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Background: Statins can cause muscle symptoms resulting in poor adherence to therapy
and increased cardiovascular risk. We hypothesize that combinations of potentially
functional SNPs (pfSNPs), rather than individual SNPs, better predict myalgia in
patients on atorvastatin. This study assesses the value of potentially functional single
nucleotide polymorphisms (pfSNPs) and employs six machine learning algorithms to
identify the combination of SNPs that best predict myalgia.

Methods: Whole genome sequencing of 183 Chinese, Malay and Indian patients from
Singapore was conducted to identify genetic variants associated with atorvastatin induced
myalgia. To adjust for confounding factors, demographic and clinical characteristics were
also examined for their association with myalgia. The top factor, sex, was then used as a
covariate in the whole genome association analyses. Variants that were highly associated
with myalgia from this and previous studies were extracted, assessed for potential
functionality (pfSNPs) and incorporated into six machine learning models. Predictive
performance of a combination of different models and inputs were compared using
the average cross validation area under ROC curve (AUC). The minimum combination
of SNPs to achieve maximum sensitivity and specificity as determined by AUC, that predict
atorvastatin-induced myalgia in most, if not all the six machine learning models was
determined.

Results: Through whole genome association analyses using sex as a covariate, a larger
proportion of pfSNPs compared to non-pf SNPs were found to be highly associated with
myalgia. Although none of the individual SNPs achieved genome wide significance in
univariate analyses, machine learning models identified a combination of 15 SNPs that
predict myalgia with good predictive performance (AUC >0.9). SNPs within genes
identified in this study significantly outperformed SNPs within genes previously
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reported to be associated with myalgia. pfSNPs were found to be more robust in predicting
myalgia, outperforming non-pf SNPs in the majority of machine learning models tested.
Conclusion: Combinations of pfSNPs that were consistently identified by different
machine learning models to have high predictive performance have good potential to
be clinically useful for predicting atorvastatin-induced myalgia once validated against an
independent cohort of patients.

Keywords: statin, myalgia, whole genome sequencing, machine learning, pharmacogenomics

INTRODUCTION

Cardiovascular disease is a leading cause of death worldwide
(World Health Organization — Cardiovascular Disease, 2020).
High blood cholesterol levels increase the risk of cardiovascular
disease, making lipid-lowering medications such as statins
important for the therapeutic management of this risk factor
(SEARCH Collaborative Group et al, 2010; Cholesterol
Treatment Trialists et al., 2012; Silverman et al., 2016). Statins,
or 3-hydroxy-3-methylglutaryl CoA reductase inhibitors, are
generally well tolerated. However up to 25% of individuals
have reported some degree of statin-associated muscle
symptoms (SAMS) (Bruckert et al.,, 2005; Cohen et al., 2012).
These side effects range from myalgia (with or without elevations
in serum creatine kinase) to severe rhabdomyolysis (Alfirevic
et al., 2014). Although severe forms of muscle toxicity such as
myopathy and rhabdomyolysis are rare, the most common event
leading to discontinuation of statins are muscle symptoms, in
particular those without significant elevation in creatine kinase
(McGinnis et al., 2007; Wei et al., 2013; Stroes et al., 2015). As
treatment of hypercholesterolaemia is life-long, poor adherence
to prescribed statin therapy increases the risk of cardiovascular
events (Chowdhury et al.,, 2013; Saxon and Eckel, 2016). It is
therefore important to be able to identify patients with muscle
symptoms of pharmacological origin so that they can receive
appropriate management. These patients could also receive
alternative non-statin therapies such as the more expensive
PSCK9 inhibitors or ezetimibe (Bakar et al., 2018).

Previous pharmacogenomic studies have reported genetic
variations that are associated with SAMS, most notably the
rs4149056 polymorphism in the SLCOIBI gene. (Link et al,
2008; Wilke et al.,, 2012). This polymorphism has been included
in CPIC guidelines for simvastatin therapy. While the
pharmacokinetic basis of rs4149056 and simvastatin-induced
myopathy has been established in several clinical studies
(Pasanen et al., 2006; Voora et al., 2009; Carr et al., 2013), it is
unclear whether this variant is also associated with SAMS in
patients on lower doses of statin, milder myalgia or from
different populations (Donnelly et al, 2011; Hubacek et al,
2015; Sai et al., 2016; Zhong et al., 2018). For instance, Donnelly
etal. (2011) reported an association of SLCOI1BI variants with mild
myalgia in patients receiving high doses of statin, but Huback et al.
(2015) reported that SLCO1BI polymorphisms were not associated
with risk of myalgia in a Czech population. Furthermore, this
association is strongest for simvastatin, and there are conflicting
reports for atorvastatin treatment which is the most widely

prescribed high-potency statin (Voora et al, 2009; Carr et al,
2013; Brunham et al., 2018). Atorvastatin, simvastatin and other
statins differ in the ring that is attached to their active moieties as
well as in the form that they are administered in (Turner and
Pirmohamed, 2019; Ward et al., 2019). These statins therefore have
different pharmacokinetic characteristics and involve different
genes and SNPs for their metabolism and transport.

