nishiyama et al., 2009), do persist and slowly proliferate in the adult CNS (Dawson et al., 2003).
Spontaneous remyelination occurs in MS patients but eventually fails due to several reasons
(Franklin and ffrench-Constant, 2008). First, for remyelination to occur, it is important to have
functionally healthy axons (Stangel et al., 2017) likely releasing myelination signals. Second, a
remyelination supportive environment is required, i.e., a correct balance between different cell types
(astrocytes, microglia, macrophages, and other immune cells) (Lombardi et al., 2019; Molina-
Gonzalez and Miron, 2019) and mechanisms, including debris phagocytosis and secretion of growth
signals or inhibitory molecules, from transcription factors to extracellular (ECM) proteins
(Marangon et al., 2020). Finally, successful differentiation of OPCs also depends on their
intrinsic potential which is, in turn, strictly dependent on regional heterogeneity (Marques et al.,
2016).

Continuous communication between OPCs, neurons, and other glial cells is crucial to regulate
both developmental myelination and myelin dynamics during adulthood. In this respect, ATP
emerges as an important signaling molecule profoundly influencing OPCs, and functional
purinoceptors are found to be expressed on these cells (Fields and Stevens, 2000). Extracellular
ATP can be degraded to ADP or adenosine by ectonucleotidases expressed on the cell surface and
differently activate purinergic membrane P1 and P2 receptors: the former are G protein-coupled
receptors selectively activated by adenosine, whereas the latter are further divided into P2X
ionotropic receptors, exclusively activated by ATP and G protein-coupled P2Y receptors with
very specific pharmacological profiles (Alexander et al., 2019). For example, P2Y1 is primarily
activated by ADP and only partially by ATP. This complexity highlights how a single molecule can
produce a wide variety of downstream signaling in terms of proliferation, differentiation, migration,
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response to damage, and cell death, based on the actors involved
at cellular and molecular levels. Of note, the expression of some
purinoceptors is strictly dependent on specific differentiation
stages, indicating critical roles in OPC maturation and
myelination. Some of these receptors are also altered under
demyelinating conditions, which can itself contribute to
disease development (Fumagalli et al., 2016).

In this opinion, we discuss key questions that still remain
unclear regarding the involvement of purinergic signaling in NG-
glia response. First, what is the function of purinoceptors in
OPCs, and do they exert peculiar roles in their behavioral
heterogeneity? Second, how do purinoceptors control OPC
reactive response to myelin injury? Are their expression and
roles altered during the course of MS? Third, would purinergic
strategies to promote remyelination by NG-glia be of therapeutic
interest?

EXPRESSION AND ROLE OF
PURINOCEPTORS IN OLIGODENDROCYTE
PROGENITORS
Confocal calcium imaging on OPCs from optic nerve
demonstrated that ATP evokes rapid and transient increases
in [Ca2+]i, mainly through P2Y1 (Hamilton et al., 2010). P2Y1

activation also promoted OPC chemotaxis in both isolated OPCs
and cerebellar slices (Agresti et al., 2005). ATP-evoked Ca2+

signals in both OPCs and mature oligodendrocytes are also
mediated by P2X7. However, P2Y1 may play a greater role
under physiological conditions, being activated at nanomolar
ATP concentrations, whereas only upon cell rupture do ATP
extracellular levels become millimolar, i.e., high enough to
activate P2X7 (Hamilton et al., 2010). In a similar way to
NMDA receptors, after prolonged activation, P2X7 promotes
the formation of a large nonselective pore enabling leakage of
ions, metabolites, and ATP itself, ultimately causing cell death
(Matute et al., 2007) and fostering a vicious cycle that activates
P2X7 in nearby cells.

The very efficient degradation of extracellular ATP by
ectonucleotidases prevents the activation of P2X7-mediated
danger pathways and enables a further level of signaling
through P1 receptors. Adenosine was initially described to
inhibit OPC proliferation and promote OPC differentiation
and myelin formation (Stevens et al., 2002). However, the
presence of all four P1 receptors, whose expression is timely
regulated during differentiation, makes adenosine a more
complex modulator.

