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Background: There is pressing urgency to identify therapeutic targets and drugs that
allow treating COVID-19 patients effectively.

Methods: We performed in silico analyses of immune system protein interactome
network, single-cell RNA sequencing of human tissues, and artificial neural networks to
reveal potential therapeutic targets for drug repurposing against COVID-19.

Results: We screened 1,584 high-confidence immune system proteins in ACE2 and
TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly
overexpressed in nasal goblet secretory cells, lung type Il pneumocytes, and ileal
absorptive enterocytes of patients with several immunopathologies. Then, we
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performed fully connected deep neural networks to find the best multitask classification
model to predict the activity of 10,672 drugs, obtaining several approved drugs,
compounds under investigation, and experimental compounds with the highest area
under the receiver operating characteristics.

Conclusion: After being effectively analyzed in clinical trials, these drugs can be
considered for treatment of severe COVID-19 patients. Scripts can be downloaded at
https://github.com/muntisa/immuno-drug-repurposing-COVID-19.

Keywords: COVID-19, immune system, single-cell RNA sequencing, artificial neural networks, drug repurposing

INTRODUCTION

The first zoonotic transmission of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) was located in China in
December 2019 (Tay et al., 2020), and it is the causative agent of
the coronavirus disease 2019 (COVID-19) (Sanders et al., 2020).
The World Health Organization (WHO) declared the outbreak of
COVID-19 as a Public Health Emergency of International
Concern on January 30, 2020, and a pandemic on March 11,
2020 (Gao Q et al., 2020). Classified in the Coronaviridae family
and Betacoronavirus genus, SARS-CoV-2 is the seventh CoV
known to infect humans, along with 229E, NL63, OC43, HKU1,
SARS-CoV, and Middle East respiratory syndrome (MERS)
(Oberfeld et al., 2020). Coronaviruses cause mild to severe
respiratory diseases and have high mutation rates that result
in high genetic diversity, plasticity, and adaptability to invade a
wide range of hosts (Peiris et al., 2004).

The first genome of SARS-CoV-2 named Wuhan-Hu-1 (NCBI
reference sequence NC_045512) was isolated and sequenced in
China in January 2020 (Zhou P et al, 2020; Zhu et al., 2020).
SARS-CoV-2 is a single-stranded positive-sense RNA virus of
about 30 kb in length (Zhou P et al., 2020; Ziegler et al., 2020).
The genomic structure is comprised of a 5 terminal cap structure,
14 open reading frames (ORFs) encoding 29 proteins, and a 3’
poly A tail (Wu A et al., 2020). ORFla and ORFlab are the largest
genes and codify 16 non-structural proteins (nspl to nspl6).
According to Gordon et al. (2020), nsps are involved in antiviral
response (nspl), viral replication (the nsp3-nsp4-nsp6 complex),
the protease 3CP™ (nsp5) (Zhang L et al, 2020), the RNA
polymerase (the nsp7-nsp8 complex), the single-strand RNA
binding (nsp9), the methyltransferase activity (nspl0 and
nspl6), the RNA-dependent RNA polymerase (nspl12) (Gao Y
et al, 2020), the helicase/triphosphatase (nspl13), the 3'-5'
exonuclease (nspl4), the uridine-specific endoribonuclease
(nspl5), and the RNA-cap methyltranspherase (nspl6)
(Gordon et al., 2020). Lastly, the 3’ terminus contains genes
that codify the spike (S) glycoprotein, the envelope (E) protein,
the membrane (M) glycoprotein, the nucleocapsid (N) protein,
and several accessory proteins (3a, 3b, p6, 7a, 7b, 8, 9b, 9¢c, and 10)
(Figure 1A) (Wu A et al,, 2020; Wu C et al,, 2020).

COVID-19 is caused when SARS-CoV-2 exploits the host cell
machinery for its own replication and spread (Ortiz-Prado et al.,
2020). SARS-CoV-2 entry into human cells is mediated by the S
glycoprotein that forms homotrimers protruding from the viral
surface (Walls et al., 2020). S1 and S2 are two functional subunits

of the S glycoprotein. Six receptor-binding domain (RBD) amino
acids (L455, F486, Q493, S494, N501, and Y505) of the S1 subunit
directly bind to the peptide domain of angiotensin-covering
enzyme 2 (ACE2) human receptor protein (Andersen et al,
2020; Cao et al.,, 2020; Wang Q et al., 2020; Yan et al., 2020).
The affinity constant for RBD of SARS-CoV-2 to ACE2 is greater
than that of SARS-CoV by as much as a factor of 10-15 (Wang Q
et al, 2020, Wang Y et al, 2020; Wrapp et al., 2020). S
glycoprotein is cleaved by the cathepsin L (CTSL) protease
(Muus et al., 2020), and the transmembrane serine protease
(TMPRSS2) in a functional polybasic (furin) cleavage site at
the S1-S2 boundary flanked for O-linked glycans (Hoffmann
et al.,, 2020; Walls et al., 2020). S2 subunit mediates subsequent
fusion between the human and viral membranes (Kirchdoerfer
et al.,, 2016; Yuan et al., 2017).

ACE2 is a type I membrane protein widely expressed in nasal
goblet secretory cells, lung type II pneumocytes, ileal absorptive
enterocytes, kidney proximal tubule cells, gallbladder basal cells,
among other human cells (Deng et al., 2020; Lamers et al., 2020;
Singh et al., 2020; Sungnak et al., 2020; Ziegler et al., 2020), and
participates in the maturation of angiotensin, a peptide hormone
that controls blood pressure and vasoconstriction (Donoghue
etal., 2000). After virus entry, many severe ill COVID-19 patients
developed clinical manifestations such as cough, mild fever,
dyspnea, lung edema, severe hypoxemia, acute respiratory
distress syndrome (ARDS) (Montenegro et al., 2020), acute
lung injury (Blanco-Melo et al., 2020), interstitial pneumonia,
increased concentrations of fibrinogen and D-dimer plasma
levels (Spiezia et al., 2020; Tang et al., 2020), elevated levels of
pro-inflammatory chemokines and cytokines such as interleukin
(IL) 6 (Herold et al., 2020; Sarzi-Puttini et al., 2020), low levels of
type I and III interferons (IFNs) (Blanco-Melo et al., 2020), high
levels of lactate dehydrogenase, hyperferritinemia, idiopathic
thrombocytopenic purpura caused by spleen atrophy (Zulfiqar
et al., 2020), formation of hyaline membrane (Yao et al., 2020),
hilar lymph node necrosis, lymphopenia (Terpos et al., 2020),
intravascular coagulopathy (Fogarty et al., 2020), pulmonary
thromboembolism (Rotzinger et al, 2020), hypotension
(Rentsch et al., 2020), cerebrovascular events (Mao et al,
2020), metabolic acidosis, kidney and hepatic
dysfunctions (Zhang C et al, 2020), secondary infections,
septic shock (Li H et al., 2020), and multi-organ failure (Wang
Q et al., 2020; Gupta et al., 2020; Wadman et al., 2020).

Additionally, SARS-CoV-2 interacts with the immune
system triggering dysfunctional immune responses to

severe
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FIGURE 1 | Interaction between human proteins and SARS-CoV-2 proteins. (A) Proteomic and genomic structure of SARS-CoV-2. (B) Human proteins physically
associated with SARS-CoV-2 proteins.

COVID-19 progression (Tay et al., 2020). Given that an
excessive inflammatory response to the novel coronavirus is
thought to be a major cause of disease severity and death
(Blanco-Melo et al., 2020; Mehta et al., 2020), a better
understanding of the immunological underpinnings is
required to identify potential therapeutic targets. To fill in
this gap, we performed in silico analyses of immune system
protein-protein interactome (PPi) network, single-cell RNA
sequencing (scRNA-seq) of human tissues, and artificial neural

networks to reveal potential therapeutic targets for drug
repurposing against COVID-19.