In addition to SNPs in the SLCOIBI gene, SNPs in several
other pathways including statin metabolism [e.g., cytochrome
P450 (CYP) genes (Frudakis et al., 2007; Shek et al., 2017) and
glycine amidinotransferase (GATM) (Mangravite et al., 2013)],
statin transport [e.g., ATP binding cassette (ABC) transporters
(Zhang et al., 2019)], and immune response (e.g human leukocyte
antigen (HLA) (Sai et al., 2016) and leukocyte immunoglobulin-
like receptor (LILR) (Siddiqui et al., 2017)] have also been
implicated in SAMS (reviewed in Ward et al., 2019; Turner
and Pirmohamed, 2019). For some of these SNPs, further
studies have shown that the associations do not replicate (e.g.,
the GATM variant) (Floyd et al, 2014; Luzum et al, 2015).
Clinical factors such as age, sex, ethnicity, daily dose, body
mass index, drug-drug interactions, comorbidities, duration of
statin use and use of concomitant medications have also been
implicated with SAMS (SEARCH Collaborative Group et al,
2010; Cohen et al, 2012; Tournadre, 2020), although the
association of these covariates again varies with each study.

Hence, this study aims to examine the role of genetic and
clinical factors for predicting atorvastatin-induced myalgia in the
Singapore population, which comprises mainly of individuals of
Chinese, Malay and Indian descent. Genetic polymorphisms
associated with myalgia were obtained by whole genome
sequencing (WGS). Unlike exome or targeted sequencing
technologies previously used in the discovery of statin
associated myopathy variants (Ruano et al., 2007; Ruano et al.,
2011; Bakar et al,, 2018; Floyd et al., 2019), WGS allows for the
detection of polymorphisms in both coding and non-coding
regions. Furthermore, our group has found that non-coding
regions contain a larger proportion of potentially functional
SNPs compared to coding regions (Bachtiar et al, 2019a),
which makes WGS a more suitable platform compared to
other technologies. Floyd et al. (2019) reported that there was
no evidence linking rare coding variants to adverse statin
reactions, and given our small sample size, we have decided to
focus on common variants in this study.

The potentially functional SNPs (Wang et al., 2011) uncovered
from this study, as well as from other known genes in the
atorvastatin pathway, were used for predicting myalgia using a
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variety of machine learning approaches. Machine learning has
previously been used to predict drug response or dosage in fields
such as cancer, psychiatry and cardiovascular disease (Liu et al.,
2015; Huang et al., 2018; Athreya et al., 2019). To our knowledge,
it has not been applied to predict the risk of statin-induced
myalgia based on pharmacogenomic data. Insights gained
from this study can therefore help to reveal important clinical
and genetic risk factors that are predictive of atorvastatin-
induced myalgia, as well as demonstrate the utility of
machine learning approaches in pharmacogenomics.

MATERIALS AND METHODS
Study Cohort

This study examined 183 subjects on atorvastatin therapy from
the Surveillance and Pharmacogenomics Initiative for Adverse
Drug Reactions (SAPhIRE) project. Written informed consent
was obtained from all participants and the study protocol was
approved by the National Healthcare Group Domain Specific
Review Board (NHG DSRB). For patients who reported muscle
pain, severity of symptoms was scored based on two criteria,
regional distribution pattern and temporal pattern. The scoring
for regional distribution is as follows - “non-specific,
intermittent” was given a score of 1, “symmetric hip flexors/
thigh aches” was given a score of 3 while “symmetric calf aches”
and “symmetric upper proximal aches” were given a score of 2.
For temporal pattern, “onset < 4 weeks” was given a score of 3,
“4-12 weeks” was given a score of 2 and “>12 weeks” was given a
score of 1. The scores for the two patterns were added with scores
ranging from 0 (no muscle pain) to 6, and patients who
responded with a score of 0-2 were defined as the statin
tolerant group while those with a score of 4-6 were defined as
the myalgia group. All 30 patients in the myalgia group were
selected for further analysis, while 153 out of 946 patients were
randomly selected from the atorvastatin tolerant group to form
the controls. From this study cohort, 48% were self-reported
Chinese, 31% Indian and 21% Malay, and patients had a mean age
of 57.4 (95% CI: 55.9-59.0) years, although one patient did not
have age data. Patients were treated with atorvastatin for
10-5,046 days with a daily dose ranging from 5 to 80 mg.
Demographics (including age, sex, height and weight),
comorbidities and medications of all patients were recorded.
Each patient provided a venous blood sample which was
transferred into EDTA tubes and stored at —80°C for genetic
analyses.