Adenosine regulates the transition from proliferating OPCs to
mature cells in a cAMP-regulated manner. Outward K+ currents,
essential in early OPCs, are abolished by the selective A2A

receptor agonist CGS21680 that blocks their differentiation by
stimulating adenylyl-cyclase activity (Coppi et al., 2013).
Similarly, the A2B selective agonist BAY60-6583 stimulates
cAMP production and inhibits K+ currents, thus depolarizing
OPC membranes and blocking cell maturation. A2B stimulation
also elevates levels of sphingosine-1-phosphate (S1P), a bioactive
lipid mediator, contributing to delayed maturation (Coppi et al.,

2020). The cross-talk between adenosine signaling and S1P may
be clinically relevant because receptors for S1P are targeted by
fingolimod, a widely used drug for MS, and whose direct action
on the CNS remains unclear (Soliven et al., 2011). In contrast,
both the prodifferentiating and promyelinating effect of
adenosine on OPCs are likely due to activation of A1 receptors
inhibiting cAMP (Coppi et al., 2015). The physiological role of A3

receptors has not been described, but in optic nerve-derived
OPCs, its stimulation with the specific agonist 2-CI-IB-MECA
induced apoptosis (González-Fernández et al., 2014).

Although uracil-nucleotides are produced and released in
brain tissues, and their receptors are present on both neurons
and glia, the contribution of P2Y2, P2Y4, P2Y6, and P2Y14 in
OPCs has been poorly investigated. In 2006, we described the G
protein-coupled receptor GPR17 as a P2Y-like receptor, based on
its pharmacological response to UDP, UDP-glucose, and UDP-
galactose (Ciana et al., 2006). In physiological conditions, GPR17
is almost exclusively expressed in oligodendrocytes, with a clearly
characterized transient pattern: it starts to be expressed in early
OPCs, reaches its peak in immature oligodendrocytes, and then
disappears in myelinating oligodendrocytes (Fumagalli et al.,
2011). Of note, transcriptome analyses revealed that GPR17
clearly characterizes a population of differentiation-committed
precursors (Marques et al., 2016) and predominantly labels OPCs
within axodentritic area, potentially able to myelinate axons
(Marisca et al., 2020).

In OPCs, UDP-glucose promoted maturation toMBP-positive
cells, whereas cangrelor, a nonselective GPR17 antagonist,
maintained cells at an undifferentiated stage (Fumagalli et al.,
2011). The prodifferentiative effect of GPR17 agonists may be due
to receptor desensitization and internalization: prolonged
activation of GPR17 promotes its removal from the
membrane, thus enabling terminal maturation (Fratangeli
et al., 2013). In purified primary OPCs, UDP-glucose
stimulated cell migration and enhanced outward K+ currents
(Coppi et al., 2013). In both transfected cell lines and primary
OPCs, uracil-ligand-evoked responses were antagonized by
Cangrelor and MRS2179, two purinergic antagonists (for
review, see Lecca et al., 2020).

DYSREGULATION OF PURINOCEPTORS
UNDER DISEASE CONDITION AND THEIR
POTENTIAL AS THERAPEUTIC TARGETS
In human MS and animal models, P2X7, GPR17, and adenosine
receptors undergo significant changes. Specifically, postmortem
analysis of humanMS specimens revealed P2X7 increases in optic
nerve oligodendrocytes and in activated microglia and astrocytes
in both spinal cord and brain (Amadio et al., 2017). In
experimental autoimmune encephalomyelitis (EAE) mice, a
model reproducing several features of human MS, upregulated
P2X7 was described in both activated microglia and astrocytes
already during the asymptomatic phase and in oligodendrocytes
and neurons after disease onset (Matute et al., 2007; Grygorowicz
et al., 2010). The adenosine produced after ATP breakdown may
exhibit anti-inflammatory and immunosuppressive actions by
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inhibiting T-cell proliferation and cytokines secretion (Saze et al.,
2013), but ATP signaling is overwhelming and generates an
amplification cascade that eventually kills oligodendrocytes.
After disease onset, administration of oxATP reduced clinical
outcomes and demyelination extent (Matute et al., 2007), likely
acting on astroglial and microglial P2X7, supporting the
hypothesis that P2X7 receptor blockers could have a role in
preventing/improving MS symptoms. Due to its peculiar
pharmacology, P2X7 acts as a “silent” receptor whose
activation takes place only under pathological conditions
(Bhattacharya and Biber, 2016). Thus, P2X7 inhibitors are not
expected to significantly affect physiological receptor activity and
may become ideal candidate drugs in treating inflammation in a
pleiotropic manner. However, despite several specific P2X7
antagonists have been developed so far, improving
pharmacokinetics and blood–brain barrier (BBB) permeability,
only a few of them entered clinical trials for peripheral diseases,
such as rheumatoid arthritis and chronic obstructive pulmonary
disease. The safety on humans was confirmed, but the efficacy was
disappointing in most cases, potentially due to different factors,
including the limits of the animal models, the presence of several
P2X7 haplotypes in humans, and the lack of knowledge about
their actual contribution in disease pathogenesis. Moreover, some
of the candidate molecules were noncompetitive allosteric
modulators that may not be sufficient to inhibit massive P2X7

activation. (for review, see Di Virgilio et al., 2017; Calzaferri et al.,
2020).

