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Downregulation of drug metabolizing enzymes and transporters by proinflammatory
mediators in hepatocytes, enterocytes and renal tubular epithelium is an established
mechanism affecting pharmacokinetics. Emerging evidences indicate that vascular
endothelial cell expression of drug metabolizihg enzymes and transporters may
regulate pharmacokinetic pathways in heart to modulate local drug bioavailability and
toxicity. However, whether inflammation regulates pharmacokinetic pathways in human
cardiac vascular endothelial cells remains largely unknown. The lipid modified protein
Wnt5A is emerging as a critical mediator of proinflammatory responses and disease
severity in sepsis, hypertension and COVID-19. In the present study, we employed
transcriptome profiling and gene ontology analyses to investigate the regulation of
expression of drug metabolizing enzymes and transporters by WntSA in human
coronary artery endothelial cells. Our study shows for the first time that Wnt5A induces
the gene expression of CYP1A1 and CYP1B1 enzymes involved in phase | metabolism of a
broad spectrum of drugs including chloroquine (the controversial drug for COVID-19) that
is known to cause toxicity in myocardium. Further, the upregulation of CYP1A1 and
CYP1B1 expression is preserved even during inflammatory crosstalk between Wnt5A and
the prototypic proinflammatory IL-1B in human coronary artery endothelial cells. These
findings stimulate further studies to test the critical roles of vascular endothelial cell
CYP1A1 and CYP1B1, and the potential of vascular-targeted therapy with CYP1A1/
CYP1B1 inhibitors in modulating myocardial pharmacokinetics in Wnt5A-associated
inflammatory and cardiovascular diseases.
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INTRODUCTION

Inflammation is the first line innate immune response to protect
the host from infections or tissue injury. It involves highly
coordinated interaction of antigen-activated immune cells and
their soluble inflammatory products with vascular endothelial
cells, inducing a procoagulant, immune cell adhesive and
hyperpermeable phenotype in vascular endothelial cells,
followed by the movement of immune cells, soluble
inflammatory mediators and other plasma proteins across
vascular endothelial cells to the site of infection or injury to
minimize tissue damage (Pober and Sessa, 2007). Although an
orchestrated inflammatory response is crucial for efficient
immunity, uncontrolled or sustained inflammation becomes
pathogenic and causes tissue destruction, impairs organ function
and affects drug pharmacokinetics (Morgan, 2009; Netea et al.,
2017). The importance of deregulated immune defense is obvious
even in the current pandemic COVID-19 where, endotheliitis, for
example in the heart leads to local thrombosis (Varga et al., 2020).
Drug pharmacokinetics is affected when locally produced
proinflammatory cytokines enter systemic circulation and exert
inflammatory responses in hepatocytes, enterocytes and renal
tubular epithelium, which represent the classical sites for action
of drug metabolizing enzymes and transporters. It was shown that
proinflammatory cytokines such as interleukin (IL)-1p and tumor
necrosis factor-a downregulate the transcription of cytochrome
P450 (CYP) enzymes involved in phase I oxidative metabolism,
and membrane protein drug transporters such as Organic Anion
Transporting Polypeptide (OATP)- 1 and 2 in hepatocytes,
enterocytes and renal tubular epithelium. This results in
decreased hepatic clearance and enhanced oral bioavailability
increasing the incidence of adverse events. In case of prodrugs
activated by metabolism, decreased activities of CYP enzymes may
reduce their therapeutic efficiency (Morgan, 2009; Konig et al.,
2013; Wu and Lin, 2019).