Whole Genome Sequencing

Genomic DNA was extracted and purified from whole blood
using the Omega Bio-Tek E. ZN.A. Blood DNA mini kit
(Norcross, GA, United States). DNA concentration was
measured using Qubit® DNA Assay Kit in Qubit® 2.0
Flurometer (Life Technologies, CA, United States). Fragment
distribution of DNA library was measured using the DNA
Nano 6000 Assay Kit of Agilent Bioanalyzer 2100 system
(Agilent Technologies, CA, United States). A total amount of
1.0 ug DNA per sample was used as input material for the DNA

Al Models for Predicting Myalgia

sample preparations. Sequencing libraries were generated using
NEBNext® DNA Library Prep Kit following manufacturer’s
recommendations and indices were added to each sample. The
genomic DNA is randomly fragmented to a size of 350 bp by
shearing, then DNA fragments were end polished, A-tailed, and
ligated with the NEBNext adapter for Illumina sequencing, and
further PCR enriched by P5 and indexed P7 oligos. The PCR
products were purified (AMPure XP system) and resultant
libraries were analyzed for size distribution by Agilent 2100
Bioanalyzer and quantified using real-time PCR. Sequencing
was performed on the Illumina platform (HiSeq X) using a
paired-end read length of 150bp. Data files have been
uploaded to the European Nucleotide Archive with accession
number PRJEB40922.

Sequence Alignment and Data Processing
Read pairs with adapter contamination, more than 10% bases
uncertainty or >50% low quality bases in either read were first
discarded. Burrows-Wheeler Aligner (BWA) was utilized to map
the paired-end reads to the human reference genome b37 (ftp.
broadinstitute.org/bundle/b37/human_glk v37_decoy.fasta.gz)
and duplicate reads marked using Picard (http://picard.
sourceforge.net) (Li and Durbin, 2009). The BAM files were
further processed following the GATK Best Practices Workflow
(https://www.broadinstitute.org/gatk/guide/best-practices). ~ Single-
sample genotypes were called using GATK HaplotypeCaller
(McKenna et al, 2010) followed by hard filtering with the
following options: QualByDepth > 2.0, FisherStrand < 60.0,
MappingQuality > 40, MappingQualityRankSumTest > — 12.5,
ReadPosRankSumTest > — 80 and StrandOddsRatio < 3.0.
Variants were annotated using ANNOVAR according to the hgl9
reference genome (Wang et al,, 2010). Downstream analyses were
only performed on biallelic SNPs that passed all quality filters above,
had less than 10% of genotype missingness, deviation from Hardy-
Weinberg equilibrium p > 0.001 and minor allele frequency >10%.
Genotypic data from myalgia patients, controls and 1,000 Genomes
was used in a principal component analysis (PCA) using PLINK 1.9
(Chang et al., 2015) to identify racial stratification in our dataset, and
figures were plotted in R.

Univariate and Single Variant Analysis
Statistical analyses for all clinical parameters (expressed as mean,
95% CI) were performed using R 3.6.1. Fisher’s exact tests were
used for categorical variables and t-tests for continuous variables.
Unlike the chi-squared test, Fisher’s exact test does not require
the expected frequencies of cases and controls to be large, and was
the more suitable test given the small sample size in this study. To
determine the association of genetic polymorphisms with
myalgia, binary logistic regression was performed on the
4,554,532 SNPs with known rs numbers using PLINK 1.9.
Additive, dominant and recessive models for genotypes were
separately tested. Sex was included as a covariate as it was found
to be significantly associated with myalgia, and the first two
principal components (PCs) were used to correct for population
substructure. SNPs obtained from this single variant analysis were
ranked according to the lowest p-value out of the three genotypic
models tested.
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For a 0.1 minor allele frequency cutoff, assuming a reported
prevalence rate of 0.2 (prevalence has been reported to be up to
25%) and a case control ratio of 1:5, to detect an odds ratio of 5
with p < 5 x 107° and 80% statistical power, a sample size of 34
cases for the additive model and 35 cases for the dominant model
is required. However, the prevalence rate of myalgia in this study
may not be 0.2 as there were only 30 patients with myalgia out of
the 976 patients on atorvastatin therapy whose clinical data was
available. Assuming a prevalence rate of 30/976 = 0.03, 66 cases
would be required to detect the above effects.

