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It has become widely accepted that inflammation is a driving force behind a variety of
chronic diseases, such as cardiovascular disease, diabetes, kidney disease, cancer,
neurodegenerative disorders, etc. However, the existing nonsteroidal anti-inflammatory
drugs show a limited utility in clinical patients. Therefore, the novel agents with different
inflammation-inhibitory mechanisms are worth pursuing. Metformin, a synthetic derivative
of guanidine, has a history of more than 50 years of clinical experience in treating patients
with type 2 diabetes. Intense research efforts have been dedicated to proving metformin’s
inflammation-inhibitory effects in cells, animal models, patient records, and randomized
clinical trials. The emerging evidence also indicates its therapeutic potential in clinical
domains other than type 2 diabetes. Herein, this article appraises current pre-clinical and
clinical findings, emphasizing metformin’s anti-inflammatory properties under individual
pathophysiological scenarios. In summary, the anti-inflammatory effects of metformin are
evident in pre-clinical models. By comparison, there are still clinical perplexities to be
addressed in repurposing metformin to inflammation-driven chronic diseases. Future
randomized controlled trials, incorporating better stratification/targeting, would
establish metformin’s utility in this clinical setting.
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INTRODUCTION

The hypoglycemic activity of metformin, a synthetic derivative of guanidine, was first described in
1968 (Clarke and Duncan, 1968). After that, it is prevalently used as a first-line treatment for type 2
diabetes (T2D) (Stumvoll et al., 1995; Knowler et al., 2002). The glucose-lowering effect of metformin
is primarily attributable to its capability to regulate energy metabolism, including inhibition of
hepatic gluconeogenesis, reduction of glucose absorption, and elevation of glucose utilization in
peripheral tissues (Foretz et al., 2014). The activation of the cellular energy sensor [AMP-activated
protein kinase (AMPK)] is the most extensively studiedmechanisms of metformin in hepatocytes. By
blocking the complex-I of the respiratory chain in mitochondria, metformin suppresses adenosine
triphosphate (ATP) production, increases cytoplasmic adenosine monophosphate (AMP): ATP
ratios, leading to activation of AMPK. Metformin is also found to activate AMPK by increasing the
net phosphorylation of the catalytic α subunit of AMPK at threonine 172 (Zhou et al., 2001; He and
Wondisford, 2015). A recent study unraveled that metformin might activate AMPK by a mechanism
involving the lysosome (Zhang et al., 2016). Subsequently, the activated AMPK phosphorylates the
acetyl-CoA carboxylase (ACC), by which metformin can regulate lipid homeostasis and enhance
insulin sensitivity (Fullerton et al., 2013).

Beyond its consolidated role in T2D management, the pleiotropic actions of metformin
have been extensively documented. Metformin can treat cardiovascular diseases by mechanisms
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distinct from its metabolic activities (Soraya et al., 2014; Liu et al.,
2017; Dziubak et al., 2018). Metformin exerts nephroprotective
effects in diabetic patients (Kawanami et al., 2020) and interferes
with key immunopathological molecules involved in tumor
progression (Ma et al., 2020). These findings, together with
one particular breakthrough in metformin-induced longevity
in microbes and mice (Cabreiro et al., 2013; Martin-Montalvo
et al., 2013; Chen et al., 2017), provide the possibility of boosting
its therapeutic potential in treating aging and age-related diseases
(Storelli et al., 2013). Of note, emerging in vitro and in vivo
evidence suggests that metformin can exert potent inflammation-
inhibitory effects, irrespective of its capability of glucose control
(Saisho, 2015; Bharath et al., 2020). Most recently, it is of great
interest to find that metformin is able to dampen cytokine storms
in patients who are infected with coronavirus disease 2019
(COVID-19). The use of metformin is significantly associated
with reduced circulating levels of inflammatory markers (Cheng
et al., 2020) and decreased in-hospital mortality (Hariyanto and
Kurniawan, 2020; Kow and Hasan, 2020; Luo et al., 2020). It has
become widely accepted that inflammation is a driving force
behind various chronic diseases, including heart failure,
atherosclerosis, diabetes, obesity, neurodegenerative disease,
cancer, etc. The reduction in lifetime exposure to
inflammation has contributed to the historical decline in old-
age mortality (Finch and Crimmins, 2004; Couzin-Frankel,
2010). Herein, this article will appraise current pre-clinical and
clinical findings with special emphasis on metformin’s anti-
inflammatory properties under individual pathophysiological
scenarios.

