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High-risk neuroblastoma (NB) remains a significant therapeutic challenge facing current
pediatric oncology patients. Structural variants such as gene fusions have shown an initial
promise in enhancing mechanistic understanding of NB and improving survival rates. In
this study, we performed a comprehensive in silico investigation on the translational ability
of gene fusions for patient stratification and treatment development for high-risk NB
patients. Specifically, three state-of-the-art gene fusion detection algorithms, including
ChimeraScan, SOAPfuse, and TopHat-Fusion, were employed to identify the fusion
transcripts in a RNA-seq data set of 498 neuroblastoma patients. Then, the 176 high-
risk patients were further stratified into four different subgroups based on gene fusion
profiles. Furthermore, Kaplan-Meier survival analysis was performed, and differentially
expressed genes (DEGs) for the redefined high-risk group were extracted and functionally
analyzed. Finally, repositioning candidates were enriched in each patient subgroup with
drug transcriptomic profiles from the LINCS L1000 Connectivity Map. We found the
number of identified gene fusions was increased from clinical the low-risk stage to the high-
risk stage. Although the technical concordance of fusion detection algorithms was
suboptimal, they have a similar biological relevance concerning perturbed pathways
and regulated DEGs. The gene fusion profiles could be utilized to redefine high-risk
patient subgroups with significant onset age of NB, which yielded the improved survival
curves (Log-rank p value ≤ 0.05). Out of 48 enriched repositioning candidates, 45 (93.8%)
have antitumor potency, and 24 (50%) were confirmed with either on-going clinical trials or
literature reports. The gene fusion profiles have a discrimination power for redefining
patient subgroups in high-risk NB and facilitate precision medicine-based drug
repositioning implementation.
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INTRODUCTION

Neuroblastoma (NB) is the most common and deadly pediatric
malignancy, and the average age of patients is about 1–2°years at
diagnosis (Matthay et al., 2016; Fletcher et al., 2018).
Approximately 70% of NB patients have a metastatic disease
with a less than 30% event-free survival rate (Moroz et al., 2011).
Several therapy and treatment options, such as
immunotherapeutic strategies, local irradiation, autologous
stem cell transplantation (ASCT) combined with
chemotherapy, have improved the survival rate of NB patients.
However, a substantial number of NB patients, particularly in the
high-risk group, still suffer profound treatment-related morbidity
(Semeraro et al., 2015). Therefore, advanced treatment options
are still urgently needed to improve the survival rate while
eliminating adverse events.

The molecular understanding of high-risk NB is mostly
elusive. It becomes significant hurdles to advance NB
prognosis and therapy development (Almstedt et al., 2020).
Beyond the frequently detected gene alternations such as ALK
activations (Mossé et al., 2008),MYCN amplification (Zeid et al.,
2018), and LMO1 expression (Wang et al., 2011), advancement in
sequencing technologies provided a more in-depth and width
view of the molecular basis of NB (Pugh et al., 2013; Bueno et al.,
2016; Boeva et al., 2017; Ma et al., 2018). More and more complex
genetic events such as gene fusions have been identified and could
differential high-risk NB patients (Rorie et al., 2004; Mertens
et al., 2015; Peifer et al., 2015). For example, (Peifer et al., 2015)
discovered recurrent genomic rearrangements of the telomerase
reverse transcriptase gene (TERT), occurring only in high-risk NB
patients. Furthermore, TERT-related fusions could be used to
define a new patient subgroup in high-risk NB with adverse
clinical outcomes. These promising findings trigger deeper
thinking on how to translate these genetic findings into
therapy development.

Gene fusion is a result of structural variants (SVs), including
insertion, deletion, inversion, and translocation that joins the two
separate transcripts. Commonality and diversity of gene fusions
in cancer were discussed elsewhere (Lee et al., 2017; Xu et al.,
2018; Gao et al., 2018; Hu et al., 2018; Picco et al., 2019). A lot of
computational tools have been developed to detect fusion
transcripts based on DNA/RNA sequencing (Kim and
Salzberg, 2011; Jia et al., 2013; Beccuti et al., 2014; Davidson
et al., 2015; Heyer et al., 2019). Some comparative studies have
also been conducted to prioritize the fusion detection tools based
on statistical measures such as precision and F-scores (Wang
et al., 2013; Liu et al., 2016; Kumar et al., 2016; Zhang et al., 2016).
The conclusion drawn from these comparative studies mainly
suggested combined top performance callers generate consensus
results for further experimental verification (Liu et al., 2016;
Kumar et al., 2016). Fusion detection algorithms with different
mathematical equations and hypothesis behind, it is still an open
question on how to anchor and apply these algorithms based on
biological relevance. Furthermore, two tumors rarely shared the
same gene fusions due to tumor heterogeneity, which limited the
discrimination power for stratification of cancer into informative
subtypes based on the individual fused transcript. The question

has been raised on whether the patient gene fusion profiles could
be used to regroup the patients, which are predictive of clinical
outcomes such as patient survival, therapy response, and tumor
pathology.

Moreover, oncogenic gene fusion not only expands our
understanding of tumor biology but provides possible
therapeutic targets for treatment development. For example,
Imatinib and ponatinib were approved US FDA to treat
chronic myeloid leukemia (CML), which targets BCR-ABL1
fusion (Druker, 2008). Moreover, crizotinib/ceritinib inhibiting
ALK fusion was approved to treat non–small cell lung cancer
(Mertens et al., 2015). However, these approved drugs are mainly
tyrosine kinase inhibitor (TKI) inhibitors, which suffers some
severe adverse drug reactions (ADRs) such as cardiotoxicity and
drug-induced liver injury (Liu et al., 2017; Xu et al., 2018). It is
interesting to explore the probability of utilizing transcriptomic
response, interplayed with gene fusions for a distinct patient
subgroup for alternative treatment development while
minimizing toxicity.

To explore the potential solutions for these unsolved
questions, we conducted a comprehensive genomic analysis of
498 human NB cases (Figure 1). First, A landscape of gene
fusions was presented by using three state-of-art fusion calling
algorithms, including ChimeraScan (Iyer et al., 2011), SOAPfuse
(Jia et al., 2013), and TopHat-Fusion (Kim and Salzberg, 2011).
Then, high-risk NB patients were regrouped based on detected
gene fusion profiles and evaluated by survival analysis. Next,
differentially expressed genes (DEGs) of the redefined high-risk
NB patient subgroups were extracted and functionally analyzed.
Finally, Repositioning candidates for the redefined high-risk
subgroups were enriched with a large-scale of transcriptomic
profiles in LINCS L1000 Connectivity Map (CMap). The
proposed framework provides a promising approach to
translate novel genetic findings into therapy development.

MATERIALS AND METHODS

RNA-Seq Dataset of Neuroblastoma
The tumor samples of 498NB patients were enrolled from seven
countries under the consent of respective clinical trials. The range
of patients at diagnosis was from 0 to 295.5°months. The patients
were classified based on the International Neuroblastoma Staging
System (INSS, https://www.cancer.org/cancer/neuroblastoma/
detection-diagnosis-staging/staging.html) and the MYCN-
amplified (MNA) was measured. The ratio of MNA patients
and total patients in each stage: stage 1 (3/121), stage 2 (5/78),
stage 3 (15/63), stage 4 (65/183), and stage 4 (4/53). Furthermore,
176 patients were classified as high-risk ones based on the Revised
International Neuroblastoma Response Criteria. The clinical
characteristics of 498 NB patients were listed in
Supplementary Table S1.