Selection of Potentially Functional SNPs
Potential functionalities of SNPs found in this study were
evaluated using the pfSNP resource developed by our
laboratory (Wang et al, 2011). pfSNPs include SNPs that
reside within regions under natural selection forces, as well as
those predicted to alter the expression, structure, function, or
activity of the associated gene. For coding SNPs, functionality was
determined based on whether the SNP resides within protein
modification sites such as phosphorylation sites, within
important protein domains/functional regions, or are predicted
to affect exonic splice enhancer/silencer sites or nonsense-
mediated decay. Furthermore, within the coding region,
synonymous mutations were assessed for significant codon
usage bias as this could potentially influence the speed of the
translation process (Kimchi-Sarfaty et al., 2007), while predicted
deleteriousness was used for selecting non-synonymous pfSNPs
(Bachtiar et al, 2019b). In addition to the pfSNP resource,
expression quantitative trait loci (eQTLs) from the GTEx
database (gtexportal.org) (Carithers et al, 2015), the eqtlGen
consortium (eqtlgen.org) (Vosa et al., 2018) and the Jansen study
(eqtl.onderzoek.io) (Jansen et al., 2017) were also used to identify
potentially functional SNPs (pfSNPs). Cumulative counts of
potentially functional (pf) SNPs were compared with non-pf
SNPs for the top 100 SNPs most associated with myalgia
based on univariate association p-values.

Selection of Candidate SNPs for Prediction

Three separate groups of SNPs were used as inputs into the
machine learning models. These were: 1) SNPs that were most
highly associated with myalgia from our results, 2) SNPs residing
in 128 genes in the atorvastatin pathway from the drug databases
Drugbank, CHEMBL, CTD and PharmGKB as previously
obtained by our group (Supplementary Table S1) (Bachtiar
et al, 2019b), and 3) SNPs in nine genes reported to be
associated with atorvastatin-induced myalgia from the
literature (Supplementary Table S2) (Ruano et al, 2007;
Ruano et al., 2011; Brunham et al., 2018). SNPs in these three
groups were ranked by their p-value of association with myalgia
from our univariate analysis, and the top 50 overall, pf and non-pf
SNPs from these three groups were extracted and separately used
for training the models. For genes found to be associated with
myalgia from the literature, only 20 non-pf SNPs were found.
SNPs with missing values as well as those with greater than 80%
correlation with a more significant SNP were removed. Non-pf
SNPs that had greater than 80% correlation with pfSNPs were
also removed from the non-pf group.

Al Models for Predicting Myalgia

Predictions Using Machine Learning
Six classifiers were selected for predicting myalgia. These include

regression based methods such as logistic regression and elastic
nets; tree based methods such as random forests and boosted trees
and other popular machine learning approaches such as neural
networks and support vector machines. As there is currently no
consensus as to which approach is best for genomic data, these six
models were selected as a broad representation of popular
machine learning models used for prediction. SNPs that
performed well on most or all models represent SNPs that are
able to predict myalgia to a high degree of confidence. As the
different models use different approaches for learning and
prediction, consistent results from the majority of models
would increase our confidence about the validity of the results.
All predictions were made using the R caret package in
conjunction with the glm, glmnet, rf, gbm, nnet and
svmRadial packages for training the individual models (Kuhn,
2008). Default caret training settings were used and sex was
included as a predictor in all models. Predictive performance
using the top 5-50 (in intervals of 5) overall, pf and non-pf SNPs
from all three groups were separately obtained using the average
5-round 5-fold cross validation area under ROC curve (AUC) as
the performance score. The unpaired t-test with Bonferroni
correction (n = 3) was used to determine if there was a
significant difference in mean AUC values of models using
pfSNPs, non-pf SNPs and all SNPs. All six models were also
trained without SNP data using 1) only sex as a predictor and 2)
all clinical characteristics as predictors for determining the
baseline model.