METHODS

Protein Sets
We have retrieved the 332 human proteins physically associated
with 26 of the 29 SARS-CoV-2 proteins proposed by Gordon et al
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(Figure 1B; Supplementary Table S1; Gordon et al., 2020). We
have also retrieved a total of 3,885 immune system proteins from
several databases such as the International ImMunoGeneTics
information system (http://www.imgt.org) (Giudicelli et al., 2005;
Lefranc et al., 2009; Lefranc et al., 2015), the InnateDB database
(https://www.innatedb.com/) (Breuer et al., 2013), and the David
Bioinformatics Resource (https://david.ncifcrf.gov/) (Huang et al.
,2009b; Huang et al., 2009a) using the gene ontology (GO) terms:
0002376 immune system process, 0045087 innate immune
response, and 0002250 adaptive immune response. Lastly, both
protein sets were integrated to identify the highest confidence
interactions and to design the immune system PPi network.

Protein-Protein Interactome Network

The immune system PPi network with a highest confidence cutoff
of 0.9 and zero node addition was created between the human
proteins physically associated with SARS-CoV-2 and their first
neighboring proteins of the immune system. This network was
generated using the human proteome of the Cytoscape StringApp
(Szklarczyk et al., 2015; Doncheva et al., 2019), which imports
protein-protein interaction data from the STRING database
(Szklarczyk et al.,, 2015). The degree centrality represents the
number of edges the node has in a network (Lopez-Cortés et al.,
2018; Lopez-Cortés et al., 2020b), and it was calculated using the
CytoNCA app (Tang et al., 2015). All nodes and edges were
organized through the organic layout, which produces clear
representations of complex networks, and lastly, the immune
system PPi network was visualized through the Cytoscape
software v.3.7.1 (Shannon et al., 2003).

Interestingly, Overmyer et al. published a large-scale multi-
omic analysis identifying 146 significantly expressed proteins in
patients with severe COVID-19 (Overmyer et al., 2020). We
located these proteins in our immune system PPi network and
generated the immune system PPi subnetwork encompassing the
significantly expressed proteins in severe COVID-19 and their
first neighbor nodes (cutoff = 0.9). Subsequently, we ranked the
overexpressed and underexpressed proteins according to the
highest degree centrality.

Additionally, Bouhaddou et al published the global
phosphorylation landscape of SARS-CoV-2 infection identified
97 significantly expressed proteins in Vero E6 cells (Bouhaddou
et al., 2020). We located these proteins in both networks and
ranked the phosphorylated proteins according to the highest
degree centrality. Lastly, human proteins physically associated
with the SARS-CoV-2 proteins, immune system proteins,
significantly expressed proteins in severe COVID-19, and
significantly expressed phosphorylated proteins in SARS-CoV-
2 infection in Vero E6 cells were differentiated by colors in both
the immune system PPi network and subnetwork.

Functional Enrichment Analysis

The functional enrichment analysis gives curated signatures of
protein sets generated from omics-scale experiments (Reimand
et al,, 2019). We performed the enrichment analysis to validate
the correlation between the immune system PPi subnetwork and
biological annotations related to severe COVID-19, using the
protein set of the immune system PPi network as background set.

Drug Repurposing for COVID-19 Therapy

The enrichment was calculated using g:Profiler version
e101_eg48_pl4 baf17f0 (https://biit.cs.ut.ee/gprofiler/gost) to
obtain significant annotations (Benjamini-Hochberg false
discovery rate - FDR < 0.001) related to GO: biological
processes, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) signaling pathways, and Reactome signaling pathways
(Wang et al., 2016; Slenter et al., 2018; Raudvere et al., 2019; Jassal
et al., 2020). Lastly, the enrichment analysis was visualized in a
Manhattan plot, and the significant terms related to the
immunopathology of severe COVID-19 were manually curated.

Single-Cell RNA Sequencing Data

Ziegler et al. analyzed human scRNA-seq data to uncover
potential targets of SARS-CoV-2 amongst tissue-resident cell
subsets. They discovered ACE2 and TMPRSS2 co-expressing in
goblet secretory cells from nasal passages, type II pneumocytes
from lung epithelial cells, and absorptive enterocytes from ileal
epithelial cells (Ziegler et al., 2020).

After constructing the immune system PPi network between
the human proteins physically associated with the SARS-CoV-2
proteins, immune system proteins, and significantly expressed
proteins in severe COVID-19, we compared the transcriptomics
data of the network nodes between 10 nasal passage cells (goblet
cell, basal cell of olfactory epithelium, ciliated cell, endothelial
cell, fibroblast cell, glandular epithelial cell, mast cell, myeloid cell,
plasma cell, and T cell), 15 lung epithelial cells (ciliated
cell, lymphatic cell, fibroblast 1, fibroblast 2, macrophage 1,
macrophage 2, macrophage 3, mast cell, monocytes 1,
monocytes 2, neutrophil cell, proliferating cell, T cell, type I
pneumocytes, and type II pneumocytes), and 9 ileal epithelial
cells (cycling stem cell, early enterocyte 1, early enterocyte 2,
absorptive enterocyte, enteroendocrine cell, goblet cell, quiescent
stem cell, TA G1S cell, and TA G2M cell) to identify significantly
expressed genes in goblet secretory cells, type II pneumocytes,
and absorptive enterocytes.

The transcriptomics data was taken from the ‘COVID-19
Studies’ section of the Single Cell Portal (https:/singlecell.
broadinstitute.org/single_cell/covid19), and the Alexandria
Project (https://alexandria-scrna-data-library.readthedocs.io/en/
latest/introduction.html). The three single-cell databases
analyzed were: 1) nasal passage cells (Ordovas-Montanes et al.,
2018) (https://singlecell.broadinstitute.org/single_cell/study/
SCP253/allergic-inflammatory-memory-in-human-respiratory-
epithelial-progenitor-cells#study-visualize), 2) lung epithelial
cells (Ziegler et al.,, 2020) (https://singlecell.broadinstitute.org/
single_cell/study/SCP814/human-lung-hiv-tb-co-infection-ace2-
cells#study-visualize), and 3) ileal epithelial cells (Fujii et al,
2018) (https://singlecell.broadinstitute.org/single_cell/study/
SCP817/comparison-of-ace2-and-tmprss2-expression-in-
human-duodenal-and-ileal-tissue-and-organoid-derived-
epithelial-cells#study-visualize). Lastly, it is important to clarify
that the scRNA-seq analyses were done in cells non exposed to
the novel coronavirus.

The criteria of analysis of transcriptomics data of nasal passage
cells, lung epithelial cells, and ileal epithelial cells was the
following: ‘t-distributed stochastic neighbor embedding
(t-SNE) cell types’ as load cluster, ‘cell type ontology label’ as
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selected annotation, and ‘all cells’ as subsampling threshold.
Additionally, we adjust the mRNA expression taking into
account the Z-scores, that is, overexpressed mRNAs with
Z-scores > 2 and underexpressed mRNAs with Z-scores < —2.
Regarding visualization of transcriptomics data, we designed
heatmaps to compare the expression between cell types, dot
plots to visualize the percentage of cells expressing, box plots
to compare the expression scores of multiple genes for each cell
type taking into account the mean log normalized expression, and
2D t-SNE to visualize the expression score of significantly
expressed multiple genes per subpopulation cell.

Drug Repurposing

After identifying the significantly expressed biological molecules
present in the scRNA-seq analyses of ACE2 and TMPRSS2 co-
expressing human cells, we evaluated the druggability of these
molecules, and subsequently perform the drug repurposing
analysis.

From all the 75 previously identified and significantly
expressed biological molecules, only 31 had identification
number in the ChEMBL database (https://www.ebi.ac.uk/
chembl) (Gaulton et al., 2017), and from these 31 proteins, all
compounds were extracted from ChEMBL as follow: 1) all
reported interactions with (IC50, Ki, EC50, and GI50) where
extracted from ChEMBL version 26; 2) all extracted interactions
were labeled as active (1) or inactive (0) if values are less than
10 uM; and 3) if more than one report (active or inactive) is
available for the same compound-target interaction, the final
criteria (active or inactive) was assigned considering the 75% of
the information or rejected otherwise. From the 31 proteins, only
25 had identified molecules with active/inactive interactions after
considering the previous filters. Hence, we identified 25 potential
therapeutic targets for drug repurposing against COVID-19.