The detailed sample preparation was described elsewhere
(Oberthuer et al., 2006). Briefly, the patients’ tumor samples
were manually checked by a pathologist and ensure the sample
contains at least 60% of tumor content. The total RNA was then
isolated from 30 to 60 mg of snap-frozen tissue obtained before
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cytotoxic treatment using the FastPrep FP120 cell disruptor
(Qbiogene-Inc, Carlsbad, CA) and the TRIzol reagent
(Invitrogen, Karlsruhe, Germany). Last, the RNA integrity was
assessed, and the samples were selected with an RNA integrity
number of more than 7.5. The RNA-seq data of 498 primary NB
samples were generated in FDA Sequencing Quality Control
(SEQC) phase I project. The raw RNA-seq data could be
downloaded from the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) database with series
accession number GSE62564 (Zhang et al., 2015). The purified
mRNA was extracted from total RNA using Dynabeads® mRNA
Purification Kit (Invitrogen), and ERCC RNA spike-in was
injected based on the user guide for RNA sequencing. Then,
the non-stranded TruSeqs™ protocol was used to conduct
Library preparation. Next, clusters were generated based on
the TruSeq PE Cluster Kit v3 reagent preparation guide. Last.
High-throughput shotgun sequencing was performed on the
Illumina HiSeq 2000 platform with the paired-end 100-bp
reads. A total of 30,753,066,000 reads were produced, which
enabled high coverage of the entire genome spectrum of NB. The
average reads per sample was 6.1790e+07 ± 9.5474e+06, and the

reads were distributed in a range of 39270986 to 10442490 (see
Supplementary Figure S1). More detailed information on
sequencing data generation was described elsewhere (Zhang
et al., 2015).

Detection of Transcript Expression and
Fusion Transcripts
There are more than 20 state-of-art fusion transcript detection
tools (Liu et al., 2016). In this study, we applied the three most
cited tools, including TopHat-Fusion (Kim and Salzberg, 2011),
ChimeraScan (Iyer et al., 2011), and SOAPfuse (Jia et al., 2013), to
detect fusion transcripts from the RNA-seq data of 498 primary
NB samples. In this study, we used the human reference genome
sequence (hg19, downloaded from the UCSC Genome Browser:
http://hgdownload.soe.ucsc.edu/downloads.html#human) to
detect the transcript-level expression and fusion transcripts.

To generate a transcript-level expression, we used TopHat2
v2.1.0 (Kim et al., 2013) to align the raw reads to the UCSC
human genome and quantified the expression levels of all the
transcripts with FPKM (Fragments Per Kilobase of transcript per

FIGURE 1 | Flowchart of study: the workflow consists of three components including (1) fusion detection by three algorithms (i.e., ChimeraScan, SOAPfuse, and
TopHat-Fusion) and fusion annotation by publicly available database and pathway analysis; (2) The high-risk patients were regrouped based on gene fusion profiles
using non-negative matrix factorization (NMF) and hierarchical cluster analysis (HCA); (3) Survival analysis and drug repositioning for the redefined patient subgroup.
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Million fragments mapped) values using Cufflinks v2.2.1
(Trapnell et al., 2010). All the parameters in the pipelines of
alignment and quantification were set as default. The expressions
at transcription-level were further summarized to the annotated
genes in the RefSeq database (https://www.ncbi.nlm.nih.gov/
refseq/) by using the highest FPKM value in those of
transcripts as the expression of a gene when there were
multiple transcripts corresponded to one gene (Beccuti et al.,
2014).

There are many parameters in different fusion transcript
detection algorithms, which have a significant impact on
calling performance. However, optimization of parameter
setting for each algorithm with different datasets is far beyond
the scope of our paper. Therefore, we mainly followed the default
parameter setting in each algorithm.

TopHat-Fusion
For TopHat-Fusion, all raw reads in FASTQ files were first
aligned to the reference genome by using the TopHat2 v2.1.0
(Kim et al., 2013). Then, the initially unmapped reads were split
into small segments and remapped to the reference genome for
identifying the initial fusion candidates by TopHat-Fusion.
Lastly, the fusions, for which the number of fusion spanning
reads was higher than five and the sum of the fusion spanning
reads, and the supporting mate pairs were greater than 10, were
kept as candidate fusion transcripts.

ChimeraScan
The ChimeraScan pipeline utilized Bowtie (version 1.1.2) to align
the raw reads to the reference genome (Langmead and Salzberg,
2012). The subsequent procedures of nominating the candidate
fusions, detecting the spanning reads, and filtering the false
positives were conducted with the default settings.

SOAPfuse
For SOAPfuse (Li et al., 2009), the raw reads were mapped to the
reference genome by using the SOAP2 (version 2.21) algorithm.
The single-end and paired-end mapped reads were kept for
identifying the candidate gene fusions. The unmapped reads
were then aligned to the annotated transcripts (Ensemble
release), and the mapped reads were retained. Finally, the
unmapped reads in the second step were iteratively trimmed
and realigned to the annotated transcripts until the length of the
reads was less than 30 nucleotides. The reads still unmapped to the
annotated transcripts were filtered out. All the aligned reads in the
three steps were used to detect the gene fusions by seeking the span-
reads. The maximum hits for each span-read, and the filter
parameters for identifying the gene fusions, were set as default.

Gene Fusion Annotation
The detected fusion transcripts were annotated by the following
strategies. First, the reported fusion transcripts were curated and
combined based on three public resources, including the
Catalogue of Somatic Mutations in Cancer (COSMIC, https://
cancer.sanger.ac.uk/cosmic/download) (Forbes et al., 2008),
Tumor Fusion Gene Data Portal (http://tumorfusions.org/)
(Xu et al., 2018), and ChimerDB 3.0 (https://academic.oup.

com/nar/article/45/D1/D784/2605708) (Lee et al., 2017).
Second, a list of genes associated with neuroblastoma risk was
curated by literature survey by querying against PubMed and
other databases using key words “genes” and “neuroblastoma”.
Third, a file of human protein kinases was downloaded from
UniProt (https://www.uniprot.org/docs/pkinfam). All the
annotation data sets were listed in Supplementary Table S2.

Fusion Transcripts-Based Stratification and
Survival Analysis
The 176 high-risk NB patients were stratified into new subgroups
based on the detected fusion transcript profiles. First, the patient-
fusion transcript profiles matrix was constructed based on fusion
transcripts detected from each algorithm. Then, NMF was used to
decompose the patient-fusion transcript profiles matrix (F: 176
patients × unique number of fusion transcripts) into two
matrices. 1) patient subgroup assignment (W: 176 patients × k
subgroups) 2) fusion transcript assignment (H: k subgroups ×
unique number of fusion transcripts). This procedure was
repeated 500 times. Consequently, the patient-patient relationship
matrix (176 patients × 176 patients) was generated, and each cell of
the matrix represent the probability of any two patients assigned to
the same patient subgroup. Subsequently, the Hierarchical clustering
analysis was used to create the consensus assignment of patients into
k subgroups. Finally, Kaplan-Meier survival analysis was conducted
for the comparisons between the subgroups, and the p values were
calculated using the Log-rank test. All the procedures were
performed in R (version 3.4.1) with the packages NMF v0.21.0,
ggplot2 v2.2.1, survminer v0.4.2, and survival v2.4.3.

Importance Fusions for Distigusing the
Patients Subgroups
To further investigate the important fusions and classification
performance of gene fusions for redefined patient groups, we
employed the XGboost binary classifier (Chen and Guestrin,
2016). XGBoost (Extreme Gradient Boosting) is an ensemble
machine learning algorithm for regression and classification
problems based on the Gradient Boosting Decision Tree
(GBDT), which has been widely applied in biomedical
applications (Ji et al., 2019). Specifically, the 176 high-risk
patients were stratified into patient subgroups, and we
developed the XGboost classifier on the gene fusion profiles and
their redefined patient groups. The important gene fusion profiles
and performance metrics (i.e., The area under the receiving
operating characteristic curve (AUC)) based on 100-run 5-fold
cross-validation were calculated. The calculation was performed in
R (version 3.4.1) with packages xgboost version 1.3.2. The detailed
hyperparameters, including binary: logistic objective, max-depth 6,
step size of each boosting step 50, were used.