RESULTS

Demographic and Clinical Characteristics

There were 88 Chinese, 57 Indians and 38 Malays in the dataset
and patients ranged in age from 25 to 81 years (mean = 57.4, CI =
55.9-59.0). The ethnic distribution in the study cohort is
generally reflective of the Singapore population, although there
was a lower percentage of Chinese and a higher percentage of
Indians in the study cohort. This can be attributed to the higher
prevalence of coronary heart disease in Singapore Indians
requiring statin pharmacotherapy resulting in a higher
proportion of Indians among statin users (Hughes et al., 1990;
Ounpuu and Yusuf, 2003). All patients were treated with
atorvastatin and the demographic and clinical characteristics
of patients according to myalgia status is shown in Table 1.
Of these characteristics, only sex was found to be significant (p <
0.05), with females more likely to have statin induced myopathy
than males (Table 1). None of the comorbidities and drug
treatments were found to be significantly associated with myalgia.

Population Stratification

PCA analyses showed that Chinese patients from our dataset
clustered more closely with 1,000 Genomes East Asian
populations, and Indian patients from our dataset clustered
more closely with 1,000 Genomes South Asian populations
(Supplementary Figure S1A). Chinese, Malay and Indian
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TABLE 1 | Clinical/demographic characteristics of myalgia (cases) and non-myalgia (controls) subjects.

Characteristic Descriptor Group p
Myalgia n = 30 Non myalgia n = 1563

Age (yrs)? 56.7 (52.6-60.8) 57.6 (65.9-59.2) 0.71

BMI (kg/m?) 27.3 (25.5-29.1) 26.3 (25.6-27.0) 0.29

Statin dose (mg) 36.0 (28.7-43.3) 38.4 (35.4-41.5) 0.54

Days on statin 702 (344-1,060) 805 (657-953) 0.59

Reported ethnicity Chinese 14 (46.7%) 74 (48.4%) 0.44
Indian 12 (40.0%) 45 (29.4%)
Malay 4 (13.3%) 34 (22.2%)

Sex Male 22 (73.3%) 136 (88.9%) 0.038
Female 8 (26.7%) 17 (11.1%)

Alcohol consumption No 27 (90.0%) 141 (92.2%) 0.72
Yes 3 (10.0%) 12 (7.8%)

Smoking No 25 (83.3%) 119 (77.8%) 0.63
Yes 5 (16.7%) 34 (22.2%)

Myocardial infarction No 6 (20%) 12 (7.8%) 0.085
Yes 24 (80%) 141 (92.2%)

Renal problems No 23 (76.7%) 132 (86.3%) 0.18
Yes 7 (23.3%) 21 (13.7%)

Liver problems No 28 (93.3%) 146 (95.4%) 0.64
Yes 2 (6.7%) 7 (4.6%)

Hypertension No 13 (43.3%) 57 (37.3%) 0.54
Yes 17 (56.7%) 96 (62.7%)

Diabetes mellitus No 20 (66.7%) 82 (53.6%) 0.23
Yes 10 (33.3%) 71 (46.4%)

Hypercholesterolemia No 11 (36.7%) 44 (28.8%) 0.39
Yes 19 (63.3%) 109 (71.2%)

Blood thinner No 5 (16.7%) 15 (9.8%) 0.33
Yes 25 (83.3%) 138 (90.2%)

Glucose lowering No 21 (70%) 78 (51%) 0.071
Yes 9 (30%) 75 (49%)

Cholesterol lowering No 28 (93.3%) 133 (86.9%) 0.54
Yes 2 (6.7%) 20 (13.1%)

Heart protective No 19 (63.3%) 74 (48.4%) 0.16
Yes 11 (36.7%) 79 (51.6%)

Blood pressure lowering No 23 (76.7%) 91 (59.5%) 0.099
Yes 7 (23.3%) 62 (40.5%)

40ne sample in the non-myalgia group was missing age data.

patients from our dataset were also fairly well separated when
projected on to the first two principal components
(Supplementary Figure S1B), although there was some
overlap between Chinese and Malay patients due to genetic
admixture between the two ethnicities (Deng et al., 2015).

Single Variant Analyses

4,554,532 SNPs with known rs numbers passed quality control in
our dataset, with the majority of variants residing in intergenic
and intronic regions (Supplementary Figure S2). To identify
single SNP variants that might be associated with statin induced
myalgia, logistic regression adjusting for the first two principal
components and sex was performed. Most of the SNPs that were
highly associated with myalgia were located outside exons and
untranslated (UTR) regions (Figure 1A), highlighting an
important limitation of exome based platforms. A p-value of
5 x 107® is commonly used to determine significance in genome
wide studies, based on an assumption of 1,000,000 independent
tests and patterns of linkage disequilibrium in individuals of
European descent (Fadista et al., 2016). Although none of the
variants in our analyses met this p-value threshold, 15 suggestive

SNPs (p < 1 x 107°) were found, with genes RHOBTBI on
chromosome 10 and SUSDI on chromosome 9 containing the
most number of suggestive SNPs, all of which were potentially
functional (Figure 1B; Table 2). The top SNP for RHOBTBI,
rs10821852, is an intronic SNP with an odds ratio (OR) of 5.66
(95% CI: 2.70-11.8, p: 423 x 107°% assuming an additive
genotypic model) while the top SNP for SUSDI, rs10981237 is
an intronic SNP with an OR of 21.67 (95% CI: 5.68-82.8, p: 6.81 x
107°, assuming a recessive genotypic model) (Table 2).