DeepChem package and Python Jupyter Notebooks (Oliver,
2013) were used to predict if drugs (DrugBank compounds) could
be active for multiple protein targets (Oliver, 2013) (https://
github.com/deepchem/deepchem). DrugBank  (https://www.
drugbank.ca/) contains comprehensive information about
drugs, their mechanism of action, and their targets (Wishart
et al., 2006; Wishart et al., 2018). The calculations used the
GPU of Google Colab and the correspondent scripts could be
found at GitHub repository: https://github.com/muntisa/
immuno-drug-repurposing-COVID-19. The fully-connected
deep neuronal networks (FCNNs) have been used to find the
best multitask classification model using 1,024 molecular circular
fingerprints (CFPs) as input descriptors for 15,377 ChEMBL
compounds and activity (1/0) for the 25 therapeutic targets as
outputs/tasks (Wu et al., 2018). The best model resulted from a
grid search for the best parameters have been used to predict the
activity of 10,672 drugs for the 25 targets. The performance of the
classifiers used during the training, grid search and test evaluation
of the best model was the area under curve (AUC) of the receiver
operating characteristic (ROC) curve (AUROC) (Hastie et al.,
2009), the default metric in DeepChem package. The ROC curve
is defined by the True Positive Rate (TPR) (or Sensitivity) vs. the
False Positive Rate (FPR) (or 1-Specificity) for each of the class of
the multi-task classifier for different class probability thresholds.

Drug Repurposing for COVID-19 Therapy

TPR = TP/(TP + FN), FPR = FP/(FP + TN), where TP = True
Positive; FP = False Positive; TN = True Negative; FN = False
Negative (from the confusion matrix that summarizes the results
of testing the classifier). AUROC represents the area under the
ROC curve, with values between 0 and 1 (1 = perfect model; 0.5 =
no skill/random model).

The main script of the repository (Immuno-Drug-
Repurposing-DeepChem-MultitaskClassification.ipynb) is
presenting all the methodology with python code and results.
The repository folder “datasets” contains the dataset with the
ChEMBL ID, SMILES formula, and the class of protein target
(multiclass_origDS_noDB.csv). The dataset that will be used by
the classifier contains the SMILES formulas of 15,377 ChEMBL
compounds that interacts with 25 different protein targets with
the following UniProt IDs: 000571, P00533, P01024, P01130,
P04233, P07339, P08962, P09668, P11021, P15291, P16070,
P17301, P21741, P25774, P25963, P26006, P27361, P35222,
P40763, P50591, P55085, Q15904, Q16665 Q99519, and
Q99814. This means that the dataset was composed by 15,377
examples with 25 classes. The multi-task classification model will
be able to predict if a compound with a SMILE formula could
have one or more protein targets simultaneously, using separated
tasks/outputs for each of the 25 proteins. It is not a simple
classification with only an output (class) that can predict only
a protein value from the 25 possible targets). The prediction
molecules that will be evaluated with the best classifier can be
found in DB_toPredict.csv (DataBank ID, SMILES formulas, and
the classes to predict). The input SMILES formulas will be used to
calculate molecular descriptors for all molecules (as model
inputs).

In the first step, CFPs molecular descriptor have been
calculated for both ChEMBL dataset and DrugBank prediction
set (Gaulton et al., 2017; Wishart et al., 2018) as a vector of 1,024
values for each compound. Thus, the dataset to build the future
classifier has 1,024 input features in 15,377 examples with 25
output classes (protein target).

In order to build a classifier (model), the training of the model
should be done with a training subset and the final model should
be tested for performance with a test subset that was not used
during the training process. In addition, if different classifiers
with different parameters are used during the training, there is a
need of an extra validation subset to decide the best classifier
(model) using a specific metrics (in our scripts: AUROC). Thus,
the dataset was splitted into 80%-10%-10% training-validation-
test subsets using RandomStratifiedSplitter (to maintain the same
ratio between the examples in all 25 classes as in the initial
dataset). The training and validation subsets were used to find the
best hyperparameters for the FCNN with 1,000 neurons
(MultitaskClassifier from DeepChem package). The constant
parameters are activation functions as relu, momentum of 0.9,
weights initialization using Glorot uniform method (Xavier
uniform initializer), learning rate of le-3, decay of le-6, lo
epochs, a single hidden layer (additional parameters could be
found in the main notebook of the repository). During the grid
search for the best model, 64 classifiers have been optimized with
different combination of the following parameters: batch size =
(128, 515), dropouts = (0.0, 0.1, 0.2, 0.3), batch normalization =
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(False, True), and hidden layer sizes (number of neurons) = (100,
500, 1,000, 1,024). Thus, the training subset was used for training
of each model/classifier and the validation subset was used to
decide the best model.

The test set was used to verify the performance of the best
model for each task/protein target (see Supplementary

Table S2). AUROC for the test subset was between 0.935
and 1.000 (mean AUROC = 0.989; standard deviation (SD) =
0.019). Additional results such as the AUROC values for
training, validation and test subset for each protein target
(task/class) are presented into the folder “results” as

multitasks_metrics_best.csv.
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The best model has 1,000 neurons in a hidden layer (dropout
of 0.5) with all parameters as ’activation’: ’relu’, ’momentum’:
0.9, ’batch_size: 124, ’init: ’glorot_uniform’, ’data_shape’
(1024), ’learning_rate’ 0.001, ’decay’: le-06, 'nb_epoch™ 1,
‘nesterov’: False, ’dropouts’ (0.5), ‘nb_layers™ 1, ’batchnorm’
False, ’layer_sizes: (1000), ’weight_init stddevs> (0.1),
’bias_init_consts’: (1.0), ’penalty’: 0.0. This classifier was used
to predict the activity of 10,672 drugs from DataBank for the 25
immune system targets: DDX3X, EGFR, C3, LDLR, CD74,
CTSD, CD63, CTSH, HSPA5, B4GALT1, CD44, ITGA2,
MDK, CTSS, NFKBIA, ITGA3, MAPK3, CTNNBI, STATS3,
TNFSF10, F2RL1, ATP6AP1, HIF1A, NEU1, and EPASI1 (see
Supplementary Table S7 and multitasks_predictions_best.csv
in repository folder “results”). Lastly, the best predicted drug-
target associations were evaluated according to its first ATC
level (https://www.whocc.no/atc_ddd_index/), drug category,
mechanism of action, approval status by the US Food &
Drug Administration (FDA) or the European Medicines
Agency (EMA), the pharmacological indications, and the
current involvement in COVID-19 clinical trials (https://
www.clinicaltrials.gov/ct2/results?cond=COVID-19).

RESULTS

Immune System Protein-Protein

Interactome Network

In biological systems, specialized pathogens (i.e., SARS-CoV-2)
employ a suite of virulent proteins, which interact with key targets
in host interactomes to extensively rewire the flow of information
and cause diseases, such as COVID-19 (Vidal et al., 2011; Pan
et al., 2016; Kumar et al., 2020). The human proteins physically
associated with SARS-CoV-2 are the first line of host proteins,
which also interacts with molecular components involved in a
wide spectrum of biological processes and signaling pathways
within the cell. Therefore, analyzing the interactome of immune
system proteins may reveal novel components in SARS-CoV-2
immunopathogenesis.

Here, we generated the immune system PPi network
encompassing 1,584 nodes and 332,968 edges (Figure 2A). Of
them, 256 human proteins physically associated with SARS-CoV-
2 proteins had high-confidence interactions (cutoff = 0.9) with
1,390 immune system proteins belonging to the first neighbor
nodes (Supplementary Table S3). The degree centrality mean of
the human proteins physically associated with SARS-CoV-2
proteins was 23.6, and proteins with the highest degree
centrality were GNB1, GNG5, RBX1, RHOA, and TCEB1. On
the other hand, the degree centrality mean of the immune system
protein was 44.5, and proteins with the highest degree centrality
were UBA52, APP, FPR2, NCBP1, and NCBP2. Additionally, we
have identified 40 significantly expressed phosphorylated
proteins of SARS-CoV-2 infection according to the global
phosphorylation landscape in Vero E6 cells published by
Bouhaddou et al. (2020). The degree centrality mean of the
phosphorylated proteins was 59.8, and proteins with the
highest degree centrality were PIK3CA, MAPKI, MAPKS3,
SRC, and AKT1 (Supplementary Table S4). Lastly,
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Supplementary Figure S1 details an expanded visualization of
the immune system PPi network.