CARDIOVASCULAR DISEASES

Metformin can protect against cardiovascular diseases (CVD)
associated with inflammatory stress, such as endothelial
dysfunction (Tian et al., 2019), myocardial infarction (Soraya
et al., 2014), acute myocarditis (Liu et al., 2017), and chronic heart
failure (Dziubak et al., 2018). In human umbilical vein endothelial
cells (HUVECs), metformin activates AMPK and subsequently
enhances phosphorylation of histone deacetylase 5 (HDAC5) at
serine 498, which leads to up-regulation of transcription factor
Kruppel-like factor 2 (KLF2). Thereby, metformin eliminates
lipopolysaccharide (LPS) or tumor necrosis factor a (TNFα)-
induced vascular cell adhesion molecule 1 (VCAM1) expression
(Tian et al., 2019). Metformin can inhibit TNFα-induced NF-
kappaB (NF-κB) activation and transcriptionally suppress
expression of E-selectin, intercellular adhesion molecule-1
(ICAM-1), and monocyte chemoattractant protein-1 (MCP-1)
in HUVECs (Hattori et al., 2006). Metformin dampens high
glucose-induced mitochondrial fragmentation by down-
regulating dynamin-related protein-1 (Drp-1) in HUVECs.
Consequently, metformin abrogates the increase of ICAM-1
and VCAM-1 in the aortic endothelium of diabetic ApoE
deficient mice. However, these beneficial effects of metformin
are abolished upon AMPK α2 deficiency (Wang et al., 2017). In
primary cultured rat vascular smooth muscle cells (VSMCs),
metformin activates AMPK-induced phosphatase and tensin

homolog (PTEN) expression. Through the AMPK-PTEN
pathway, metformin negatively regulates cyclooxygenase
(COX)-2 and inducible nitric oxide synthase (iNOS)
expression in VSMCs treated with TNFα (Kim and Choi,
2012). Apart from AMPK activation, metformin strikingly
down-regulates microRNA-21 (miR-21) in a time- and dose-
dependent manner in HUVECs. The miR-21 directly targets the
3′-UTR of PTEN and negatively regulates PTEN expression (Luo
et al., 2017). The fatty acid (palmitic acid) stimulates an
inflammatory response, associated with a decreased level of
miR-155 that can negatively regulate mRNA levels of MCP-1
and ICAM-1 in human aortic endothelial cells. Metformin
treatment antagonizes endothelial inflammation by up-
regulation of miR-155 (Gou et al., 2020). Diabetic Goto-
Kakizaki (GK) rats with metformin treatment have decreased
superoxide production and reduced advanced glycation end-
products accumulation in the vasculature. Moreover, levels of
the chemokines MCP-1, one of the earliest molecular markers of
vascular inflammation in atherogenesis, are significantly
attenuated in the rat aortae (Sena et al., 2011). In other ways,
metformin antagonizes vascular inflammation by inhibiting the
monocyte-to-macrophage differentiation that critically
accentuates atherosclerosis through promoting an
inflammatory environment within the vessel wall. The phorbol
myristate acetate-induced THP-1 monocyte differentiation is
blunted by metformin, accompanied by reduced cellular IL-1β,
TNF-α, and MCP-1 levels. The phosphorylation of signal
transducer and activator of transcription 3 (STAT3) plays a
critical role in mediating monocyte-to-macrophage
differentiation and inflammation, but all of which are dose-
dependently inhibited by metformin (Vasamsetti et al., 2015).
Moreover, metformin can reduce cytokine secretion (IL-12p40
and IL-6) from mouse bone marrow-derived macrophages
in vitro (Cameron et al., 2016). Male Wistar rats develop acute
myocardial infarction after subcutaneous injection with
isoproterenol. Pre-treatment with metformin protects left
ventricular dysfunction and enhances phosphorylation of
AMPKα, coincided with markedly decreased gene expression
of toll-like receptor4 (TLR4), myeloid differentiation protein
88 (MyD88), TNF-α, and IL-6 in the post-infarct heart tissues
(Soraya et al., 2014). Male C57BL/6 mice challenged with
ischemia/reperfusion (I/R) injury via left coronary artery
ligation exhibit myocardial apoptosis, inflammation, and
collagen deposition. Treatment with metformin significantly
attenuates I/R induced pathological changes and cellular
apoptosis in mouse hearts. The inhibition of autophagosome
formation and restoration of the impaired autophagosome
processing contributes to metformin’s cardioprotective effect,
dependent on the Akt signaling pathway (Huang et al., 2020).
BALB/c mice exposed to LPS challenge have an elevation of
creatinine kinase-myocardial band (CK-MB) and brain
natriuretic peptide (BNP) in plasma. The pro-inflammatory
cytokine levels, such as TNF-α, IL-1β, IL-6, myeloperoxidase
(MPO), are augmented in mouse myocardium. Metformin
attenuates endotoxin-induced acute myocarditis via activating
AMPK-dependent anti-inflammatory mechanism (Liu et al.,
2017). Male C57BL/6J develop lung injury and cardiac
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dysfunction after inhaling fine particulate matter (PM2.5)
airborne pollution. Administration of metformin effectively
reduces systemic and pulmonary inflammation, preserves left
ventricular ejection fraction, suppresses pulmonary and
myocardial fibrosis, and eliminates oxidative stress. Metformin
restrains cardiac superoxide production by enhancing protein
levels of superoxide dismutase 2 (SOD2), peroxiredoxin (PRDX)
3 and 5, and thioredoxin reductase 2 (TRXR2). Of note,
metformin also protects PM2.5-induced lung injury and
cardiac dysfunction in AMPKα2 deficient mice, suggesting a
pathway that appears independent of AMPK (Gao et al.,
2020). Reactive dicarbonyls stimulate the production of
advanced glycation end-products, increase oxidative stress and
inflammation. Hereditary hyper-triglyceridemic rats have
increased concentrations of reactive dicarbonyls in the
myocardium and kidney cortex. Metformin treatment
significantly reduces reactive dicarbonyls, along with elevated
glutathione (GSH) and glyoxalase-1 mRNA expression in mouse
heart tissues (Malinska et al., 2018). Metformin also protects
against inflammation and dicarbonyl stress in the left ventricles of
spontaneously hypertensive rats that have a transgenic expression
of human C-reactive protein (CRP). The treatment results in
decreased circulating inflammatory markers in rats, including IL-
6, TNFα, and MCP-1 (Malinska et al., 2016). The administration
of metformin to the adult male albino rats that have been exposed
to the whole-body gamma radiation ameliorates the elevation of
cardiac injury biomarkers, including lactate dehydrogenase
(LDH) and CK-MB. In addition, heart catalase and superoxide
production, as well as NF-κB, IL-6 and TNF-α levels, are
markedly decreased in metformin-treated rats, which thus may
hold a promise for the implication of metformin as an adjunct to
radiotherapy (Karam and Radwan, 2019).