Emerging evidences indicate that cardiac vascular endothelial
cell expression of drug and xenobiotic metabolizing enzymes and
transporters, involved in local metabolic homeostasis, can also
modulate pharmacokinetics in the heart muscle. It is shown that
organic cation transporter novel type 2, a sodium dependent
transport protein for carnitine, is expressed and localized in
normal cardiac endothelial cells. Its cardiac expression
regulates cardiac delivery of spironolactone or mildronate
during congestive heart failure. High variability in its cardiac
expression among individuals is linked to variable response to its
substrate drugs in clinical setting (Grube et al., 2006). Similarly,
multidrug resistance protein 1 (MDR1), a drug efflux pump, is
expressed in normal cardiac endothelial cells, and modulates
myocardial uptake of its substrates talinolol and celiprolol.
Further, cardiac vascular endothelial expression of MDR1 may
mediate inter-individual variability observed for the positive
inotropic effects of its another substrate digoxin (Meissner
et al,, 2002; Hausner et al., 2019). In addition to their effects
on drugs, cardiac vascular endothelial expression of drug/
xenobiotic metabolizing enzymes and transporters also
modulates disease modifying endobiotic transformations.
Blocking CYP2C9 activity using sulfaphenazole decreased
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experimentally induced infarct size and post-ischemic vascular
superoxide generation, and enhanced post-ischemic coronary
flow (Granville et al., 2004; Hunter et al., 2005; Michaud et al.,
2010). All these recent findings clearly reveal a critical role for the
intrinsic activity of cardiac vascular endothelial cell-expressed
drug metabolizing enzymes and transporters in modulating drug
and xenobiotic concentrations in myocardium. However, there
has been no study performed yet to investigate whether
inflammation that has an established role in affecting
pharmacokinetics pathways in hepatocytes, enterocytes and
renal tubular epithelium (Morgan, 2009; Konig et al, 2013;
Wu and Lin, 2019), regulates the expression of drug and
xenobiotic metabolizing enzymes and transporters in human
cardiac vascular endothelial cells. In precision medicine, a
comprehensive ~ knowledge  of  the  regulation  of
pharmacokinetic pathways in vascular endothelial cells by
specific inflammatory mediators is crucial for developing
vascular-targeted therapy to reduce inter-individual variability
in drug response and local and systemic toxicity (Eelen et al,
2015; Fatunde and Brown, 2020; Glassman et al., 2020).

In the present study, we employed whole genome expression
profiling to investigate whether Wnt5A, an emerging
inflammatory mediator in vascular system (Blumenthal et al,
2006; Pereira et al., 2008; Schulte et al, 2012; Skaria and
Schoedon, 2017; Choi et al., 2020), regulates the expression of
drug  metabolizing  enzymes and  transporters  in
immunocompetent, primary, human coronary artery
endothelial cells (HCAEC; Skaria et al., 2017; Skaria et al,
2019). In our present study, Wnt5A treatments of HCAEC
were conducted for 4h. We chose 4h treatment in this study
because several previous independent studies established that the
effects of Wnt5A are time-dependent in different cell types
(Valencia et al,, 2014; Shojima et al., 2015; Huang et al., 2017).
Here, we find that in HCAEC, Wnt5A critically modulates
myocardium-specific pharmacokinetic pathways by
upregulating the transcription of CYP enzymes that are known
to metabolize a broad spectrum of drugs including those used in
immune system and cardiovascular diseases.

MATERIALS AND METHODS

Primary Cell Culture

HCAEC were propagated, and treated with vehicle (sterile,
pyrogen free, 0.1% human serum albumin in 0.9% NaCl) and
recombinant human/mouse Wnt5A (250 ng/ml, R&D systems)
alone or combined with recombinant human IL-1f (20 U/ml,
PeproTech) for 4 h as described (Skaria et al., 2017; Skaria et al.,
2019) (detailed in Supplementary Material). Specific
information about vascular endothelial cell characterization is
provided in Supplementary Material.

Whole Genome Expression Profiling and
Gene Ontology Analysis

Differential gene expression profiling using microarray analysis,
and scanning, feature extraction, and data normalization of
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FIGURE 1 | Drug and xenobiotic metabolism pathways most

significantly (o < 0.05) regulated by 4 h Wnt5A (A) and Wnt5A/IL-1p
combination (B) treatment in HCAEC. Pathways represented as histograms
are ranked by the—log value (o value). Data are from 3 independent
experiments.

microarrays were performed using established methods (Skaria
et al,, 2017; Skaria et al, 2019) (detailed in Supplementary
Material). Complete data sets of Wnt5A and Wnt5A/IL-1B
combination transcriptomes in HCAEC are accessible in the
NCBI GEO data repository through accession numbers
GSE145987 and GSE62281, and GSE146691 respectively (refer
Supplementary Material for particulars about accession
numbers). Linear-lowess normalized microarray data were
further analyzed using GeneSpring GX 9.0 Software (Agilent
Tech. Inc.), and gene ontology analysis to identify drug and
xenobiotic metabolism pathways significantly (p < 0.05) enriched
in microarray data were performed using MetaCoreTM GeneGO
software (Thomson Reuters, http://portal.genego.com) as
described (Skaria et al, 2017; Skaria et al, 2019) with
modifications (detailed in Supplementary Material).