Distribution of Potentially Functional SNPs
Of the 4,554,532 SNPs with known rs numbers, approximately
60% (2,774,804) were potentially functional. The cumulative
number of pfSNPs was consistently higher than that of non-pf
SNPs in the top 100 SNPs most associated with myalgia (Figure 1C).

Good Predictive Performance Using 15
SNPs

Predictive performance was greatest when using SNPs that were
highly associated with myalgia from this study (highest AUC: 1,
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FIGURE 1 | Whole genome sequencing results. (A) Number of exonic/UTR variants vs non-exonic/non-UTR variants in the top 5 to 5,120 SNPs most associated

with myalgia. (B) Manhattan plot of association of SNPs with atorvastatin-induced myalgia. The line indicates a p-value threshold of 1 x 107°, which can be considered to
be a suggestive threshold of genome wide significance for small sample sizes. (C) Cumulative numbers of potentially functional (pf) and non-pf SNPs in the top 100 SNPs
most associated with myalgia.

TABLE 2 | Top single variant associations with atorvastatin-induced myalgia (o < 1 x 1079).

rsiD Chr BP OR (CI) P Model Location Gene Intergenic pfSNP
distances

rs8082182 17 6,622,978 17.87 (5.244-60.91) 4.05E - 06 REC Intergenic  SLC13A5; XAF1 dist = 6,238; dist = 36,178 NA
rs10821852 10 62,660,939  5.658 (2.704-11.84) 4.23E - 06 ADD Intronic RHOBTB1 eQTL
rs12263661 10 62,661,320 6.321 (2.88-13.87) 4.27E-06 ADD Intronic RHOBTB1 eQTL
rs7011427 8 2,162,675 8.345 (3.369-20.67) 4.54E - 06 REC Intergenic  MYOMZ2; LOC101927815  dist = 59,295; dist = 234,544 NA
rs750593 10 62,662,314  6.097 (2.798-13.28) 5.39E - 06 ADD Intronic RHOBTB1 eQTL
rs10821851 10 62,660,911 5.145 (2.5629-10.47) 6.16E - 06 ADD Intronic RHOBTB1 eQTL
rs4437981 10 62,662,503  6.013 (2.7568-13.11) 6.45E - 06 ADD Intronic RHOBTB1 eQTL
rs4575214 10 62,662,468 6.013(2.758-13.11) 6.45E - 06 ADD Intronic RHOBTB1 eQTL
rs2893868 10 62,661,125 5998 (2.753-13.07) 6.50E - 06 ADD Intronic RHOBTB1 eQTL
rs10981237 9 1,14,817,524 21.67 (6.675-82.76) 6.81E - 06 REC Intronic SUSD1 eQTL
rs16916623 9 114,821,568 21.67 (6.675-82.76) 6.81E - 06 REC Intronic SUSD1 eQTL
rs8011850 14 29,117,256  9.648 (3.593-25.91) 6.87E - 06 ADD Intergenic  LINC0O0645; FOXG1-AS1  dist = 1,008,414; dist = 77,192  NA
rs2893869 10  6,2,661,961 5.787 (2.688-12.46) 7.25E - 06 ADD Intronic RHOBTB1 eQTL
rs10821853 10 62,661,057  5.286 (2.548-10.97) 7.74E-06 ADD Intronic RHOBTB1 eQTL
rsb5744607 9 114,815,563 17.78 (4.986-63.37) 9.11E-06 REC Intronic SUSD1 eQTL
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FIGURE 2 | Predictive performance using the top 5 to 50 SNPs most associated with myalgia from our dataset. Error bars denote the standard error of the mean.
#'s indicate statistical significance when comparing between all SNPs and pfSNPs while *’s indicate statistical significance when comparing between non-pf SNPs and
pfSNPs. Statistical significance when comparing between all SNPs and non-pfSNPs is not shown. The colors represent the input set with the higher AUC (red —all SNPs,
blue—non-pf SNPs and black—pfSNPs). Bonferroni corrected unpaired t-test p-values (p < 0.05) were used for determining statistical significance.