Differentially Expressed Genes in Patient
Subgroups
To identify the differentially expressed genes (DEGs), we
separately compared the transcript profiles of the patients in k
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subgroups with those of the patients in the control group, in
which the survival days of the patients were longer than the
median survival days among the stages 1 and 2. The DEGs were
finally identified using the R packages limma and edgeR with an
adjusted p value less than 0.05 as a cut-off value (Robinson and
Smyth, 2008). The genes in the DEG list were ranked by their fold
changes in descending order and the top/down 500 genes were
extracted for further analysis. The functional analysis of extracted
DEGs in each patient subgroup was conducted by using The
Database for Annotation, Visualization, and Integrated Discovery
(DAVID, https://david.ncifcrf.gov/) [44].

Enrichment of Repositioning Candidates
Drug-induced transcriptional profiles of NIH LINCS project
(http://www.lincsproject.org/) (Corsello et al., 2017) were
employed to enrich repositioning candidates specifically for
each patient subgroup. The hypothesis behind genome-based
repositioning is that if the drug signature is reversely correlated
with the disease signature, the drug could be potentially used to
treat the diseases. For LINCS data, LINCS L1000 characteristic
direction signatures search engine (L1000CDS2) was used to
reversely compare the DEG in each patient subgroup to the
drug transcriptional signatures in LINCS project (Duan et al.,
2016). The L1000CDS2 used data sets including LINCS L1000
level 3 normalized data and level 5 moderated Z-scores (MODZ),
which were downloaded from lincscloud.org and GEO
(GSE70138). There are a total of transcriptomic profiles
generated from 98 cell lines.

Immune Cell Gene Signatures
Although neuroblastoma is typically considered to be an
immunologically ‘cold’ tumor (Szanto et al., 2020), several
studies have demonstrated the presence of tumor-infiltrating
lymphocytes (e.g., T cells and NK cells), in human
neuroblastoma tumors (Coughlin et al., 2006; Hishiki et al.,
2018; Wienke et al., 2021). Therefore, we further investigated
the immune-related gene expression in the refined patient
subgroup. Immune cell gene expression data in mouse cell
lines and tissues were extracted from the Immunological
Genome Project (ImmGen) (Heng and Painter, 2008). The
pre-processing and normalization of data were described
previously (Painter et al., 2011; Kidd et al., 2015). Specifically,
304 differential state gene expression (e.g., fold change values)
covering 11,153 mapped ortholog human Entrez gene ids were
generated between two steady-state profiles from 221 unique
immunological cell types (stored at https://github.com/
iguana128/Gene-fusion_NB). In this study, we ranked order
gene expression profile from high to low based on fold change
values for each of 304 immune-related states. Then, the top/down
500 genes in each immunological state were selected as DEGs for
further analysis.

Code Availability
The scripts of RNA-seq analysis, data analysis, and data curation
were listed in the GitHub (https://github.com/iguana128/Gene-
fusion_NB). Furthermore, the scripts for generating all the figures
and tables were provided as well.

RESULTS

Overview of Gene Fusion Transcripts
Three algorithms, including ChimeraScan (Iyer et al., 2011),
SOAPfuse (Jia et al., 2013), and TopHat-Fusion (Kim and
Salzberg, 2011), were employed to harbor gene fusion
transcripts among 498 human NB cases. A total of 9,153
(i.e., 9,153/498 � 18.37 per patient), 2,004 (i.e., 2,004/498 �
4.02 per patient), and 1,057 (i.e., 1,057/498 � 2.12 per patient)
unique gene fusions were detected by ChimeraScan, SOAPfuse,
and TopHat-Fusion, respectively (Supplementary Table S3). We
found 47.07% (4,308/9,153), 59.28% (1,188/2,004), and 43.61%
(461/1,057) of total detected fusions only specific to the individual
patient for ChimeraScan, SOAPfuse, and TopHat-Fusion,
respectively. ChimeraScan is more sensitive to detect more
gene fusions than another two algorithms. There were only
221 gene fusion transcripts identified by at least two
algorithms, which represents the divergence of fusion
detection algorithms (Figure 2A). We further investigated the
distribution of detected gene fusions across the patient subgroups
defined by using the International Neuroblastoma Staging System
(INSS). Specifically, the number of identified gene fusions were
increased from the early stages (stage 1 ∼ stage 3) to late stages
(stage 4 and high-risk group), indicating the higher stage has
more complex tumor compositions. For ChimeraScan and
TopHat-Fusion, more across-chromosomal fusions were
detected than that of inter-chromosomal fusions. However,
SOAPfuse harbored more inter-chromosomal fusion
transcripts (Figure 2B). Furthermore, the concordances among
the three algorithms for individual patients also tended to be
increased in patients in stage 4 and high-risk groups, although
overall concordances were suboptimal (less than 5% overlapped
ratio) (Supplementary Figure S2).

The detected gene fusions from the three algorithms were
further annotated by the curated knowledge concerning reported
cancer-related genes fusions, kinase protein family, and
neuroblastoma related key genes. Similarly, patients from late
stages (stage 4 and high-risk group) enriched more regarding
reported cancer-related fusions, kinase-related fusions, and
neuroblastoma key genes related fusions. The total number of
annotated fusions was increased from TopHat-Fusion to
SOAPfuse and ChimeraScan (Figure 2C). Table 1 summarized
the annotated fusions identified by the three algorithms.
SOAPfuse detected more reported cancer-related fusions (90)
than that of ChimeraScan (26) and TopHat-Fusion (10). Axon
guidance pathway was enriched by the genes involving reported
cancer-related gene fusions from both ChimeraScan and
SOAPfuse. However, the enriched pathways (e.g., Hippo
signaling pathway and Oxytocin signaling pathway) based on
reported gene fusions identified by TopHat-Fusion were distinct.
MAPK signaling pathway was enriched by kinase-related fusions
from both ChimeraScan and TopHat-Fusion, although the
involved gene fusions were entirely different. It indicated that
fusion detection algorithms have a relatively higher similarity in
the biological levels. It was interesting that some neuroblastoma
related essential genes are more susceptible to form gene fusions.
For example, ChimeraScan was more sensitive to ALK related
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fusions, while SOAPfuse and TopHat-Fusion detected more
MYCN and LOM1 related fusions. DDX1 associated fusions
were identified by all three algorithms.

We further extracted the top fifty high-frequent gene fusions
across the patients in each stage for the three algorithms
(Figure 2D). There were 38, 26, and 31 high-frequency gene
fusions that appeared in all clinical stages for ChimeraScan,
SOAPfuse, and TopHat-Fusion, respectively (Supplementary
Table S4). However, as mentioned above, substantial low-
frequency gene fusions are more patient-specific.