RESULTS

Global gene expression profile of 4 h Wnt5A treated HCAEC was
compared with that of vehicle-treated HCAEC by whole human
genome microarrays. Genes of Wnt5A-treated HCAEC which are
significantly  differentially —regulated after linear-lowess
normalization  (refer =~ Supplementary = Material) and
consistently showing at least two-fold change in expression in
subsequent GeneSpring analysis compared with vehicle-treated
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HCAEC were identified (Supplementary Table S1) and screened
with MetaCoreTM GeneGO software for their involvement in
regulating drug and xenobiotic metabolism pathways. PXR
mediated regulation_heart, AhR mediated regulation_heart,
CAR mediated regulation_heart, FXR mediated
regulation_heart, LXR mediated regulation_heart, Xenobiotic
Metabolism- phase II_heart, Xenobiotic Metabolism- phase
I_heart, and Xenobiotic Metabolism- phase III_heart were the
drug and xenobiotic metabolism pathways significantly enriched
in 4h Wnt5A transcriptome of HCAEC (Figure 1A). Genes of
these statistically significant, enriched pathways upregulated by
Wnt5A include those encoding intracellular enzymes CYP1Al
and CYP1B1 involved in phase I oxidation, and the
transmembrane  peptide SLCO2B1  transporting large
hydrophobic organic anions, cations and neutral compounds
(Table 1). Abundant protein expression of CYP1A1l, CYPBI1
and SLCO2B1 has been verified in human myocardium
(Table 1). CYP1AL1 is reported to metabolize compounds such
as the antiarrhythmic drug amiodarone, antimicrobial
erythromycin, antimalarial and immunomodulatory
chloroquine (controversial in use against COVID-19 as an
agent preventing the entry of SARS-CoV-2 through ACE2
receptor), nonsteroidal anti-inflammatory diclofenac, anti-
psychotic haloperidol, steroid hormone estradiol and the
chemotherapeutic ~ agent  daunorubicin  in  humans
(Supplementary Table S2). Chloroquine, with active
metabolites and long half-life, can prolong the QT interval
that could trigger ventricular arrhythmias including torsades
de pointes (Kamp et al., 2020). Haloperidol is still used in
treating delirium in septic patients admitted in ICU and is
associated with QT interval prolongation (Huffman and Stern,
2003). CYP1B1 metabolizes drugs including the anticancer
procarbazine, theophylline and the most prescribed cholesterol
lowering drug rosuvastatin in humans (Supplementary Table
§2). SLCO2B1 can transport drugs such as the leukotriene
receptor antagonist montelukast used for asthma, the
antirheumatic, immunosuppressive sulfasalazine and a number
of drugs acting on the cardiovascular system such as aliskiren,
antihypertensive drugs of the sartan group (telmisartan) and a
number of cholesterol lowering agents (rosuvastatin, atorvastatin,
pravastatin) (Supplementary Table S2). Genes of significantly
enriched pharmacokinetic pathways downregulated by Wnt5A
include UDP-glucuronosyltransferases (UGT)-1A4 and 1A6
(Table 1) involved in phase II drug metabolism of drugs such
as the anticonvulsant lamotrigine and anti-atherosclerotic/
analgesic aspirin respectively (Bigler et al., 2001; Reimers et al,,
2016).

During inflammatory diseases such as sepsis and
atherosclerosis, vascular endothelial cells may not be exposed
to a single inflammatory mediator, rather, different inflammatory
mediators such as Wnt5A and the prototypic proinflammatory
prothrombotic  proatherogenic IL-1p simultaneously act
paracrinically on vascular endothelial cells and their crosstalk
may modulate inflammatory responses in vascular endothelial
cells (Pereira et al.,, 2008; Bhatt et al., 2012; Schulte et al., 2012;
Gatica-Andrades et al., 2017; Skaria and Schoedon, 2017). This
prompted us to test whether the regulation of expression of CYP
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TABLE 1| Genes of statistically significant (o < 0.05) drug and xenobiotic metabolism pathways regulated by 4 h Wnt5A treatment in HCAEC. Data are from 3 independent

array experiments.