Figure 2) followed by SNPs in atorvastatin pathway genes
(highest AUC: 0.936, Figure 3) and SNPs in myalgia
associated genes from previous studies (highest AUC: 0.794,
Figure 4). For all models and inputs, close to maximal AUCs
were generally achieved when 15 SNPs were used, after which
there was either minimal increase in predictive performance, or a
decrease in AUC values (Figures 2-4). However, for SNPs in
myalgia associated genes from previous studies, mean AUC
values did not increase with increasing number of SNPs,
suggesting that most of these SNPs were not predictive
(Figure 4). Out of the top five pfSNPs in this group, four
were within the ABCG2 gene while one was at the HTR3B
locus. In terms of the best performing machine learning model
when 15 SNPs were used as inputs, the best model was support
vector machine (AUC: 0.990) for SNPs found from this study
(Figure 2), random forest (AUC: 0.89) for atorvastatin pathway

SNPs (Figure 3) and boosted tree (AUC:0.790) for SNPs in genes
from previous studies (Figure 4).

Robust Performance of Potentially

Functional SNPs in Predicting Myalgia

The best performing models described above for a 15 SNP input
were obtained when using only pfSNPs, and not when using all
SNPs or non-pf SNPs. Furthermore, when comparing pfSNPs to
combined SNPs, in four of the machine learning models (logistic
regression, elastic net, neural network, support vector machine),
pfSNPs outperformed combined SNPs when 15 or more SNPs
were used (Figures 2A, B, E, F, # indicates Bonferroni corrected
p < 0.05). The predictive performance of pfSNPs was only
significantly lower than the combined SNPs when a small
number of 10 SNPs was used in the neural network model
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(Figure 2E, # indicates Bonferroni corrected p < 0.05). However,
the AUC achieved using this 10 combined SNPs was 0.959
which was lower than when 15 pfSNPs were used in the same
neural network model (AUC: 0.973). In the remaining models
(Figures 2C,D) as well as for atorvastatin SNPs (Figure 3) and
literature review SNPs (Figure 4), there was no significant
difference between using pfSNPs and using combined SNPs.
When comparing pfSNPs to non-pf SNPs, pfSNPs
outperformed non-pf SNPs in almost all models and input
sets (Figures 2-4, * indicates Bonferroni corrected p < 0.05).
Additionally, the baseline performance of models only
incorporating sex as a predictor (best AUC: 0.58) or using all
clinical variables (best AUC: 0.57) (Supplementary Table S3)
was significantly poorer than models incorporating both pfSNPs
and sex (Figures 2-4).

DISCUSSION

In this study, we hypothesize that rather than individual SNPs, a
combination of several potentially functional SNPs (pfSNPs) can
better predict myalgia in patients on atorvastatin. Among the
demographic and clinical characteristics examined, only sex was
significantly (p < 0.05) associated with myalgia, with females
having a higher risk. This is concordant with reports from
previous studies (Link et al, 2008; Bakar et al, 2018;
Tournadre, 2020). Through whole genome association analyses
with sex as a covariate, we first demonstrated that among the top
100 SNPs that were most associated with myalgia, the cumulative
number of pfSNPs was consistently higher than that of non-pf
SNPs (Figure 1C) highlighting the importance of pfSNPs. To
identify the combination of pfSNPs/non-pfSNPs that can predict
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atorvastatin-induced myalgia, six different, but commonly used
machine learning models were employed to identify the
minimum number of pfSNPs/non-pfSNPs necessary to achieve
optimal sensitivity and specificity, determined through the area
under ROC curve (AUC), in most, if not all the six models.
pfSNPs consistently outperforms non-pfSNPs in predicting
myalgia. To our knowledge, this is the first study examining
pfSNPs and utilizing machine learning models in the prediction
of myalgia.

From the whole genome sequencing results, potentially
functional SNPs in RHOBTBI and SUSDI were found to be
highly associated with atorvastatin-induced myalgia. RHOBTBI
is a member of the Rho GTPase family of signaling proteins with
high levels of expression in the stomach, skeletal muscle, placenta,
kidney and testis (Ramos et al.,, 2002). RHOBTBI is a tumor
suppressor gene involved in head and neck cancer and is also

involved in protecting against hypertension by improving
vasodilator function (Xiao et al., 2017; Mukohda et al., 2019).
Knockdown of RHOBTBI was also found to promote
cardiomyocyte proliferation (Xiao et al., 2017). Given its high
expression in skeletal muscle, as well as its role in cardiomyocyte
proliferation and preventing vascular smooth muscle
dysfunction, it is possible that this gene is also involved in
preventing myalgia. Not much is known about SUSDI, which
encodes for the sushi domain-containing protein 1 precursor.
The sushi domain has been found in a number of proteins and
is a motif for protein-protein interactions (Wei et al., 2001).
SNPs in SUSDI has been previously associated with venous
thromboembolism (Tang et al, 2013) and neurocognitive
disabilities (Nilsson et al., 2017).