Clinically, three randomized controlled trials are providing the
most crucial evidence of the cardiovascular protective effects of
metformin, including the UK Prospective Diabetes Study
(UKPDS) [UK Prospective Diabetes Study (UKPDS) group,
1998] and two prospective clinical trials [NCT00375388 (Kooy
et al., 2009) and NCT00513630 (Hong et al., 2013)]. The UKPDS
Group investigates the effect of intensive blood-glucose control
with metformin on complications in overweight T2D patients. The
group reports that 342 obese diabetic patients treated with
metformin have risk reductions for any diabetes-related
endpoint (−32%), diabetes-related death (−42%), and all-cause
mortality (−36%) [UK Prospective Diabetes Study (UKPDS)
group, 1998]. The post-trial follow-up for ten years further
demonstrates that patients with metformin treatment have a
significantly reduced risk for any diabetes-related endpoint
(−21%), myocardial infarction (−33%), and death from any
cause (−27%) (Holman et al., 2008). The second clinical trial
(NCT00375388) observes the long-term effects of metformin on
the microvascular and macrovascular disease in T2D patients. The
conclusion is that metformin, added to insulin in diabetic patients,
fails to improve the primary endpoint (an aggregate of
microvascular and macrovascular morbidity and mortality).
However, it does reduce the risk of macrovascular disease after
a follow-up period of 4.3 years (Kooy et al., 2009). The third clinical
trial (NCT00513630) compares the long-term effects of glipizide