Gene symbol Protein name Class Regulation
CCNGaPee Cyclin C Generic binding protein Down
CEACAM3®" Carcinoembryonic antigen-related cell adhesion molecule 3 Generic protein Down
CHI3L1Pe Chitinase-3-like protein 1 Generic enzyme Down
CYP1A1Pog! Cytochrome P450 1A1 Generic enzyme Up
CcypiB1Pegi Cytochrome P450 1B1 Generic enzyme Up
DCHS2P Protocadherin-23 Generic binding protein Down
EDNRA&Pe Endothelin-1 receptor G protein-coupled receptor Up
EDNRB*P-e Endothelin receptor type B G protein-coupled receptor Down
GNAO1" Guanine nucleotide-binding protein G(o) subunit alpha G-alpha Down
HNF4A Hepatocyte nuclear factor 4-alpha Transcription factor Down
IGF2%! Insulin-like growth factor II Receptor ligand Down
IL2P Interleukin-2 Receptor ligand Down
ITGA4P Integrin alpha-4 Generic receptor Up
ITGB6” Integrin beta-6 Generic receptor Down
KCTD12°¢ BTB/POZ domain-containing protein KCTD12 Voltage-gated ion-channel Up
KLK12%¢ Kallikrein-12 Generic protease Down
LILRB4® Leukocyte immunoglobulin-like receptor subfamily B member 4 Generic receptor Down
MS4A2%! High affinity immunoglobulin epsilon receptor subunit beta Generic receptor Up
NDUFS7Pei NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial Generic enzyme Down
OR4C162 Olfactory receptor 4C16 G protein-coupled receptor Down
OR4D2? Olfactory receptor 4D2 G protein-coupled receptor Down
OR4F4 Olfactory receptor 4F4 G protein-coupled receptor Down
OR6Y1? Olfactory receptor 6Y1 G protein-coupled receptor Up
OR8J1? Olfactory receptor 8J1 G protein-coupled receptor Up
OR9G4* Olfactory receptor 9G4 G protein-coupled receptor Down
PSG5P Pregnancy-specific beta-1-glycoprotein 5 Generic protein Up
SLC16A2M Monocarboxylate transporter 8 Transporter Up
SLCO2B1aPehi Solute carrier organic anion transporter family member 2B1 Transporter Up
SYT6P Synaptotagmin-6 Generic receptor Down
TCTN3P Tectonic-3 Generic protein Down
TFAP2D Transcription factor AP-2-delta Transcription factor Down
TIMP1%ei Metalloproteinase inhibitor 1 Generic binding protein Down
UGT1A42Pcdf UDP-glucuronosyltransferase 1-4 Generic enzyme Down
UGT1A6>Pedf UDP-glucuronosyltransferase 1-6 Generic enzyme Down
4Genes regulated in PXR mediated regulation_heart.

PGenes regulated in AhR mediated regulation_heart.

°Genes regulated in CAR mediated regulation_heart.

9Genes regulated in FXR mediated regulation_heart.

®Genes regulated in LXR mediated regulation_heart.

'Genes regulated in Xenobiotic Metabolism. Phase Il_heart.

9Genes regulated in Xenobiotic Metabolism. Phase |_heart.

"Genes regulated in Xenobiotic Metabolism. Phase Ill_heart.

'Protein expression verified in normal human myocardium as shown in The Human Protein Atlas (accessed on 03.08.2020).

enzymes, known to metabolize broad spectrum of drug substrates ~ regulation_heart ~pharmacokinetic ~pathways in HCAEC

(Supplementary Table S2) and found regulated by sole Wnt5A
treatment in this study (Table 1; Supplementary Table S1), is
preserved during crosstalk between Wnt5A and IL-1f in
HCAEC. CYP1Al and CYP1BI remained upregulated by
Wnt5A/IL-1p  combination  treatment in  HCAEC
(Supplementary Tables S3, S$4). Further, Wnt5A/IL-1p
signaling interaction upregulated the gene encoding an
additional member of CYP enzyme family CYP7Al
(Supplementary Tables S3, S4). Protein expression of
CYP7A1 has been verified in normal human myocardium
(Supplementary Table S4), however its substrates in humans
remain largely unidentified. = Moreover, Wnt5A/IL-1B
combination treatment significantly enhanced enrichment of
genes in AhR mediated regulation_heart and LXR mediated

compared with Wnt5A or IL-1P alone treatments (Figure 1B;
Supplementary Figure S1; Supplementary Table S4).