Fusion Transcripts-Based Stratification
To further investigate the discrimination power of gene fusion
profiles, we stratified 176 high-risk NB patients into new
subgroups based on the detected fusion transcripts in each of
the three algorithms. Here, only fusions appeared more than one
time in the high-risk group were employed. Consequently, the
high-risk patient and gene fusion profiles matrices were
constructed with dimensions 176 patients × 2,509 fusions, 176
patients × 446 fusions, and 176 patients × 351 fusions for
ChimeraScan, SOAPfuse, and TopHat-Fusion, respectively.
Then, 176 patients were divided into a predefined number of
subtypes (k � 6, 6, and 3) by using average subtype assignment
frequency from 500 runs of the NMF algorithm. The predefined
subtype k was optimized by using cophenetic degree and
sparseness parameters in NMF (Supplementary Figure S3).
Then, patient subtype assignment matrices (176 patients × 176

patients) for each fusion detection method were further clustered
by using hierarchical clustering analysis (HCA) (Figure 3A). The
176 patients were clustered into four subgroups for each fusion
algorithm. The overall survival distribution of each subtype was
illustrated in Figure 3B. It is illustrated that there existed one
subgroup (number of patients � 99, 120, and 67) with
significantly smaller overall survival time (median overall
survival � 798, 883, and 735°days) than another three groups
(median overall survival � 1,242, 1,241, and 1,229°days). It was
found 39 patients were overlapped by the subgroups based on
fusion profiles from ChimeraScan (39/99 � 39.4%), SOAPfuse
(39/120 � 32.5%), and TopHat-Fusion (39/67 � 58.2%),
respectively (Supplementary Figure S4). The Kaplan-Meier
survival analysis showed significantly different survival times
between the redefined patient subgroups with p values (0.014,
0.022, and 0.032) and hazard ratios (1.670, 1.638, and 1.617) for
the three algorithms (Figure 3C; Supplementary Table S5). It
was indicated that the fusion transcript profiles could be used to
further distinguish the patients from the high-risk group with
improved survival rates.

Table 2 listed the clinical characteristics of redefined high-risk
patients. MYCN-amplified patients are more enriched in the
refined high-risk patient group (73.7, 72.5, and 59.7% for
ChimeraScan, SOAPfuse, and TopHat-Fusion, respectively). In
contrast, the lower percentage of MYCN-amplified patients was
classified into other subgroups (i.e., 24.7, 8.9, and 47.7% for
ChimeraScan, SOAPfuse, and TopHat-Fusion, respectively). It

FIGURE 2 |Comparative analysis and annotation of identified gene fusions by three algorithms, including ChimeraScan, SOAPfuse, and TopHat-Fusion: (A) a Venn
diagram of detected fusions among three algorithms; (B) Distribution of detected gene fusions in different INSS clinical stages and high-risk group. The yellow and blue
color represents the inter- and across-chromosomal gene fusion, respectively; (C) The detected fusions in each clinical stage were further annotated by reported cancer-
related gene fusions, kinase-related fusions, and neuroblastoma key gene-related gene fusions; (D) The high-frequency gene fusions for each algorithm were
extracted across the different clinical stages.
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TABLE 1 | Annotated gene fusions in different fusion detection algorithms.

Fusion
detection
algorithms

Number of
identified
fusions

Representative
fusions

Involved KEGG
pathways

Involved genes p
values

Reported cancer-related gene fusions
ChimeraScan 26 TRA@_TRA@; CNRIP1_PPP3R1; CAMTA2_SPAG7;

C11orf48_INTS5 BMPR1B_PDLIM5; DDX17_DMC1;
GCC2_RANBP2; GPR128_TFG; POR_RHBDD2;
SIPA1L3_WDR62

hsa04360: Axon
guidance

NCK1, MET, PPP3R1, PPP3CC 5.5E-3

hsa04660: T cell
receptor signaling
pathway

NCK1, PPP3R1, PPP3CC 3.5E-2

SOAPfuse 90 CLSTN1_CTNNBIP1; CYB5R4_RIPPLY2;
ACTN4_EIF3K; ANKDD1A_PLEKHO2;
BAG2_ZNF451; EIF4E3_FOXP1; CNRIP1_PPP3R1;
TBCEL_TECTA; ADIPOR1_CYB5R1; POR_RHBDD2

hsa04520: Adherens
junction

ACTN4, MET, LMO7, CTNND1, IQGAP1 7.2E-3

hsa04360: Axon
guidance

ABLIM2, NCK1, MET, PPP3R1, PPP3CC 4.9E-2

TopHat-fusion 10 DDX1_NBAS; PLB1_PPP1CB; ALK_GALNT14;
CCND1_ORAOV1; CNRIP1_PPP3R1;
DNAJB4_FUBP1; EIF4E3_FOXP1; BAIAP2_TBCD;
BMPR1B_PDLIM5; KDM4A_ST3GAL3

hsa04390: Hippo
signaling pathway

CCND1, BMPR1B, PPP1CB 1.2E-2

hsa04921: Oxytocin
signaling pathway

CCND1, BMPR1B, PPP1CB 1.3E-2

Kinase-related gene fusions
ChimeraScan 422 AK095450_FER; FLJ25037_KSR1; MAST2_TIMM23;

PHKG2_TH; DAPK3_MYO9A; MXD4_PKN1;
AF070581_PAK3; MAP3K15_SNORD10;
STK38L_TRIM8; AK124179_PASK

hsa04010: MAPK
signaling pathway

FGFR2, FGFR1, FGFR3, MAPKAPK5,
MAP4K2, MAPKAPK3, MKNK2, MKNK1,
AKT1, MAP3K6, MAP3K3, PAK1, AKT3,
MAP2K5, AKT2, PRKCA, TAOK2,
MAP2K2, NLK, MAP2K3, MAP2K4,
TAOK3, NR4A1, PRKCG, MAPK11,
MAPK10, STK4, FLNA, STK3, PRKCB,
MAPK1, MAP4K4, MAPK12, MAPK13,
NTRK1, MAPK14, PDGFRB, MAPK9,
MAPK7, MAP3K12

2.7E-
18

hsa04012: ErbB
signaling pathway

Prkca, ERBB3, MAP2K2, ERBB2,
CAMK2G, MAP2K4, RPS6KB2, PRKCG,
MAPK10, PRKCB, AKT1, MAPK1, PTK2,
PAK3, GSK3B, MAPK9, PIK3CA,
CAMK2B, PAK1, ABL1, CAMK2A, AKT3,
AKT2

2.5E-
15

SOAPfuse 93 LIMK2_RNF185; CHCHD2_PHKG1; PRKAA1_TTC33;
FES_MAN2A2; BCKDK_KAT8; INSL3_JAK3;
TAOK2_TMEM219; NTRK1_PEAR1;
MAP2K5_SKOR1; ACVR2B_CNOT6

hsa04722:
Neurotrophin
signaling pathway

IRAK4, MAPK1, PDPK1, MAP2K1,
RPS6KA2, CAMK2G, NTRK1, CAMK2B,
MAPK7, AKT3, AKT2, MAP2K5

4.5E-8

hsa04921: Oxytocin
signaling pathway

MAPK1, MAP2K1, ROCK2, CAMK2G,
PRKAA1, CAMK2B, EEF2, GNAS,
MAPK7, SRC, PRKCB, CAMK1D,
MAP2K5

8.7E-8

TopHat-fusion 29 IRAK3_RBMS1; STK24_STK24P1;
LOC407835_MAP2K2; DAPK1_RPS29;
BMX_HNRNPDL; C14orf166_MERTK;
MAPK11_MAPK12; ENSG00000226049_TLK2;
CDK4_TMEM132C; ALK_GALNT14

hsa04010: MAPK
signaling pathway

PAK2, MAPK12, TAOK1, RPS6KA2,
MAP2K2, MAP2K4, MAPK11

1.8E-4

hsa04660: T cell
receptor signaling
pathway

PAK2, MAPK12, MAP2K2, MAPK11,
CDK4

3.9E-4

Neuroblastoma key genes-related fusions
ChimeraScan 138 CHD5_FOXI3; ALK_ANKS1A; ALK_USP11;