andmetformin on the major cardiovascular events in T2D patients
with a history of coronary artery disease. The results demonstrate
that metformin treatment for three years substantially reduces
major cardiovascular events in patients after a median follow-up of
five years, compared with glipizide (Hong et al., 2013). Moreover, a
recent study reports that, in a cohort of 1,213 hospitalized patients
with COVID-19 and pre-existing T2D, metformin use is
significantly associated with reduced heart failure and decreased
circulating inflammatory markers, such as CRP, IL-6, IL-2, and
TNF-α. Metformin users also have a low neutrophil to lymphocyte
ratio (NLR) in the blood (Cheng et al., 2020). Metformin treatment
shows the potential to reduce cardiac risk in postpartum women
with gestational diabetes (GDM). Postpartum women who receive
metformin have an apparent reduction of circulating oxidized low-
density lipoprotein cholesterol (LDL) (Viteri et al., 2017). Despite
encouraging data reported in diabetic CVD patients, metformin’s
benefits to non-diabetic patients remain mixed so far. In non-
diabetic patients with heart failure, metformin therapy is associated
with a pronounced reduction of circulating cytokines, such as IL-2,
IL-4, and C-X-Cmotif chemokines ligand 12 (CXCL12) (Cameron
et al., 2016). In non-diabetic women with chest pain and a prior
history of normal coronary angiography, metformin recipients
show improved vascular function and a decreased incidence of
myocardial ischemia (Jadhav et al., 2006). By contrast, the
Glycometabolic Intervention as Adjunct to Primary
Percutaneous Coronary Intervention in ST-Segment Elevation
Myocardial Infarction (GIPS) III clinical trial demonstrates that,
among 379 non-diabetic patients with ST-elevation myocardial
infarction, four months of metformin treatment only results in a
modest improvement of the cardiovascular risk profile. Metformin
treatment reduces glycated hemoglobin, total cholesterol, LDL, and
body mass index of patients. However, levels of fasting glucose,
insulin, high-density lipoprotein cholesterol (HDL), and blood
pressure are similar between the metformin and placebo groups
(Lexis et al., 2015). GIPS III clinical trial also determines the effect
of metformin on left ventricular function after acute myocardial
infarction in patients without diabetes. The study concludes that,
compared with placebo, the use of metformin does not result in
improved left ventricular ejection fraction or NT-proBNP level
(Lexis et al., 2014). The two-years follow-up results further
demonstrate that the incidence of major adverse cardiac events
is comparable between the metformin and placebo groups
(Hartman et al., 2017). In non-diabetic cohorts with coronary
heart disease and large waist circumferences who have received
statins, metformin treatment does not affect mean distal carotid
intima-media thickness. It has little or no effect on several
surrogate markers of CVD, such as carotid plaque score,
hemoglobinA1c (HbA1c), total cholesterol, HDL, non-HDL-
cholesterol (total cholesterol value minus HDL), triglycerides,
and high sensitivity CRP (Preiss et al., 2014).

KIDNEY DISEASES

Persistent systemic inflammation is highly prevalent in patients
with chronic kidney disease (CKD). The acute or chronic-phase
of inflammation frequently accompanies the declining renal
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function (Krane andWanner, 2011). The pre-clinical studies have
provided compelling evidence that metformin protects renal
injuries by abating inflammation insulted by different stimuli.
In vitro study unravels that hyperglycemia impairs glucagon-like
peptide-1 receptor (GLP-1R) expression in HBZY-1 rat
mesangial cell line, paralleled with NF-κB activation and
increased MCP-1 protein levels. Metformin can restore GLP-
1R mRNA expression and decrease high glucose-evoked
inflammation in HBZY-1 cells (Kang et al., 2019). Metformin
inhibits TGF-β1-stimulated MCP-1, Type IV collagen, and
fibronectin expression in human proximal tubular cells (HK2
cells). The underlying mechanism is that metformin reduces the
expression of SMAD family member 3 (Smad3), phosphorylation
of ERK1/2 and P38 (Yi et al., 2018). The pregnant C57BL/6 mice
fed with a high-fat diet develop GDM. Pre-treatment with
metformin significantly decreases urine microalbumin levels
and serum β2-microglobulin in GDM mice during late
pregnancy. Furthermore, GDM mice following metformin
treatment have reduced serum levels of IL-6, TNF-α, and low
phosphorylation of MAPK1/3, MAPK14, and MAPK8 in the
kidneys (Liu et al., 2019). In addition, metformin treatment can
protect diabetic nephropathy by improving glycoxidation,
together with inhibition of fibrosis and inflammation in the
kidneys of diabetic GK rats fed with an atherogenic diet. The
renal tissue levels of IL-1β, TGF-β1 are reduced by metformin
treatment (Louro et al., 2011). Metformin exerts beneficial effects
on obesity-induced renal injury in young C57BL/6 mice fed with
a high-fat diet. Metformin treatment rescues renal AMPK activity
and fatty acid oxidation. It substantially decreases glomerular
mesangial matrix expansion and macrophage infiltration in
mouse kidney tissues (Kim et al., 2013). In C57BL/6 mice with
folic acid-induced nephropathy, metformin is able to reduce
urinary albumin excretion and prevent renal inflammatory
responses and tubulointerstitial fibrosis. The renal levels of
TGF-β1, Type IV collagen, and fibronectin are substantially
repressed by metformin treatment (Yi et al., 2018). The renal
proximal tubule-specific Tsc1 gene-knockout (Tsc1 ptKO) mice
develop aberrantly enlarged kidneys primarily that is due to
hypertrophy and proliferation of proximal tubule cells,
concurrent with interstitial inflammation and fibrosis.
However, metformin treatment increases renal AMPK
phosphorylation but decreases the Akt phosphorylation. These
signaling modulations effectively attenuate histopathological
changes and functional decline in kidney tissues of Tsc1 ptKO
mice (Fang et al., 2020). Metformin preconditioning prevents
renal tubular epithelial cell apoptosis and inflammation in
kidneys of Sprague-Dawley (SD) rats challenged with ischemia
and renal arteriovenous perfusion. Histologically, there are fewer
renal tubular necrotizing changes in the metformin group than
that in the ischemia group. The phosphorylation of AMPK is
enhanced, but caspase 3 and COX-2 levels are decreased by
metformin treatment (Wang et al., 2015). Administration with
metformin also antagonizes the tubule dilation and interstitial
inflammation caused by ureteral obstruction. In a mouse model
of unilateral ureteral obstruction (UUO), metformin reduces the
expression of extracellular matrix proteins (collagen and
fibronectin) and profibrotic TGF-β1 in obstructed kidneys,