Figure 2B shows the immune system PPi subnetwork
encompassing 319 nodes and 5,308 edges. Of them, 26
significantly expressed proteins in severe COVID-19 (15
overexpressed and 11 underexpressed) (Overmyer et al,
2020) had high-confidence interactions (cutoff = 0.9) with 49
human proteins physically associated with SARS-CoV-2
proteins, and with 281 immune system proteins belonging to
the first neighbor nodes. The degree centrality mean of the
overexpressed proteins was 33.5, and proteins with the highest
degree centrality were STOM, HSP90AA1, AGT, ORM1, and
ORM2. On the other hand, the degree centrality mean of the
underexpressed protein was 32.5, and proteins with the highest
degree centrality were KNG1, CFP, ALB, AHSG, and APOAL.
Additionally, we have identified 10 significantly expressed
phosphorylated proteins of SARS-CoV-2 infection in Vero
E6 cells in our subnetwork. The degree centrality mean of
the phosphorylated proteins was 32.2, and proteins with the
highest degree centrality were PIK3CA, MAPK1, SRC, MAPK3,
and AKT1 (Supplementary Table S4). Although it has been
shown that hubs of high-degree nodes are targets of numerous
human viral (Calderwood et al., 2007; De Chassey et al., 2008;
Gulbahce et al., 2012; Pan et al., 2016; Huttlin et al., 2017), and
are highly correlated with pathogenicity in cancer (Lopez-
Cortés et al., 2018; Lopez-Cortés et al., 2020b; Cabrera-
andrade, 2020), COVID-19 is a novel disease and requires
more in-depth studies.

Functional Enrichment Analysis

The functional enrichment analysis was performed to validate the
correlation between the immune system PPi subnetwork and
biological annotations related to severe COVID-19. Therefore,
after generating the subnetwork encompassing 319 immune
system proteins, we performed a functional enrichment
analysis using g:Profiler to obtain significant annotations
(Benjamini-Hochberg FDR < 0.001) related to GO: biological
processes, KEGG signaling pathways, and Reactome signaling
pathways (Wang et al., 2016; Slenter et al., 2018; Raudvere et al.,
2019; Jassal et al., 2020).

Figure 3 details a Manhattan plot of 373 GO: biological
processes, 22 KEGG signaling pathways, and 29 Reactome
signaling pathways significantly associated with the 319
immune system proteins. However, after a manual curation
of GO terms related to the immunopathology of severe COVID-
19, the most significant GO: biological processes were
neutrophil degranulation (2.8 x 107°°), granulocyte activation
(3.9 x 107%%), myeloid leukocyte mediated immunity (3.7 x
107°°), inflammatory response (8.5 x 1077), blood coagulation
(2.0 x 1077), T-cell activation (3.6 x 1077), response to
interferon-gamma (1.9 X 1077), platelet degranulation (8.6 X
1077), and acute inflammatory response (6.6 x 107°). The most
significant KEGG signaling pathways related to severe COVID-
19 were chemokine signaling pathway (4.6 x 10™%), coagulation
cascade (1.2 x 1077), and antigen presentation (7.2 X 107°).
Lastly, the most significant Reactome signaling pathways related
to severe COVID-19 were neutrophil degranulation (2.3 x
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FIGURE 3 | Enrichment map analysis of the immune system PPi subnetwork. Significant GO: biological processes, KEGG signaling pathways, and Reactome

Enrichment map analysis

Padj GO: Biological processes

1. Neutrophil degranulation (GO:0043312)
3.9x10%° 2. Granulocyte activation (GO:0036230)

3. Myeloid leukocyte mediated immunity (GO:0002444)
8.5x10° 4. Inflammatory response (GO:0006954)
2.0x107 5. Blood coagulation (GO:0007596)
3.6x107 6. T cell activation (GO:0042110)
1.9x107 7. Response to interferon-gamma (GO:0034341)
8.6x107 8. Platelet degranulation (GO:0002576)
6.6x10° 9. Acute inflammatory response (GO:0002526)
Padj KEGG signaling pathways
4.6x10° 10. Chemokine signaling pathway (KEGG:04062)
1.2x107 11. Coagulation cascade (KEGG:04610)
7255 (0 12. Antigen processing and presentation KEGG:04612)
Padj
2.3x10°%° 13. Neutrophil degranulation (REAC:R-HSA-6798695)

14. Innate immune system (REAC:R-HSA-168249)
5| 15. Hemostasis (REAC:R-HSA-109582)
1.9x107

16. Platelet activation (REAC:R-HSA-76002)
5.9x107 17. Signaling by VEGF (REAC:R-HSA-194138)
6.8x107 18. Insulin-like growth factor (REAC:R-HSA-381426)
4.9x10° 19. Platelet degranulation (REAC:R-HSA-114608)

107%%), innate immune system (1.8 x 107*), hemostasis (1.0 x
107'%), signaling by VEGF (5.9 x 107), insulin-like growth
factor (6.8 x 1077), and platelet degranulation (4.9 x 107%)
(Supplementary Table S5).

Single-Cell RNA Sequencing Data Analysis
Omics medicine has evolved the way for identifying
therapeutically actionable targets for complex diseases.
However, one of the major limitations is the gene
expression variability due to the cellular heterogeneity of
organs (Gawel et al., 2019). Single-cell biology is a powerful
approach that provides unprecedented resolution to the
cellular and molecular underpinnings of biological processes
and signaling pathways of diseases in order to find therapeutic
targets (Ballestar et al., 2020). For instance, the significant
overexpression of programmed death 1 (PD-1) in innate
lymphoid cells as therapeutic target for cancer
immunotherapy (Yu et al.,, 2016).

Regarding COVID-19, there are several single-cell studies
focused on understanding the transcriptional and proteomics
insights into the host response for drug discovery (Ballestar et al.,
2020; Yang X et al,, 2020; Di Giorgio et al., 2020; Wu M et al,,
2020; Park and Lee, 2020; Prokop et al., 2020). Ziegler et al.
discovered ACE2 and TMPRSS2 co-expressing cells in nasal
goblet secretory cells, lung type II pneumocytes, and ileal
absorptive enterocytes through scRNA-seq data analyses
(Ziegler et al., 2020). Once we delimited the interactions
between human proteins physically associated with SARS-
CoV-2, and immune system proteins (immune system PPi
network), we analyzed the transcriptomics data of the 1,584
nodes using three single-cell databases incorporated into the
‘COVID-19 Studies’ section of the Alexandria Project (see
Methods), in order to reveal potential therapeutic targets for
drug repurposing against COVID-19.

Chronic rhinosinusitis samples (18,036 cells) developed by
allergic inflammation, and nasal scraping samples (18,704 cells)
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FIGURE 4 | Single-cell RNA-sequencing data analysis of the high-confidence immune system nodes in nasal passage cells. (A) Heatmap of significant
overexpressed genes (Z-score > 2) in nasal goblet secretory cells. (B) Dot plot of significant overexpressed genes in nasal goblet secretory cells and percentage of cells
expressing. (C) Box plots of nasal passage cell types according to their mean log normalized expression. (D) t-distributed stochastic neighbor embedding cell type and
mean log normalized expression focused on nasal goblet secretory cells.

conform the nasal passage cells. Figure 4A shows a heatmap of
the five genes whose mRNAs were significantly overexpressed
(Z-score > 2) in goblet cells. Figure 4B shows a dot plot detailing
the five overexpressed genes, its Z-scores between 2.04 and 2.85,
and the percentage of goblet cells expressing the overexpressed
genes (>50%). Figure 4C shows box plots comparing the mean
log normalized expression of the five overexpressed genes in
nasal passage cells. Goblet cells had the highest mean log
normalized expression (1.57) compared to the other cells.
Figure 4D projected the expression scores of the significantly

expressed multiple genes (n 5) onto 2D t-SNEs per
subpopulation cell (total 10 subpopulation cells). In
summary, five immune system genes were overexpressed in
the goblet cells from nasal passages.