CNOT3_DLK1; DLK1_FLJ00420; DLK1_KIAA0691;
BC035411_DDX1; DDX1_SMA4;
AX748330_RASSF7; PDGFA_SLC29A4

hsa04010: MAPK
signaling pathway

PTPN7, BDNF, CACNG8, PDGFA,
CACNG7, NTRK1, MAP2K4, PPP3R1,
TP53, NR4A1, STK4, STK3

2.9E-5

hsa04210: Apoptosis TNFRSF10C, TNFRSF10B, NTRK1,
PIK3CD, CASP8, TP53

3.1E-4

SOAPfuse 43 HOXC4_HOXC6; ENSG00000198353_HOXC6;
LMO1_RIC3; NTRK1_PEAR1; KIF1B_PGD;
DDX1_NBAS; CAMTA1_VAMP3; DDX1_MYCNOS;
DDX1_MYCNUN; NPRL2_ZMYND10

hsa01130:
Biosynthesis of
antibiotics

ODC1, NME2, NME1-NME2, NME1, PGD 5.6E-3

hsa00240: Pyrimidine
metabolism

NME2, NME1-NME2, NME1 5.0E-2

TopHat-fusion 22 ANGPT2_MCPH1-AS1; FMO4_TOP1;
EDARADD_ENO1; NME2_NME2P1; DDX1_NBAS;
ALK_GALNT14; MYCN_NBAS; DDX1_MYCNUT;
FOXR1_PAFAH1B2; HACE1_SCML4

hsa01130:
Biosynthesis of
antibiotics

ODC1, NME2, NME1-NME2, ENO1 5.1E-3

hsa01100: Metabolic
pathways

ODC1, NME2, NME1-NME2, PAFAH1B2,
GALNT14, ENO1

4.6E-2
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was indicated that the redefined patient group might be MYCN-
amplified, especially for ChimeraScan and SOAPfuse.
Furthermore, the age of diagnosis was more than 18°months
for over 92% of refined high-risk patients and 96% of patients in
other groups, highlighting the early diagnosis of high-risk NB
patients is very challenging. Additionally, a higher percentage of
males were assigned into the redefined high-risk patient group,
e.g., 57.5 and 62.7% for ChimeraScan and TopHat-Fusion,
respectively. However, a higher rate of females was classified
into other subgroups. The detail clinical information for
redeinfed high-risk patients were listed in Supplementary
Table S5.

To further investigate the important gene fusion profiles that
could distinguish the high-risk group patients, we developed an
XGboost binary classifier. Figure 4 illustrated the top 10
important features derived from XGboost classifiers for the
three fusion detection tools. Furthermore, the average AUC

values of 100-run 5-fold cross-validations were ranked with the
following order: SOAPfuse (0.862 ± 0.031) > ChimeraScan
(0.849 ± 0.018) > TopHat-Fusion (0.799 ± 0.013). The high
AUC and small stand deviation among 100 5-fold cross-
validation results indicated the reliable classification results
could be obtained based on the gene fusion profiles derived
from the three detection tools.

Differentially Expressed Genes Associated
With Patient Subgroups
We next sought for the DEGs associated with the redefined
high-risk subgroups and examined their underlying
mechanism. The DEGs were generated by comparing the
transcript profiles between the patients in the redefined high-
risk subgroup, and patients with the overall survival days were
longer than the median survival days in stages 1 and 2. Here, the

FIGURE 3 |Gene fusion profile-based patient stratification and survival analysis: (A) hierarchical cluster analysis (HCA) for redefining patient subgroups in high-risk
NB patient groups for each fusion detection algorithm. First, patient assignment matrices were generated from average results of 500 runs with nonnegative matrix
factorization (NMF) with patient gene fusion profiles. Then, the HCA was performed on the patient assignment matrices to redefine the patient groups. The color denotes
the redefined patient groups; (B) The overall survival time (Days) of patients in the redefined patient subgroups. The subgroup with lowest median survival time was
considered as the redefined high-risk group; (C) Kaplan-Meier survival analysis was conducted between the redefined high-risk subgroups and the combination of other
subgroups. Log-Rank p value and the hazard ratio was calculated.
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top 500 up-and down-regulated genes were extracted
(Supplementary Table S6). The overlapped DEGs associated
with refined high-risk subgroups from the three algorithms
occupied 65.3% of 1,000 DEGs for each fusion detection
method (Figure 5A). The shared KEGG pathways enriched
by using DEGs were illustrated in Figure 5B. Three KEGG
pathways, including Ribosome, Cell cycle, and DNA replication,
were enriched by all the three algorithms. The DEG from
TopHat-Fusion enriched more immune-related pathways
such as Primary immunodeficiency and an Intestinal immune
network for IgA production (Supplementary Table S7).
Figure 5C highlighted the top ten up- and down-regulated
genes associated with refined high-risk subgroups. MYCN,
MYCNOS, and SLC30A3 were the most up-regulated genes,

while APOD, INSRR, and PIRT were the most down-regulated
genes across the three algorithms. Those genes have been
reported to play a different regulation role in NB
development (Huang and Weiss, 2013; Olsson et al., 2016).
Notably, MYCN has been found in ∼25% of high-risk NB
patients and correlated with poor diagnosis (Huang and
Weiss, 2013).

Another interesting finding here is the onset age of NB in the
redefined high-risk NB patient group is significantly lower than
another three redefined subgroups for ChimeraScan and
SOAPfuse. It is indicated that the development of an adaptive
immune system may play a role in neuroblastoma evolution
(Figure 6). We further compared the DEG in a redefined high-
risk group with the highly expressed gene signatures in

TABLE 2 | Clinical characteristics of redefined high-risk patients

Clinical characteristics Group Algorithm Number Percentage of total

MYCN status
Normal Redefined high-risk ChimeraScan 26 27.3%

SOAPfuse 33 27.5%
TopHat-fusion 27 40.3%

Others ChimeraScan 57 74.0%
SOAPfuse 50 89.3%
TopHat-fusion 56 51.3%

Amplified Redefined high-risk ChimeraScan 73 73.7%
SOAPfuse 87 72.5%
TopHat-fusion 40 59.7%

Others ChimeraScan 19 24.7%
SOAPfuse 5 8.9%
TopHat-fusion 52 47.7%

N.A. Redefined high-risk ChimeraScan 0 0
SOAPfuse 0 0
TopHat-fusion 0 0

Others ChimeraScan 1 1.3%
SOAPfuse 1 1.8%
TopHat-fusion 1 1.0%

Age at diagnosis
<18°months Redefined high-risk ChimeraScan 6 6.1%

SOAPfuse 9 7.5%
TopHat-fusion 5 7.5%

Others ChimeraScan 3 3.9%
SOAPfuse 0 0%
TopHat-fusion 4 3.7%

>18°months Redefined high-risk ChimeraScan 93 93.9%
SOAPfuse 111 92.5%
TopHat-fusion 62 92.5%

Others ChimeraScan 74 96.1%
SOAPfuse 56 100%
TopHat-fusion 105 96.3%

Sex
Male Redefined high-risk ChimeraScan 57 57.5%

SOAPfuse 52 43.3%
TopHat-fusion 42 62.7%

Others ChimeraScan 54 70.1%
SOAPfuse 43 76.8%
TopHat-fusion 69 63.3%

Female Redefined high-risk ChimeraScan 42 42.5%
SOAPfuse 68 56.7%
TopHat-fusion 25 37.7%

Others ChimeraScan 23 29.9%
SOAPfuse 13 23.2%
TopHat-fusion 40 26.7%
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304 immune-related states obtained from the ImmGen (https://
www.immgen.org/) (Heng and Painter, 2008). The similarities
between DEG in the redefined high-risk subgroup and immune-
related cell types were calculated and rank-ordered

(Supplementary Table S8). The percentage of overlapped
ranked immune-related cell types among the three fusion
detection algorithms was illustrated in Figure 7. The enriched
immune-related cell types were very similar among the three

FIGURE 4 | The top 10 important gene fusions and performance of the XGboost classifier for redefined high-risk patient subgroup: (A–C) the top 10 gene fusions
extracted from XGboost model for ChimeraScan, SOAPfuse, and TopHat-Fusion, respectively; (D) the average AUC of 100-run 5-fold cross-validations (CVs) of the
XGBoost model.