DISCUSSION

Transcriptional ~downregulation of expression of drug
metabolizing enzymes and transporters by the systemic action
of proinflammatory mediators in hepatocytes, enterocytes and
renal tubular epithelium is an established mechanism affecting
pharmacokinetics during inflammation (Morgan, 2009; Wu and
Lin, 2019). Additionally, increasing evidences indicate that
vascular endothelial expression of drug metabolizing enzymes
and transporters may regulate pharmacokinetic pathways in
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heart to modulate local drug bioavailability and toxicity in
humans (Meissner et al., 2002; Grube et al., 2006; Hausner
et al, 2019). However, whether inflammatory activation
regulates pharmacokinetic pathways in human cardiac vascular
endothelial cells remained largely unknown. This study
investigated for the first time the regulation of expression of
drug metabolizing enzymes and transporters by proinflammatory
mediator Wnt5A in human coronary artery endothelial cells. It
reveals that Wnt5A upregulates the mRNA expression of
CYP1Al and CYPIBI; enzymes with known role in phase I
metabolism of a broad of spectrum of drugs and their protein
expression established in human myocardium. Further, it reveals
that upregulated CYP1A1 and CYP1B1 expression is preserved
during inflammatory crosstalk between Wnt5A and
proinflammatory IL-1B in human coronary artery endothelial
cells. This novel finding from human vascular endothelial cells
isolated from coronary artery, a primary cell system retaining
original tissue characteristics (Franscini et al., 2004; Skaria et al.,
2017; Skaria et al., 2019), is in accordance with previous findings
that proinflammatory cytokines, in contrast to their suppressive
effects on drug metabolizing pathways in hepatocytes (Morgan,
2009; Wu and Lin, 2019), stimulate the transcription of CYP
enzymes in extrahepatic cell systems (Smerdova et al, 2014;
Alhouayek et al., 2018).

Previous studies showed that CYP1Al, involved in
transformation of xenobiotics to toxic metabolites, also
metabolizes a broad spectrum of drugs and consequently
account for drugs’ adverse effects. CYP1Al metabolizes the
class III antiarrhythmic drug amiodarone to desethyl
amiodarone, the latter causes toxicity in multiple organs (Wu
et al., 2016). Another substrate of CYP1A1 is the macrolide
erythromycin used as an antiinfection agent or for
gastrointestinal disease in ICUs (Zhou et al, 2019).
Overexpression of CYP1Al by Wnt5A may enhance
erythromycin’s metabolism and thus affects its half-life leading
to the persistence of infection and lack of drug efficiency.
Likewise, enhanced CYP1Al activity may increase the
clearance of theophylline used in treatment of obstructive
pulmonary disease (Sarkar and Jackson, 1994). In pathological
states such as sepsis, cardiac arrhythmia associated with
hypertension and chronic obstructive lung diseases, Wnt5A
signaling is activated in the cardiovascular system (Pereira
et al, 2008; Schulte et al., 2012; Daud et al., 2016; Abraityte
et al., 2017a; Baarsma et al., 2017; Abraityte et al., 2017b). This
stimulates further investigations to determine whether circulating
Wnt5A concentration correlates with myocardial CYP1A1l/
CYP1B1 activity, drug availability and cardiotoxicity in these
diseases.