Epithelial cells of lung tissue (18,915 cells) were the second
single-cell database analyzed. Figure 5A shows a heatmap of
the 46 genes whose mRNAs were significantly overexpressed in
lung type II pneumocytes. Figure 5B shows a dot plot detailing
the 46 overexpressed genes, its Z-scores between 2.05 and 3.61,
and the percentage of type II pneumocytes expressing the
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FIGURE 5 | Single-cell RNA-sequencing data analysis of the high-confidence immune system nodes in lung cells. (A) Heatmap of significant overexpressed genes
(Z-score > 2) inlung type Il pneumocytes. (B) Dot plot of significant overexpressed genes in lung type Il pneumocytes and percentage of cells expressing. (C) Box plots of
lung cell types according to their mean log normalized expression. (D) t-distributed stochastic neighbor embedding cell type and mean log normalized expression
focused on lung type Il pneumocytes.

overexpressed genes (>50%). Figure 5C shows box plots  thehighest mean log normalized expression (1.78) compared to
comparing the mean log normalized expression of the 46  other cells. Figure 5D projected the expression scores of the
overexpressed genes in lung cells. Type II pneumocytes had  significantly expressed multiple genes (n = 46) onto 2D t-SNEs
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FIGURE 6 | Single-cell RNA-sequencing data analysis of the high-confidence immune system nodes in intestine cells. (A) Heatmap of significant overexpressed
genes (Z-score > 2) in ileal absorptive enterocytes. (B) Dot plot of significant overexpressed genes in ileal absorptive enterocytes and percentage of cells expressing. (C)
Box plots of intestine cell types according to their mean log normalized expression. (D) t-distributed stochastic neighbor embedding cell type and mean log normalized
expression focused on ileal absorptive enterocytes.

Samples from adult human duodenum and ileum (15,347
cells) were the third single-cell database analyzed. Figure 6A
shows a heatmap of genes whose mRNAs were significantly

per subpopulation cell (total = 15 subpopulation cells). In
summary, 46 immune system genes were overexpressed in
type II pneumocytes from lung cells.
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relevant immune system proteins for drug repurposing.
(>50%).

enterocytes expressing the overexpressed genes
Figure 6C shows box plots comparing the mean log

overexpressed in ileal absorptive enterocytes. Figure 6B shows a
normalized expression of the 29 overexpressed genes in ileal

dot plot detailing the 29 overexpressed genes, its Z-scores
between 2.02 and 2.67, and the percentage of ileal absorptive
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epithelial cells. Absorptive enterocytes had the highest mean log
normalized expression (0.86) compared to other cells. Figure 6D
projected the expression scores of the significantly expressed
multiple genes (n = 29) onto 2D t-SNEs per subpopulation

cell (total = 9 subpopulation cells). In summary, 29 immune
system genes were overexpressed in absorptive enterocytes from
ileal epithelial cells. The biological function of the 75
overexpressed genes is fully detailed in Supplementary Table S6).
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The current work proposes an innovative virtual high-
throughput screening to predict the activity of 10,672
compounds for 25 immune system targets fully detailed in the
Supplementary Table S7. The other 50 targets had not identified
molecules with active/inactive interactions in the ChEMBL
database as previously explained in Methods section.
Interestingly, the 25 potential therapeutic targets analyzed not
only were relevant in the immune system PPi subnetwork and the
scRNA-seq analyses, but also had significant associations with
biological processes and signaling pathways relevant to severe
COVID-19 (Overmyer et al, 2020). For instance, ATP6AI,
B4GALT1, C3, CD44, CD63, CTSD, CTSH, CTSS, DDX3X,
F2RL1, and NEUI1 were involved in neutrophil degranulation;
F2RL1, ITGA2, MAPK3, NFKBIA, and STAT3 in blood
coagulation or coagulation cascade; ATP6AP1, CD44, CD63,
CD74, HSPAS5, ITGA2, ITGA3, and MAPK3 in hemostasis;
lastly, CD63, HSPAS5, and MAPK3 in platelet degranulation
(Figure 7).

The classification model was based on the molecular Circular
Fingerprints descriptors (calculated using SMILES formulas) of
15,377 ChEMBL compounds and its 25 therapeutic targets as
outputs/tasks. The best model obtained after a
hyperparameter grid search (64 topologies) as a fully
connected deep neuronal networks with 1,000 neurons in one
hidden layer, with the mean AUROC of 0.989 + 0.019 (AUROC
between 0.935 and 1.000 for 25 classes). Our free GitHub
repository contains the Jupyter notebook as python script
using DeepChem methodology, datasets, calculated descriptors,
best model, metrics of the model, and predictions. After applying
the best classification model, we evaluated drugs taking into
account the first ATC levels associated to COVID-19
symptoms, drug  category, mechanism of action,
pharmacological indications, and the best ranked AUROC
values (threshold > 0.8). Consequently, on one hand, we
obtained 44 approved drugs, 16 compounds under
investigation, and 35 experimental compounds with the
highest affinities for 15 immune system proteins
(Supplementary Table S8). On the other hand, we obtained
four approved drugs, nine compounds under investigation, and
16 experimental compounds with the highest multi-target
affinities for nine immune system proteins (Supplementary
Table S9).

Figure 8 details the AUROC affinity score of the best-
predicted experimental compounds, compounds under
investigation, and approved drugs per immune system protein
target and multi-targets. We found eleven different categories of
approved drugs, the anti-neoplastic and immunomodulating
agents were lanreotide, enzalutamide, topotecan, erlotinib,
methotrexate, imatinib, pemetrexel, lapatinib, sunitinib,
vandetanib, midostaurin, bosutinib, axitinib, ruxolitinib,
afatinib, ibrutinib, duvelisib, and gilterintinib; the anti-
hemorrhagic agent was fostamatinib; the anti-inflammatory
agents were clobetasol propionate, nedocromil, oxaprozin, and
beclomethasone dipropionate; the anti-malarial agent was
halofantrine; the anti-parathyroid agent was etelcalcetide; the
anti-viral agents were amprenavir, atazanavir, saquinavir,

was
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darunavir, fosamprenavir, lopinavir, paritrapevir, nelfinavir,
pibrentasvir, zanamivir, peramivir, and rilpivirine; the
antioxidant agent was allopurinol; the cardiovascular agents
were aliskiren, zofenopril, digitoxin, torasemide, and
triamterene; the central nervous system agents were citicoline
and cabergoline; the growth hormone-releasing hormone was
tesamorelin; and the only antibiotic was rosoxacin.

Interestingly, 13 (27%) of the 48 best-predicted approved
drugs are currently involved in approximately 54 COVID-19
clinical trials as detailed in Figure 9. The cardiovascular agents
with clinical trials are aliskiren, torasemide, and triamterene.
Aliskiren had an AUROC affinity of 0.993 on CTSD, and it is
a renin inhibitor used to treat hypertension; torasemide had an
AUROC affinity of 1.0 on EGFR, and it is used to treat edema
associated with heart, renal, and hepatic failures; and triamterene
had an AUROC affinity of 1.0 on EGFR, and it is used to treat
hypertension. The anti-viral agents with clinical trials are
atazanavir, darunavir, and lopinavir. Atazanavir had an
AUROC affinity of 0.997 on CTSD; darunavir had an AUROC
affinity of 0.999 on CTSD, and lopinavir had an AUROC affinity
of 1.0 on CTSD. All of them are protease inhibitors used to treat
HIV infection. The anti-neoplastic and immunomodulating
agents with clinical trials are enzalutamide, methotrexate,
imatinib, ruxolitinib, ibrutinib, and duvelisib. Enzalutamide
had an AUROC affinity of 0.983 on CTSS, and it is an
androgen receptor inhibitor to treat prostate cancer;
methotrexate had an AUROC affinity of 1.0 on EGFR, and it
is an antimetabolite used to treat breast cancer, lung cancer, head
and neck cancer, and non-Hodgkin’s lymphoma; imatinib had an
AUROC affinity of 1.0 on EGFR, and it is a BCR/ABL kinase
inhibitor used to treat chronic myeloid leukemia, acute
lymphoblastic leukemia, and gastrointestinal stromal tumors;
ruxolitinib had an AUROC affinity of 1.0 on EGFR, and it is
an inhibitor of JAK1/2 to reduce the hyperinflammation during
cytokine storm in thrombocythemia myelofibrosis; ibrutinib had
an AUROC affinity of 1.0 on EGFR, and it is an inhibitor of the
Bruton tyrosine kinase causing protection against immune-
induced lung injury; and duvelisib had an AUROC affinity of
1.0 on EGFR, and it is a PI3K inhibitor involved in the immune
homeostasis restoration and viral replication inhibition. Finally,
the anti-hemorrhagic agent with clinical trial was fostamatinib,
which had an AUROC affinity of 1.0 on EGFR, and it is an
inhibitor of spleen tyrosine kinase used to treat chronic immune
thrombocytopenia (Supplementary Table S10; Wishart et al.,
2018).