FIGURE 5 | The comparative analysis of the differential expressed genes (DEGs) and related KEGG pathways regulated by the redefined high-risk group: (A) a Venn
diagram of DEGs regulated by the redefined high-risk group for the three fusion detection algorithms; (B) a Venn diagram of KEGG pathways enriched by DEGs; (C) the
top 20 up- and down-regulated genes of DEGs derived from the three algorithms.
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algorithms. Furthermore, we listed the top ten enriched immune-
related cell types from each method and found T8 cell types
dominated (Orentas et al., 2012).

Repositioning Candidates for Redefined
High-Risk Subgroup
We further explore the potential repositioning candidates that
could be used to treat the patients in the redefined high-risk
subgroup. The L1000 drug signatures were employed to compare
the DEGs of the redefined high-risk group. LINCS L1000
characteristic direction signatures search engine (L1000CDS2)
was applied to enrich Repositioning candidates. If the drug
signatures were reversely correlated with DEG in a refined
high-risk group, the drug was considered as potential
repositioning candidates. Consequently, we got the top 50
repositioning candidates for patients in the redefined high-risk
group from each fusion detection algorithms. Supplementary
Table S9 listed the detailed information on repurposing
candidates, including compound/time/dose/cell line enriched
from L1000CDS2. Interestingly, a total of 37 Repositioning
candidates were overlapped by at least two refined high-risk
groups from different fusion detection algorithms
(Supplementary Table S9).

To verify the enriched repositioning candidates, we conducted
a two-step analysis. Table 3 compiles the candidates for the
redefined high-risk groups defined by the three fusion detection
algorithms. First, we queried clinical trial studies through http://
clinicaltrial.gov (www.clinicaltrials.gov) to seek for the clinical
evidence of repositioning candidates for the treatment of
neuroblastoma. Notably, three repurposing candidates,
including selumetinib, vemurafenib, and trametinib, were in
clinical trials for potentially treating NB. Second, we further
carried out a comprehensive literature survey through PubMed
(https://www.ncbi.nlm.nih.gov/pubmed/) using the keywords

FIGURE 6 | Distribution of onset age in the redefined high-risk and low-risk NB patients: blue and yellow colors represent the redefined high-risk and low-risk
patient subgroups, respectively. The student’s t-test was used to generated p value.

FIGURE 7 | Percentage of overlapped immune-related cell types: the
immune-related cell types were enriched and rank-ordered from high to low by
comparing the DEG regulated by the redefined high-risk subgroup for each
fusion detection algorithm and gene signatures of immune-related cell
type from ImmGen (https://www.immgen.org/). Then, the percentage of
overlapped enriched immune-related was calculated between any two rank-
ordered immune-related cell type lists. The top-ten enriched immune-related
cell types were illustrated in the sub-table for each fusion detection algorithm.
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TABLE 3 | Summary information of Repositioning candidates for neuroblastoma patients in refined high-risk groups.

Repositioning
candidates

Clinical
phases

Mode of
actions (MoAs)

Approved/Investigated
therapeutic
categories

Evidence Confirmation
sources

On-going clinical studies in clinicaltrial.gov
selumetinib

(BRD-K57080016)
Phase 2 Mitogen-activated protein kinase

(MEK) inhibitor
Solid tumors such as
neuroblastoma; non-Hodgkin
lymphoma

Efficacy evaluation of selumetinib in
treating patients with solid tumors such
as recurrent neuroblastoma, non-
Hodgkin lymphoma, or histiocytic
disorders with MAPK pathway
activation mutations that have spread
to other places in the body and have
come back or do not respond to
treatment. (A pediatric MATCH
treatment trial)

NCT03213691

vemurafenib
(PLX4032,
RG7204)

Phase 2 V600E mutated BRAF inhibitor Melanomas; 8% of all solid
tumors, including
neuroblastoma, melanoma,
colorectal, thyroid and other
cancers

Efficacy evaluation of vemurafenib in
treating patients with relapsed or
refractory advanced solid tumors such
as recurrent neuroblastoma, non-
hodgkin lymphoma, or histiocytic
disorders with BRAF V600 mutations
(A pediatric MATCH treatment trial)

NCT03220035

trametinib Phase 1 MEK inhibitor Refractory solid tumors such as
neuroblastoma; lymphomas;
multiple myeloma

Next generation personalized
neuroblastoma therapy by using
trametinib

NCT02780128

Literature support from PubMed
BRD-

K68548958 (C646)
Investigational Histone acetyltransferase p300

inhibitor
Prostate and lung cancers Mouse in vitro (primary murine cortical

neurons):C646 as a selective histone
acetylation could regulate the
expression of omega-3
polyunsaturated fatty acid,
docosahexaenoic acid (DHA)-
metabolizing enzyme Alox15 in
neuroblastoma cells, which affect
cognition and memory in brain
development

Pmid: 29235036

BMS-536924 Investigational Insulin-like growth factor-I
receptor (IGF-IR)

Childhood sarcomas Human in vitro: 28 sarcoma and
neuroblastoma cell lines were
screened for in vitro response to BMS-
536924 to identify sensitive and
resistant cell lines. Notably, Ewing’s
sarcoma, rhabdomyosarcoma, and
neuroblastoma are more responsive to
BMS-536924, suggesting these
specific subtypes may represent
potential targeted patient
subpopulations for the IGF-IR inhibitor

Pmid: 19117999

mitoxantrone Approved DNA-reactive agent Breast cancer; acute myeloid
leukemia; non-Hodgkin’s
lymphoma

Patient cohort study: A distinct side
population (SP) was found in
neuroblastoma cells from 15 of 23
patients (65%). These cells also
expressed high levels of ABCG2 and
ABCA3 transporter genes and had a
greater capacity to expel cytotoxic
drugs, such as mitoxantrone, resulting
in better survival

PMID:15381773

MK-2206 Phase 2 Allosteric AKT inhibitor Colorectal cancer; breast
cancer; other solid tumors

Human In vitro: Combination of an
allosteric akt inhibitor MK-2206 with
etoposide or rapamycin enhances the
antitumor growth effect in high-risk
neuroblastoma patients

Pmid: 22550167

(Continued on following page)
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TABLE 3 | (Continued) Summary information of Repositioning candidates for neuroblastoma patients in refined high-risk groups.