Most of the machine learning models gave similar AUC values
making it difficult to draw definitive conclusions as to which
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model performs best. However, models including only clinical
factors (Supplementary Table S3) were found to have a poorer
performance than models incorporating sex and genetic factors
(Figures 2-4), demonstrating the higher predictive potential of
SNPs compared to clinical factors. When 15 or more SNPs were
used, elastic net, neural network and support vector machine
models with potentially functional SNPs as inputs had
significantly better mean AUCs compared to the same models
incorporating non-pf SNPs and total SNPs as seen in Figure 2.
Furthermore, the overall best models at the 15 SNP level for each
of the three datasets (associated SNPs from this study, SNPs in
artovastatin pathway genes and SNPs in genes found from the
literature) all utilized pfSNPs as inputs (Figures 2-4). Taken
together, these results suggest that SNP functionality is an
important factor to consider for improving predictive
performance. The importance of SNP functionality was also
underscored by the fact that the raw count of pfSNPs was
higher than non-pf SNPs in the top 100 variants most
associated with myalgia.

Interestingly, we found that SNPs in genes previously
reported to be associated with myalgia had the poorest
predictive performance of the three groups. Furthermore,
predictive AUCs in this group did not increase as the number
of SNPs used was increased. Genes in this group include the
serotonin receptor genes HTR3B and HTR7 (Ruano et al., 2007),
efflux transporter ABCG2, uptake transporter SLCOIBI,
cytochrome P450 genes CYP3A4 and CYP2D6, and other
candidate genes such as COQ2, ATP2BI, DMPK (Ruano et al,,
2011). Our results suggest that only a few SNPs in this group had
predictive value, with ABCG2 and HTR3B being the strongest
candidate genes. It is also interesting to note that the rs4149056
variant in the SLCO1BI gene had a relatively high uncorrected
p-value of 0.1 in our study. Furthermore, the minor allele
frequencies of this variant were higher in controls than in
cases for Singaporeans of Chinese, Malay and Indian
ethnicities (Supplementary Table S4). These findings suggest
that the rs4149056 variant may not have the same effect for
milder myalgia, in non-European populations, or due to the type
of statin used. These reasons were also alluded to in the review by
Turner and Pirmohamed (2019) when discussing the role of
SLCOI1BI in statin-related myotoxicity.

There are however some limitations to this study. The
relatively small number of samples, with only 30 patients
reporting definitive myalgia, limits the discovery p-value to
only a suggestive threshold, and could be a possible reason
why SLCO1BI was not detected to be significant. Nevertheless,
smaller sample sizes are not unusual in pharmacogenomic
association studies due to the large effect sizes of
pharmacogenomic variants, unlike complex disease association
analyses (Maranville and Cox, 2016). Furthermore, in this study,
being unable to achieve genome wide significance for single SNPs
is not pertinent as the univariate p-values were merely used for
the ranking of SNPs to facilitate the identification of a
combination of multiple potentially functional SNPs that
best predict atorvastatin-induced myalgia using six
different machine learning algorithms. The combination of
pfSNPs that were found by most, if not all, of the six different

Al Models for Predicting Myalgia

machine learning models to show high sensitivity and
specificity in predicting myalgia highlights the robustness
of our strategy. A second caveat is that predictive
performance of the machine learning models, while
achieving good cross validation AUCs, should ideally be
validated against an independent test set. Nonetheless,
cross validation is a useful indicator of the generalizability
of the model and by utilizing the lowest number of SNPs with
good AUCs, which we found to be in the 15 SNP range, we
hope to minimize overfitting. We aim to validate these SNPs
in an independent test set in a future study. The results of this
study, while limited by the small sample size, represent a
proof of concept of the potential of both machine learning
methods and potentially functional polymorphisms in the
prediction of drug response.

In conclusion, machine learning models with potentially
functional SNPs were found to have good and robust
properties for predicting atorvastatin-induced myalgia.
However, SNPs in candidate genes previously reported to be
associated with myalgia did not show good predictive
properties, at least in this Singapore population.
Combinations of pfSNPs that were consistently identified
by different machine learning models to have high
predictive performance have good potential to be clinically
useful for predicting atorvastatin-induced myalgia once
validated against an independent cohort of patients.
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