DISCUSSION

Since the finding of patient zero in China, a wide spectrum of
clinical manifestations has been discovered, as we have
understood the COVID-19 disease. The most common initial
symptoms are cough, fever, anorexia, and dyspnea (Wang D
et al., 2020; Berlin et al., 2020). The most common clinical
features in severe COVID-19 patients are dyspnea, severe
hypoxemia, lung edema, respiratory failure, ARDS
(Montenegro et al., 2020), lymphopenia (Terpos et al., 2020),
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FIGURE 9 | Best-predicted approved drugs involved in COVID-19 clinical trials. Cardiovascular agents, anti-viral agents, anti-neoplastic and immunomodulating
agents, and anti-hemorrhagic agent with their respective clinical trial identifier number, pharmacological indication, and chemical structure according to DrugBank.

cardiac arrhythmias, rhabdomyolysis, hyperferritinemia,
intravascular coagulopathy (Fogarty et al, 2020), and
pulmonary thromboembolism (Rotzinger et al., 2020). Also,
it has been observed that 15% of patients required supplemental
oxygen (Young et al., 2020), and 5% of patients required
mechanical ventilation. In addition, the smaller percentage of
patients who required mechanical ventilation suffered
comorbidities that lead to sepsis and septic shock (Rhee
et al,, 2020). Nowadays, it is known that SARS-CoV-2 is

capable of reaching other organs depending on the host
(Yang W et al,, 2020). Different studies worldwide refer that

clinical presentation vary between individuals, presenting
manifestations not only respiratory tract infection, but also
blood, skin, kidney, liver, ocular symptoms, neurologic signs,
among others (Adhikari et al., 2020; Wang Q et al., 2020).
Therefore, it is necessary to continuously review the reports on
clinical manifestations in order to get to know the behavior of
this disease as well as to think over the physiopathological
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mechanisms that allows us to better understand the related
complications (Gupta et al., 2020; Wadman et al., 2020).

The effective immune response of the host, including the
innate and adaptive ones, against SARS-CoV-2 seems to be
essential to control and solve the infection. However, the
clinical seriousness of COVID-19 could be associated to the
excessive production of pro-inflammatory cytokines, known as
‘cytokine storm’ (Fajgenbaum and June, 2020; Hussman, 2020),
or to the excessive production of bradykinin peptides, known as
‘bradykin storm’ (Garvin et al., 2020). This clinical paradigm is
still to be figured out, and that is why the effective treatment is still
uncertain. It is indispensable to understand the immunological
responses that are triggered off since the beginning of the
infection with SARS-CoV-2, so as to make progress in search
of effective therapeutic strategies.

Innate immune response executes the first line of antiviral
defense and is essential to obtain immunity against viruses
(Zhong et al., 2020). Pattern recognition receptors (PRRs),
codified by germline DNA, are responsible for recognizing
widely common molecular patterns shared by pathogens of a
certain group. Single-stranded and double-stranded viral RNAs
produced during the replication phase of SARS-CoV-2 are
recognized by endosomal TLRs (TLR7 and TLR8 or TLR3,
respectively) and cytosolic RIG-I like receptors (RLRs), mainly
RIG-I and MDA-5. After PRR engagement, downstream
signaling pathways trigger the activation and nuclear
translocation of key transcription factors, such as NF-kB, AP-1
and interferon regulatory factors (IRFs), and the ensuing
expression of inflaimmasome activation and anti-viral
cytokines (Lee et al, 2020). Among the most relevant
cytokines we can find interleukins (IL-1, IL-6, and IL-18), pro-
inflammatory TNF-a and TNF-8, and type I and III IFNs
(Blanco-Melo et al., 2020; Herold et al., 2020; McKechnie and
Blish, 2020). Consequently, cytokines induce antiviral processes
potentiating the innate and adaptive immune responses, limiting
CoVs replication capacity and inducing the elimination of the
virus cell reservoirs (Channappanavar et al., 2019; Blanco-Melo
et al., 2020). However, CoVs have developed mechanisms of
immune evasion where viral factors inhibit viral recognition by
PRR sensing, and cytokine expression and secretion. Individuals
with severe COVID-19 have demonstrated remarkably impaired
type I IFN values as compared to mild patients (Hadjadj et al.,
2020), and the interferon-induced overexpression of ACE2 may
be involved (Ziegler et al., 2020).

Mucosal immune responses against viruses are orchestrated by
myeloid cells such as macrophages, conventional DCs,
plasmacytoid DCs, and monocyte-derived DCs (Guilliams
et al., 2013). Accumulating evidence suggests that deregulation
of myeloid cell-mediated responses potentially triggers
lymphopenia, cytokine release syndrome, acute respiratory
distress syndrome (Mehta et al, 2020), and pathogenic
inflammation with high level secretion of IL-6, IL-2, IL-7,
IEN-y, IFN-I, and type III IFNs (Shi et al, 2019) in COVID-
19 patients with severe clinical manifestations.

Innate lymphoid cells (ILCs) are lymphoid-like immune cells
that lack the expression of rearranged antigen receptors. The non-
cytotoxic group I, II, and IIT ILCs and the cytotoxic natural killer
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(NK) cells form the ILC family (Vivier et al., 2018). Several
clinical data have reported that NK cells decrease in peripheral
blood of severe patients (Song et al., 2020; Yu et al., 2020). An
in vitro study has identified that the CXCL9-11 chemokines are
overexpressed in lung cells infected with SARS-CoV-2, suggesting
that the CXCR3 signaling pathway drives NK cells from
peripheral blood to lungs in COVID-19 patients (Liao M
et al.,, 2020). In addition, NK cells have the quality to induce
lysis of infected cells causing severe hypoxemia and contributing
to the cytokine storm resulting in ARDS.

T cells are involved in fundamental processes in viral
infections. CD8 T cells eliminate infected cells and CD4
T cells help B cells for antibody production. Nevertheless,
immunopathology is generated when T cells are dysregulated.
Several reports have shown that moderate to severe COVID-19
patients with lymphopenia drastically reduce CD8 T cell and CD4
T cells in peripheral blood (Nie et al., 2020; Wen et al., 2020; Zeng
et al., 2020). T cells reduction in the blood is also a contribution of
mechanisms such as inflammatory cytokine milieu, which is why
lymphopenia has a correlation with TNF-q, IL-6, and IL-10 (Diao
et al, 2020; Wan et al., 2020). Conversely, clinical reports have
shown that convalescent patients have low pro-inflammatory
cytokine levels paired with restored bulk T cell frequencies
(Diao et al., 2020).

The humoral immune response plays a main role in the
clearance of cytopathic viruses and its memory response
prevents reinfection. According to Huang et al. and Wu et al.,
IgM, IgA, and neutralizing IgG antibodies can be detected in 12,
14 and 10-14 days, respectively, after symptom onset on average,
suggesting that SARS-CoV-2 causes a robust B cell response in
the majority of COVID-19 patients (Wu F et al., 2020; Huang
et al., 2020). Indeed, antibodies binding the RBD of the S
glycoprotein can have neutralizing properties, blocking virus
interactions with the human protein receptor ACE2 (Ju et al,
2020), thereby inhibiting/preventing target cell infection. The
B cell response to SARS-CoV-2 protects from the primary
infection and extends immunity against reinfection due to
memory B cells that can respond quickly by producing high
affinity neutralizing antibodies. However, it is yet impossible to
predict the duration of memory responses due to the timing of the
COVID-19 pandemic.