Repositioning
candidates

Clinical
phases

Mode of
actions (MoAs)

Approved/Investigated
therapeutic
categories

Evidence Confirmation
sources

BRD-
K65814004

Investigational NADH/NADPH oxidase inhibitor Antibiotics Human in vitro: Neuroblastoma cell
death was attenuated by ROS-
scavengers and was dose-
dependently inhibited by the NADPH
oxidase inhibitor diphenyleneiodonium
chloride (DPI)

Pmid: 16260066

BRD-
A36630025
(SN-38)

Approved a topoisomerase I inhibitor Colon cancer, and small cell lung
cancer

Mouse in vivo: Nanoparticle delivery of
an SN-38 conjugate is more effective
than irinotecan in a mouse model for
treating neuroblastoma

Pmid: 25684664

DL-PDMP Investigational Glucosyltransferase inhibitor Lewis lung carcinoma cell
metastasis

Mouse in vitro (murine neuroblastoma
cells): DL-PDMP is a potent inhibitor of
glucosylceramide synthase, resulting in
inhibition of the synthesis and shedding
of gangliosides, which may contribute
to the observed bone marrow
depression in neuroblastoma patients

Pmid: 9809988

saracatinib
(AZD-0530)

Phase 2 Dual kinase inhibitor, with
selective actions as a src inhibitor
and a bcr-abl tyrosine-kinase
inhibitor

Alzheimer’s disease and
schizophrenia

Human in vitro (neuroblastoma SKNSH
cells): Iron depletion results in src
kinase inhibition of saracatinib with
associated cell cycle arrest in
neuroblastoma cells

Pmid: 25825542

wortmannin Phase 2 Covalent inhibitor of
phosphoinositide 3-kinases
(PI3Ks)

Recurrent glioblastoma Human in vitro (neuroblastoma SKNSH
cells): PI3K pathway inhibition down-
regulates surviving expression and
enhances TRAIL-mediated apoptosis
in neuroblastomas. PI3K pathway may
play a crucial role in neuroblastoma cell
survival; therefore, treatment with
inhibitors of PI3K such as LY294002 or
wortmannin may provide potential
novel therapeutic options

Pmid: 15065019

palbociclib Approved CDK4/6 inhibitor ER-positive and HER2-negative
breast cancer

Human in vitro: Selective inhibition of
CDK4/6 using palbociclib may provide
a new therapeutic option for treating
neuroblastoma

Pmid: 26225123

naproxol (BRD-
K34014345)

Approved Nonsteroidal anti-inflammatory
drugs (NSAIDs)

Inflammation Human/rat in vitro: Protective effects of
the former four non-steroidal anti-
inflammatory drugs such as naproxol
against apoptosis might be mainly due
to their direct nitric oxide radical
scavenging activities in neuronal cells

Pmid: 11259508
Pmid: 15975708

Nutlin-3 Phase 1 cis-imidazoline analogs Retinoblastoma Human in vitro: Amplification or
overexpression of MYCN sensitizes
neuroblastoma cell lines with wild-type
p53 to MDM2-p53 antagonists such as
Nutlin-3 and MI-63, which may
therefore be particularly effective in
treating high-risk MYCN-amplified
neuroblastoma

Pmid: 21725357

AS605240 Investigational Selective PI3K inhibitors Diabetics; rheumatoid arthritis;
pulmonary fibrosis; cancer

Human/mouse in vitro:
Phosphoinositide 3-kinases (PI3K) in
selected neuroblastoma tumors with
the inhibitor AS605240, which has
been shown to express low toxicity and
relative specificity for the PI3K
species γ

Pmid: 20224967

(Continued on following page)
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TABLE 3 | (Continued) Summary information of Repositioning candidates for neuroblastoma patients in refined high-risk groups.

Repositioning
candidates

Clinical
phases

Mode of
actions (MoAs)

Approved/Investigated
therapeutic
categories

Evidence Confirmation
sources

gossypol (BRD-
K19295594)

Investigational Natural phenol derived from the
cotton plant

Contraceptive and antimalarial Human in vitro: Mcl1 appears as a
predominant pro-survival protein
contributing to chemoresistance in
neuroblastoma, and Mcl1 inactivation
may represent a novel therapeutic
strategy. Optimization of compounds
with higher Mcl1 affinity, or
combination with additional Mcl1
antagonists such as gossypol, may
enhance the clinical utility

Pmid: 19556859

ixazomib
(MLN2238)

Approved Proteasome inhibitor Multiple myeloma Mouse in vivo: ixazomib not only
inhibits neuroblastoma cell proliferation
and induces apoptosis but also
enhances dox-induced cytotoxicity in
neuroblastoma cells, suggesting that
combination therapy including
ixazomib with traditional therapeutic
agents such as dox is a viable strategy
that may achieve better outcomes for
NB patients

Pmid: 27687684

canertinib (CI -
1033)

Discontinued Irreversible tyrosine-kinase
inhibitor

Various of cancer types Human in vitro: Non-EGFR ERBB
family members such as canertinib
contribute directly to neuroblastoma
growth and survival, and pan-ERBB
inhibition represents a potential
therapeutic target for treating
neuroblastoma

Pmid: 20564646

AZD8055 Phase 1/2 mTOR inhibitor Recurrent gliomas Human in vitro and mouse in vivo:
AZD8055 can induce cell cycle arrest,
autophagy and apoptosis. AZD8055
strong antitumor activity on
neuroblastoma in vitro and in vivo,
which may be further investigated for
treatment in clinical trials for high
risk NB

Pmid: 29499203

teniposide Approved Podophyllotoxin derivatives Acute lymphocytic
leukemia (ALL)

Children with neuroblastoma have a
significantly higher incidence of acute
reactions to teniposide than patients
with other malignancies (p � 0.008),
and that these reactions cannot be
prevented by premedication with
antiallergic drugs

Pmid: 3857970

vorinostat Approved Histone deacetylases (HDAC)
inhibitor

Cutaneous T cell lymphoma
(CTCL)

Mouse in vitro: Vorinostat created a
permissive tumor microenvironment
(TME) for tumor-directed mAb therapy
by increasing macrophage effector
cells expressing high levels of fc-
receptors (FcR) and decreasing the
number and function of myeloid-
derived suppressor cells (MDSC) in
high-risk neuroblastoma

Pmid: 27471639

NVP-TAE684 Investigational ALK inhibitor Lung cancer and others Human/mouse in vitro: The
transforming potential of the putative
gain-of-function ALK mutations as well
as their signaling potential and the
ability of two ATP-competitive
inhibitors, crizotinib (PF-02341,066)
and NVP-TAE684, to abrogate the
activity of ALK for neuroblastoma
patients

Pmid: 21838707

(Continued on following page)
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(‘Repositioning candidate name’ AND ‘neuroblastoma’) to
convey the finding here. Consequently, we further found 21
drugs have literature citations to support their potential use
for NB patients. Collectively, we found 50% of candidates (24
(3 + 21) out of 48 repositioning candidates) to either have on-
going clinical trial or literature supports for NB treatment. In
total, 45 out of 48 repurposing candidates (93.8%) have been
reported with antitumor potency.

DISCUSSION

One of the critical aspects of precision medicine is to translate the
novel genetic findings into therapy development. Structural
variants (SVs) such as gene fusions have been identified in
various tumor types, indicating some potential discriminative
power to improve the patient survival curves. However, it was still
elusive how to translate these novel genetic elements into therapy
development. Several challenges become significant hurdles
toward the practical application of novel genetic findings in a
clinical setting. First, the inconsistency of gene fusions among the
gene fusion detection algorithms still exists. Technically, several
comprehensive comparison studies have been reported and
suggested the consensus approach as a solution to improve
reproducibility. However, the inconsistency among algorithms
may be explained by biological relevance, which has not
thoroughly investigated. Second, the discrimination power of
gene fusion has only been assessed individually. The patient
gene fusion profiles may provide a more robust solution to
redefine the patient groups toward better survival rates.
Finally, it is still a gap to utilize novel genetic findings into
therapy development, although the possibility was always
discussed elsewhere (Cully, 2015). We therefore aimed to
explore the opportunity to apply patients’ gene fusion profiles
to stratify the high-risk neuroblastoma patients into subgroups
for improving the survival rate and implementing the precision
medicine-based drug repositioning.

Overall, three popular gene fusion detection algorithms were
comprehensively assessed with RNA-seq data of 498 NB patients.
The technical reproducibility among the three algorithms was
suboptimal, which reflected the interior difference of
mathematical proof behind the algorithms. Moreover, the
sample heterogenicity is still a significant factor for fusion

detection algorithm selection. The number of gene fusions was
correlated with clinical stages from low-risk to high-risk. The
sensitivity of fusion detection algorithms was increased from
TopHat-Fusion to SOAPfuse and ChimeraScan. Notably, the
biological relevance of detected gene fusions from the three
algorithms shared substantial similarity regarding regulating
pathways and DEGs.