GPR17 is a relatively novel receptor. Its almost exclusive
expression in OPCs gives a new opportunity to target these
cells and enhance their remyelination capabilities in damage
conditions. In chronic damage and inflammation, GPR17
becomes pathologically overexpressed, which prevents cells’
terminal maturation. Lack of GPR17 timely downregulation
was described in several animal models, resulting in impaired
myelination (Lecca et al., 2008; Chen et al., 2009; Coppolino et al.,
2018). Antagonists were indeed effective in preventing acute
damage in a model of brain ischemia (Ciana et al., 2006; Lecca
et al., 2008), but chronic administration of receptor antagonists in
MS should be carefully evaluated to avoid unexpected side effects
in oligodendrocyte functions in terms of metabolic support to
neurons or interaction with other cells (Lecca et al., 2020).
Conversely, receptor internalization mediated by agonists may
promote GPR17 removal from the membrane, thus enabling
OPCs to resume maturation. In this respect, promising results
have come from in vivo study where the selective GPR17 agonist
galinex was proved to significantly retard EAE induction
(Parravicini et al., 2020). Since inflammation contributes to
sustaining GPR17 expression (Coppolino et al., 2018),
cotreatment with anti-inflammatory agents may efficiently
favor remyelination.

FIGURE 1 | Purinergic receptors in oligodendrocyte progenitors as promising targets in multiple sclerosis. Schematic representation of purinergic receptors
expressed in oligodendroglial cells and their ligands. To develop new purinergic-based drugs for remyelination, further efforts should be done in basic research, to
provide robust data to be translated into clinics.
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As mentioned, adenosine receptors play crucial roles in OPC
differentiation, and their pharmacological modulation may foster
remyelination. Despite completely different etiology compared to
MS, Niemann–Pick type C 1 (NPC1), a genetic disease
characterized by lysosomal accumulation of cholesterol and
sphyngolipids, is also characterized by neurodegeneration,
neuroinflammation, and dysmyelination. As in MS, in NPC1,
OPCs are blocked in immature stages and do not undergo
maturation. In a mouse model of NPC1, administration of
CGS21680, a selective A2A agonist, rescued OPC maturation
(De Nuccio et al., 2019), apparently in contrast to the in vitro
results described above. Further studies should be encouraged to
interpret these conflicting data.

CONCLUSIVE DISCUSSION

Data discussed above suggest that P2X7, GPR17, and adenosine
receptors could be valuable targets to stimulate myelin repair,
preventing chronic axonal degeneration. For all these receptors,
promising molecules have been tested in preclinical studies, but
further studies are needed to prove their efficacy in a context
close to human paradigms, with minimal or absent interferences
with physiologically essential pathways (Figure 1). To reach
cells inside the CNS, these compounds should also be able to
cross BBB. Although MRI-based gadolinium studies showed
leaky BBB during acuteMS relapses, evidence indicates that BBB
is then re-established. Thus, besides developing brain permeable
molecules (as already done for P2X7 antagonist), other
approaches should be considered. While virus-based CNS
drug delivery to maximize tropism for oligodendroglia
(McCall et al., 2014) can still bear some problems,
bioengineered extracellular vesicles are emerging as delivery
vehicles for such therapeutic agents (Wiklander et al., 2019).
Another challenge is to identify the right therapeutic
intervention window. Regenerative agents delivered too late

during disease course could be useless since axons might be
already irreversibly committed to degeneration. Other issues are
the proper design of clinical trials (e.g., correct stratification of
patients) and the development of appropriate outcome
measures, which are both critical to demonstrate the efficacy
of a remyelinating drug (Ontaneda et al., 2015). Importantly, the
complex pathophysiology of progressive MS suggests that
combination therapies targeting different processes would
represent the “ideal” therapeutic approach, as anticipated for
GPR17 (Coppolino et al., 2018; Lecca et al., 2020). Although
several issues still remain to be addressed, the emerging and
promising developments in clinical remyelination therapy
(Plemel et al., 2017) raise hope for having soon new
therapeutic options for progressive MS.
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