There is currently a limited number of known risk factors that
confer susceptibility to COVID-19. Several routine blood tests
and immunological biomarkers have been suggested to classify
patients with mild and severe symptoms. The routine blood test
biomarkers currently suggested are lymphocyte count (Tan et al.,
2020), neutrophil to lymphocyte ratio (Liu et al, 2020b),
C-reactive protein (Ji et al, 2020), lactate dehydrogenase
(Xiang et al., 2020), ferritin (Bataille et al., 2020), D-dimer and
coagulation parameters (Zhou et al., 2020b), serum amyloid
protein (Ji et al, 2020), N terminal pro B type natriuretic
peptide (Gao L et al, 2020), platelet count (Qu et al., 2020),
ultrasensitive troponin, and creatine kinase MB (Akhmerov and
Marban, 2020). On the other hand, immunological biomarkers
associated with different COVID-19 outcomes are CD4", CD8",
and NK cell count (Nie et al., 2020); PD-1 and Tim-3 expression
on T cells (Diao et al., 2020); phenotypic changes in peripheral
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blood monocytes (Zhang D et al., 2020); expression levels of IP-
10, MCP-3, IL-1ra (Yang Y et al., 2020); IL-6 (Chen et al., 2020),
IL-8, IL-10, IL-2R, IL-1B (Gong et al., 2020), IL-4 (Fu et al., 2020),
IL-18, granulocyte macrophage colony stimulating factor (GM-
CSF) (Zhou et al., 2020a), IL-2, IFN-y (Liu et al., 2020a), and anti-
SARS-CoV-2 antibodies (Zhang B et al., 2020; Fu et al., 2020).

In this study, we performed proteomics, transcriptomics, and
artificial neural network analyses to reveal potential therapeutic
targets for drug repurposing to treat severe COVID-19. Firstly, we
generated an immune system PPi network encompassing 1,584
nodes and 332,968 edges. Of them, 256 human proteins
physically associated with SARS-CoV-2 proteins (Gordon
et al, 2020) had high-confidence interactions with 1,390
immune system proteins. The degree centrality mean of the
human proteins physically associated with SARS-CoV-2 was
23.6. GNBI1, with the highest degree centrality, acts as a
modulator in transmembrane signaling systems, including the
GTPase activity (Gordon et al., 2020). The degree centrality mean
of the immune system proteins was 44.5. UBA52, with the highest
degree centrality, acts as a fusion protein that regulates
ubiquitination of ribosome (Kobayashi et al., 2016). Lastly, the
degree centrality mean of the phosphorylated proteins was 59.8.
PIK3CA had the highest degree centrality and significant
underexpression in SARS-CoV-2 infection in Vero E6 cells
(Bouhaddou et al.,, 2020; Figure 2A; Supplementary Figure S1).

Overmyer et al. published a large-scale multi-omic analysis
and identified 146 significantly expressed proteins in severe
COVID-19 (Overmyer et al., 2020). We located these proteins
and their high-confidence interactions in the immune system PPi
network and subsequently generated the immune system PPi
subnetwork encompassing 319 nodes and 5,308 edges. Of them,
26 significantly expressed proteins in severe COVID-19
(Overmyer et al,, 2020) had high-confidence interactions with
49 human proteins physically associated with SARS-CoV-2
proteins, and with 281 immune system proteins. The degree
centrality mean of the overexpressed proteins was 33.5. STOM,
with the highest degree centrality, is located in cell membranes
regulating ion channels and transporters. Loss of localization of
the encoded protein is associated with hemolytic anemia shown
in COVID-19 patients (Algassim et al, 2020). The degree
centrality mean of the underexpressed proteins was 32.5.
KNGI, with the highest degree centrality, is the precursor for
bradykin synthesis, and is involved in the coagulation system
dysfunction of severe COVID-19 (Sidarta-Oliveira et al., 2020).
Lastly, the degree centrality mean of the phosphorylated proteins
was 322, and PIK3CA had the highest degree centrality
(Figure 2B).

SARS-CoV-2 employs a suite of virulent proteins that interact
with key targets in host interactomes to extensively rewire the
flow of information and cause COVID-19 (Vidal et al., 2011; Pan
et al.,, 2016; Kumar et al., 2020). Although it has been shown that
hubs of high-degree nodes are targets of numerous human viral
(Calderwood et al., 2007; De Chassey et al., 2008; Gulbahce et al.,
2012; Pan et al., 2016; Huttlin et al., 2017), COVID-19 is a novel
disease and requires more in-depth studies. Therefore, we
performed a functional enrichment analysis to validate the
correlation between the subnetwork proteins and COVID-19
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signatures published in studies worldwide (Figure 3). After a
manual curation of gene ontology terms, the most significant
biological processes were neutrophil degranulation (Shen et al.,
2020), granulocyte activation (Yang L et al, 2020), myeloid
leukocyte mediated immunity (Chen and John Wherry, 2020),
inflammatory response (Jose and Manuel, 2020; Merad and
Martin, 2020), blood coagulation (Vinayagam and Sattu,
2020), T-cell activation(Chen and John Wherry, 2020),
response to interferon-gamma (Hu et al, 2020), platelet
degranulation (Kuchi Bhotla et al, 2020), and acute
inflammatory response (Manjili et al, 2020). The most
significant KEGG pathways were chemokine signaling pathway
(Chua et al., 2020), coagulation cascade (Overmyer et al., 2020),
and antigen presentation (Li X et al,, 2020). Lastly, the most
significant Reactome signaling pathways were neutrophil
degranulation (Wang ] et al, 2020), innate immune system
(Ahmed-Hassan et al., 2020), hemostasis (Liao D et al., 2020),
signaling by VEGF (Kong et al., 2020), insulin-like growth factor
(Winn, 2020), and platelet degranulation (Overmyer et al., 2020).

According to Buccitelli & Selbach (Buccitelli and Selbach,
2020), proteomics and transcriptomics typically show
reasonable correlation, and integrating both types of data can
reveal exciting biology and gene expression patterns. In light of
this approach, the ‘COVID-19 Studies’ section of the Alexandria
Project represents a large effort to characterize this
immunopathology from a transcriptomics view. Ziegler et al.
analyzed human scRNA-seq data to uncover potential targets of
SARS-CoV-2 amongst tissue-resident cell subsets. They
discovered ACE2 and TMPRSS2 co-expressing in goblet cells
from nasal passage cells, type II pneumocytes from lung epithelial
cells, and absorptive enterocytes from ileal epithelial cells (Ziegler
et al.,, 2020). Therefore, after generating our immune system PPi
network, we screened the 1,584 nodes into 10 nasal passage cells,
15 lung epithelial cells, and nine ileal epithelial cells to identify
potential therapeutic targets for drug repurposing against
COVID-19.

We found 75 significantly overexpressed molecules (Z-score >
2) in nasal goblet secretory cells (n = 5) (Figure 4), lung type II
pneumocytes (n = 46) (Figure 5), and ileal absorptive enterocytes
(n = 29) (Figure 6; Reimand et al, 2019). Subsequently, we
analyzed the druggability of these 75 molecules (Methods
section), and identified 25 potential therapeutic targets with
ChEMBL ID and identified molecules with active/inactive
interactions.

Meaningfully, these potential therapeutic targets not only were
relevant in both the immune system PPi subnetwork and the
scRNA-seq data, but also were involved in biological processes
and signaling pathways related to severe COVID-19, such as
neutrophil degranulation, blood coagulation or coagulation
cascade, hemostasis, and platelet degranulation (Figure 7;
Overmyer et al, 2020). Several studies worldwide have
correlated these potential therapeutic targets with COVID-19.
For instance, MAPK3 and EGFR showed kinase activity in the
global phosphorylation landscape of SARS-CoV-2 infection
according to Bouhaddou et al (Bouhaddou et al, 2020).
CTSD, CD63, MKD, NFKBIA, MAPK3, STAT3, TNESF10,
F2RL1, HIF1A, NEUl, and EPAS1 were identified as
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significantly expressed targets in patients with severe COVID-19
according to Aschenbrenner et al (Aschenbrenner et al., 2020).
C3, LDLR, CTSH, B4GALT1 and NFKBIA were significantly
expressed targets in COVID-19 according to Alsamman & Zayed
(Alsamman and Zayed, 2020). HSPA5 was associated with the
viral entry, the endoplasmic reticulum stress, and anti-clotting
agents according to Law et al (Law et al, 2020). CD44 was
involved in the extravasation cascade with significant expression
in severe COVID-19 according to Chua et al (Chua et al., 2020).
Basu et al found significant expression of the ITGA2 and ITGA3
integrins in COVID-19 patients (Basu et al., 2020). DDX3X was
involved in the coronavirus-host protein-protein interactions
according to Perrin-Cocon et al (Perrin-Cocon et al.,, 2020).
Daniloski et al showed that ATP6AP1 induces shared
transcriptional changes in cholesterol biosynthesis in human
cells with SARS-CoV-2 infection (Daniloski et al., 2020).
Lastly, CD74, CTSS and CTNNBI were identified as potential
targets for SARS-CoV-2 diagnosis and treatment according to
Vastrad et al (Vastrad et al., 2020).