A previous study showed transcriptional downregulation of
CYP1B1 and upregulation of CYP1A1 in endothelial cells with
homozygous null mutation of the B-catenin gene, isolated from
E9.5 embryos (Ziegler et al., 2016). Several independent, previous
studies established that endothelial cells derived from embryo
exhibit high plasticity and therefore significantly differs in
morphology and in response to signaling molecules compared
with adult human vascular endothelial cells (Risau, 1995;
Invernici et al, 2005; Foldes et al, 2010). Accordingly, the
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aforesaid study involving endothelial cells from E9.5 embryos
additionally demonstrated upregulation of CYP1B1 and
unaltered expression of CYP1Al in response to canonical
Wnt3A conditioned medium by mouse brain microvascular
endothelial cells. Furthermore, the aforesaid study showed that
mouse brain microvascular endothelial cells respond to non-
canonical Wnt5A-conditioned medium by decreasing CYP1B1
transcription (Ziegler et al., 2016). As the above study itself and
several other previous studies proved, Wnt ligands regulate
multiple signaling pathways depending on the availability of
specific receptors and other mediators of the signaling
pathway, cellular conditions, and the presence of natural
inhibitors like sFRP and WIF1 (Pukrop and Binder, 2008;
Kikuchi et al., 2012; Ziegler et al, 2016). In this manuscript,
we show the transcriptional upregulation of CYPIAI and
CYP1B1 by exogenous Wnt5A in primary, coronary artery
endothelial cells derived from adult human myocardium.
Primary, coronary artery endothelial cells derived from adult
human myocardium was chosen in this study to assess how
Wnt5A regulates the drug metabolizing potential of myocardial
vasculature because it is well established that vascular endothelial
cells from different anatomical locations like brain and heart
significantly differ in their response to signaling molecules (Aird,
2007).

In precision medicine, therapeutically modulating a specific
characteristic of inflamed wvascular endothelial cells by
vascular-targeted nanocarriers is a potential strategy to
reduce inter-individual variability in drug response and
local toxicity (Eelen et al., 2015; Glassman et al., 2020).
Therefore, targeting vascular endothelial CYP1Al and
CYP1B1 by their inhibitors loaded in nanocarriers
conjugated with affinity ligands of inflamed endothelial
markers may be a potential strategy to modulate myocardial
pharmacokinetics of CYP1Al and CYPBI1 substrates in
diseases associated with Wnt5A. Further, a precise
knowledge on the regulation of pharmacokinetic pathways
by specific inflammatory mediators may enable adapting
drug dosage regimens according to the changes in
inflammatory status of patients (Morgan, 2009) as has been
postulated even in the case of emerging COVID-19 pandemic
(EI-Ghiaty et al., 2020). Most interesting in the latter context is
the fact that medication proposed to target ACE2 (Wang et al,,
2020) are metabolized through CYP1A1, and our observation
that CYP1A1l but not ACE2 expression, is a target for
transcriptional modulation by Wnt5A. Most recently,
Wnt5A has been found significantly elevated in severe cases
of COVID-19 (Choi et al., 2020), and endotheliitis was
observed as major pathology in severe COVID-19 (Varga
et al., 2020). Therefore, while targeting ACE2 with drugs
that are substrates for CYP1Al, the modulation of those
drugs’ pharmacokinetics by Wnt5A-inflamed cardiac
vascular endothelial cells might occur and must be a focus
of future studies. Drug metabolizing enzymes and transporters
are also transcriptionally regulated by the xenobiotic receptors
(XR) such as constitutive androstane receptor (CAR), the
pregnane X receptor (PXR) and the aryl hydrocarbon
receptor (AhR), which are mainly expressed in the liver
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(Mackowiak and Wang, 2016). It is noteworthy that their
expression has been reported in vascular endothelial cells
(Agbor et al, 2011). Therefore, whether their activation by
endogenous compounds and drugs or xenobiotics
transcriptionally regulate the phase I and phase II
metabolizing enzymes or drug transporters in vascular
endothelial cells during inflammation warrants further
investigations. Moreover, in light of emerging evidences
indicating that cytokine signaling pathways activate XR even
in the absence of their xenobiotic activators (Mackowiak and
Wang, 2016), the ability of Wnt5A/IL-1 signaling pathways to
mediate XR activation in the absence of drugs/metabolites in
pathological states needs to be further investigated.

In conclusion, this study shows for the first time that the
proinflammatory mediator Wnt5A upregulates human coronary
artery endothelial expression of CYP1A1 and CYP1B1 enzymes
involved in phase I metabolism of a broad spectrum of drugs.
Upregulated CYP1A1 and CYP1BI expression is preserved
during inflammatory crosstalk between Wnt5A and
proinflammatory IL-1B in human coronary artery endothelial
cells. These preliminary findings presented in this brief research
report stimulate further studies on the critical roles of drug
metabolizing potential of Wnt5A-inflamed adult human
myocardial vasculature and the therapeutic benefits of
vascular-targeted  inhibitors of = CYP1Al/CYPIBI in
modulating myocardial pharmacokinetics in Wnt5A-associated
inflammatory diseases.
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