More importantly, the gene fusion profiles derived from each
algorithm have a discrimination power to redefine patient
subgroups in the high-risk group with improved survival rates
with Log-Rank p values less than 0.05. Furthermore, highly
overlapped repositioning candidates (37 out of 48 candidates)
could be enriched based on DEGs from different algorithms, and
50% of repositioning candidates (24 out of 48 repositioning
candidates) could be verified by on-going clinical studies and
literature reports.

The detected gene fusions were annotated by the current
knowledge (Table 1). For example, the Axon guidance
pathway was enriched by genes involved in reported cancer-
related gene fusions based on ChimeraScan and SOAPfuse. Axon
guidance plays a central role in controlling neuronal migration
and neuronal survival (Chédotal et al., 2005). The expression
change of proteins such as slits, semaphorins, and netrins
involved in the Axon guidance pathways induce the
pathological changes in neural circuits which predisposed to
neurological disorder in adult and NB in children (Van
Battum et al., 2015). Another interesting finding here is some
kinase-related fusions could perturb immune-related pathways
such as the T cell receptor signaling pathway. It may help
investigate the immune cell types regulated by gene fusion
profiles in the redefined patient subgroups (Figures 5, 6). The
abnormalities of immune systems in children with NB have been
observed. However, the underlying mechanism is not fully
understood. We found the onset age of NB patients in the
redefined patient subgroup was significantly smaller than the
others. Furthermore, some specific immune cell types could be
enriched by all the three algorithms, which may provide more
biological hints for better understanding the interplay between
immune systems and pathogenesis of NB.

Several repurposing candidates hold a promise for further
investigation on clinical usage for treating NB. Over 93% of
enriched repositioning candidates were designed for anticancer
purposes. For example, selumetinib and vemurafenib are in A

TABLE 3 | (Continued) Summary information of Repositioning candidates for neuroblastoma patients in refined high-risk groups.

Repositioning
candidates

Clinical
phases

Mode of
actions (MoAs)

Approved/Investigated
therapeutic
categories

Evidence Confirmation
sources

torin-2 Investigational Selective mTOR inhibitor Various of cancer types Torin-2 with potency against both
mTOR and PI3K was more effective in
promoting cytotoxicity when combined
with crizotinib. Our findings should
enable a more precise selection of
molecularly targeted agents for
patients with ALK-mutated
neuroblastoma
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Pediatric MATCH Treatment Trial (Phase 2) led by NIH to
evaluate their efficacy on treating with solid tumors (e.g., NB),
non-Hodgkin lymphoma, or histiocytic disorders with MAPK
pathway activation mutations (clinicaltrial.gov IDs:
NCT03213691 and NCT03220035). Trametinib, a MEK
inhibitor, is in clinical phase 1 for its potential to treat
refractory solid tumors, including NB (NCT02780128).

Some literature reports also show some preclinical evidence of
repositioning candidates for NB treatments. One example is MK-
2206, an allosteric AKT inhibitor is in clinical Phase 2 designed
for colorectal cancer, breast cancer, and other solid tumors.
Preclinical human in vitro studies suggested a combination of
an allosteric Akt Inhibitor MK-2206 with etoposide or rapamycin
to enhances the antitumor growth effect in high-risk NB patients
(Li et al., 2012). Another example is AZD8055, an mTOR
inhibitor, which was designed for treating recurrent gliomas in
clinical phase 2. It was reported that AZD8055 could induce cell
cycle arrest, autophagy, and apoptosis and had strong antitumor
activity on NB in both human in vitro and mouse in vivomodels.
It may be worth further investigating for clinical application for
high-risk NB treatment (Xu et al., 2018).

We also enriched one repositioning candidate named SN-38,
which was initially approved for small cell lung cancer. SN-38 is
a topoisomerase I inhibitor and the active metabolite of
irinotecan. It has a solubility issue that makes it hard for
patient administration. However, the efficacy was much
better than anti-neuroblastoma drug irinotecan. A novel
nano carrier-based strategy for tumor-targeted delivery of a
prodrug of SN-38 was developed and verified in mouse
xenografts, which solve the poor blood-brain barrier (BBB)
concentration of SN-38 for neuroblastoma treatment (Iyer
et al., 2015).

More than 20 different gene fusion detection tools based on
RNA-seq data have been developed (Kumar et al., 2016; Haas
et al., 2019). The performances of fusion detection tools on
sensitivity, specificity, and required computational resource
(e.g., memory size and computational time) varies among
different datasets. It was suggested the critical influence of
calling performance also highly relies on the RNA-Seq read
length, read number, and the quality of the reads. The
optimization of parameters in each pipeline based on the
properties of their RNA-Seq datasets along statistical methods
may improve the calling performance (Dehghannasiri et al.,
2019). Another comparative study also suggested the
consensus calling results from different detection tools may
decrease the false-positive rates. The standardization of calling
results from various detection tools is the key to avoiding the
specific tools and establishing a consensus calling result (Liu et al.,
2016). However, a ground truth set verified from orthogonal
technologies was needed to assess the calling performances from
different detection tools objectively. As a proof-of-concept paper,
the points described above were out of the scope of the current
study. However, we highly recommend further assessing the
reliable fusion detection results from multiple detection tools
to establish the reproducible and high-confidence fusion calling
to enable a real-world application. It is worthwhile to consider
some additional work to further enhance and confirm the

findings in our studies. First, the current studies were focused
on RNA-seq data. As our known, DNA-seq has been well-
established for SVs detection. Further investigation on DNA-
seq or combined with RNA-seq data could improve the precision
of gene fusion detection and establish satisfactory technical
reproducibility (Liu et al., 2019). The DNA-seq provides the
unbiased characterization and most comprehensive of the
potential gene fusions and tumor suppressor genes disrupted
by genomic rearrangement. However, it requires in-depth
coverage, ample storage, and long computational analysis time.
The RNA-seq only sequences the genome regions that are
transcribed and spliced into mature mRNA. Therefore, only
relatively high expressed fusions can be detected. However,
RNA-seq data requires less storage, space, and analysis time.
Furthermore, the read length for RNA-seq data can be either
short or long with different sequencing platforms (Schröder et al.,
2019). Second, as a proof-of-concept study, we explored the
discrimination power of gene fusion profiles and their
potential for patient stratification and treatment development.
However, an integrative approach by incorporating various
genetic elements beyond mRNA could yield a better survival
curve and more precise treatment development. Third, to reuse
the drugs for pediatric tumor treatment is a challenging task. In
this study, the enriched repositioning candidates are mainly
anticancer candidates, which could serve as a good starting
point. The further PK/PB property optimization, dosage
adjustment, and safety profile prioritization should be taken
into consideration for further investigation (Liu Z et al., 2016;
Liu et al., 2017). Fourth, the unbalance number of collected
neuroblastoma patient samples across different clinical
predefined INSS cancer stages might influence the
performance of gene-fusion-based patient stratification. The
more consortium efforts with more balanced patients
distribution in different cancer stages may further verify and
improve the performance. Finally, in the current study, we only
focused on three popular fusion detection algorithms to elaborate
the points and establish the framework for translating genetic
findings into therapy development. Other fusion detection
algorithms and patient stratification strategies may also be
considered to improve the results. In conclusion, we carried
out an exploratory study to investigate how to apply genetic
findings such as gene fusions for clinical applications. The
framework developed it straightforward and may also serve as
a strategy for treatment development for other diseases.
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