There is currently an urgent need for effective COVID-19
drugs. High-throughput screening for drug discovery has been
important in finding antiviral drugs focused on the SARS-CoV-2
spike protein (Micholas and Jeremy, 2020) and the main protease
(MF™), as detailed in our previous study (Tejera et al., 2020).
However, computational structure-based drug discovery focused
on immune system proteins is imperative to select potential drugs
that, after being effectively analyzed in cell lines (i.e., African
green monkey cells) and clinical trials, these can be considered for
treatment of complex symptoms of COVID-19 patients. Drug
repurposing offers a potentially rapid mechanism to deployment,
since the safety profiles are known (Cabrera-Andrade et al., 2020;
Phimister et al., 2020).

We performed fully connected deep neuronal networks to
predict drugs with the highest affinities per target and multi-
targets. We identified 47 approved drugs, 25 compounds under
investigation, and 50 experimental compounds with the highest
AUROGC: for 15 (60%) of the 25 potential therapeutic targets. The
best-predicted approved drugs were enrolled in ten different
categories: anti-neoplastic and immunomodulating agents,
anti-hemorrhagic agents, anti-inflammatory agents, anti-
parathyroid agents, anti-viral agents, anti-oxidant agents,
cardiovascular agents, central nervous system agents, growth
hormone-releasing hormone, and antibiotics (see Results
section and Figure 8).

There are around 4,000 clinical trials on COVID-19 using
small molecules as single or combination agents with other anti-
viral agents worldwide. Interestingly, 54 clinical trials currently
correspond to 13 (27%) of the 48 best-predicted approved drugs
found in our study (Figure 9). The cardiovascular agents
implicated in the renin-angiotensin system are aliskiren,
triamterene, and torasemide. Aliskiren and triamterene are
renin inhibitors used to treat hypertension; and torasemide is
used to treat edema associated with heart, renal, and hepatic
failures. According to Garvin et al., the renin-angiotensin system
is an important pathway linked to hypertension and hypotension
in COVID-19 patients because it maintains a balance of blood
pressure (Garvin et al., 2020). The anti-viral agents are atazanavir,
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darunavir, and lopinavir. All of them are protease inhibitors used
to treat HIV infection. According to Mahdi et al., targeting of
SARS-CoV-2 MP™ by HIV protease inhibitors might be of limited
clinical potential due to the high concentration of drug required
to achieve this inhibition. However, any potential beneficial effect
in COVID-19 context might be attributed to acting on other
molecular targets (Mahdi et al., 2020). The anti-neoplastic and
immunomodulating agents are enzalutamide, methotrexate,
imatinib, ruxolitinib, ibrutinib, and duvelisib. Enzalutamide is
an androgen receptor inhibitor to treat prostate cancer;
methotrexate is an antimetabolite that inhibits the
dihydrofolate reductase and is used to treat breast cancer, lung
cancer, head and neck cancer, and non-Hodgkin’s lymphoma;
imatinib is a BCR/ABL kinase inhibitor used to treat chronic
myeloid leukemia, acute lymphoblastic leukemia, and
gastrointestinal stromal tumors; ruxolitinib is a Janus kinase 1
and 2 inhibitor that reduces the hyperinflammation during
cytokine storm in thrombocythemia myelofibrosis; ibrutinib is
an inhibitor of the Bruton tyrosine kinase causing protection
against immune-induced lung injury; and duvelisib is a PI3K
inhibitor involved in the immune homeostasis restoration and
viral replication inhibition. According to Saini et al, three
hallmarks of cancer, namely immune dysfunction,
inflammation, and coagulopathy are also seen in patients with
SARS-CoV-2 infection, providing a biological rationale for
testing anti-neoplastic agents for their ability to control the
severe COVID-19 symptoms. However, these anti-neoplastic
drugs should be evaluated carefully through well-designed and
often novel trial platforms to avoid detrimental effects in future
treatments (Saini et al, 2020). Finally, the anti-hemorrhagic
agent, fostamatinib, is an inhibitor of spleen tyrosine kinase
used to treat chronic immune thrombocytopenia. According to
Kost-Alimova et al., elevated mucin-1 (MUC1) protein levels
predict acute lung injury and ARDS with poor clinical outcomes,
and fostamatinib has been shown to reduce MUC1 abundance in
a relevant pre-clinical model and has demonstrated safety profile
in patients (Kost-Alimova et al., 2020; Tabassum et al., 2020).
Despite enormous scientific effort in drug repurposing studies
to inhibit SARS-CoV-2 proteins or control severe COVID-19
symptoms, significant limitations exist. The main concern
associated with drug repurposing studies involves the
implementation of well-designed validation assays through
clinical trials. Other main concerns are related to obtaining
the correct therapeutic doses, safety results to avoid
detrimental effects of repurposed drugs after treatments, and
delivery capabilities worldwide (Parvathaneni and Gupta, 2020).
All of this carried out counter clock due to the health emergency
triggered by the pandemic. However, the positive side of this
enormous scientific effort is to put forward recommendations for
transforming today’s tools into solutions for future pandemics
according to The National Symposium on Drug Repurposing for
Future Pandemics, on behalf of the National Science Foundation.
The current COVID-19 pandemic offers a unique opportunity
to strengthen mechanisms that promote the use of drug
repurposing processes—considering the drug safety profile and
the possibility of originate different adverse reactions in patients
with distinct concomitant diseases—; inclusively, in the ongoing or
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future clinical trials, having the potential to reduce the time and
costs for finding potential solutions to the current pandemic.
Additionally, contributing to future analysis for high threat
pathogens and rare diseases. This idea is welcomed by some
other authors who conveyed on the potential of drug repurposing
for common national and global health benefits (Yan, 2017).
Between the several advantages of this process, the one which
leads efforts to the use of the current information -on human
pharmacology and toxicology-of safe and affordable generic
drugs, is worth to remark. As also stated by Guy et al. (2020),
along with this statement, there is the urge to motivate the
transparency and compliance of the highest ethical principles
for the conduction of studies, including as a key potential for drug
repurposing, the visualization and sharing of negative results.
Mainly, promoting and assuring that well-designed randomized
clinical trials are timely implemented, especially during health
emergencies and crises. In this sense, drug repurposing will be
fulfilling its main objective: proposing potential, prompt, cost-
effective, and safe solutions for the public and global health
problems, with a human-centered approach.

The COVID-19 pandemic has evidenced that there is a strong
urge to strengthen health systems with a major emphasis on
health prevention and the major need, especially of low and
middle income countries, to publicly invest on research and
development. Consequently, the benefits of innovation and the
results of research should be always available and affordable to
anyone in need, to comply with the goal of public health
(Rottingen et al, 2012). This is of particular importance
during the current pandemic situation and on its aftermath.

From a global health perspective, initiatives directed to the
improvement of rapid data sharing are critical during health
emergency. This rapid sharing includes undoubtedly a
transboundary collaboration founded on the principles of
reliability and accuracy of the data (The Lancet, 2020).
Meaningfully, for preventing potential new or existing
pathogens to become high threats to human health and global
security, non-commercial basic research on microorganisms
should be assured. Additionally, introducing and promoting
genomic epidemiology and strengthening global laboratory
alliances would contribute to the national and global rapid
detection and containment of outbreaks, as also promoted by
the WHO. Accordingly, every country is sovereign and should
guarantee the protection and regulation of the use of its biological
resources, specifically working toward the Fair and Equitable
Sharing of Benefits. Nevertheless, international conventions on
the topic and national legislations should include fast track
options for research on pathogens (Knauf et al, 2019).
Relevantly, the links between human, environmental, and
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