dependent on AMPK activation. UUO-triggered interstitial
fibroblast activation is ameliorated by metformin, which is
demonstrated by the reduction of renal a-smooth muscle actin
(α-SMA) (Cavaglieri et al., 2015). Interestingly, another study
reports that in AMPK β1 deficient mice challenged with UUO,
metformin still protects renal injury histologically and
functionally, suggesting the protective effects of metformin are
not dependent specifically on activation of AMPK in mouse
kidney tissue (Christensen et al., 2016). The use of
cyclosporine A (CsA) as an immunosuppressive agent is often
limited owing to its nephrotoxic properties. Administration of
metformin and silymarin ameliorates CsA-induced functional
damages to kidneys ofWistar albino rats. Significant protection of
oxidative stress (increased SOD activity and GSH levels),
inflammation (decreased MPO and TNF-α) is observed in
kidney tissues of rat following metformin treatment.
Normalization of histological changes, as well as COX-2 and
iNOS immunoreactivity scores, further strengthens these findings
(Vangaveti et al., 2020).

Despite the aforementioned renal protective effects of
metformin in cells or animal models, it remains great cautious
about metformin’s clinical application in the setting of kidney
diseases because of the perceived risk of lactic acidosis (Lebacq
and Tirzmalis, 1972; Misbin et al., 1998). The complex interplay
between metformin, kidney injury, and lactic acidosis have been
comprehensively reviewed by Rhee et al. (Rhee and Kalantar-
Zadeh, 2017). By comparison, a few studies recently present data
indicating that metformin treatment appears to be still
pharmacologically efficacious and safe in patients with renal
impairment. However, the dose should be carefully adjusted
based on patients’ renal function (Bell et al., 2017;
Dissanayake et al., 2017; Lalau et al., 2018). The appropriate
daily dosing schedules are suggested as 1,500 mg for patients with
severe CKD stage 3A, 1,000 mg for CKD stage 3B, and 500 mg for
CKD stage 4. Hyperlactatemia is found to be absent among the
CKD stage groups (Lalau et al., 2018). In patients with stage 4
diabetic nephropathy, treatment with four weeks of low-dose
metformin (250–1000 mg, once daily) is not associated with
adverse safety outcomes and revealed stable pharmacokinetics
(Dissanayake et al., 2017). The United States FDA has relaxed its
recommendation to allow metformin use in patients with mild to
moderate renal impairment [estimated glomerular filtration rate
(eGFR): 30–60 mL/min/1.73 m2], but metformin use is
contraindicated in patients with eGFR values <30 mL/min/
1.73 m2 (Rhee et al., 2017; Flory et al., 2020).

NEURODEGENERATIVE DISEASES

Inflammation in the nervous system (“neuroinflammation”),
especially when prolonged, can be particularly injurious. The
neuroinflammation contributes substantially to disease
pathogenesis across both the peripheral (neuropathic pain,
fibromyalgia) and central [e.g., Alzheimer’s disease (AD),
Parkinson’s disease (PD), ischemia and traumatic brain injury,
multiple sclerosis, motor neuron disease, and depression]
nervous systems (Skaper et al., 2018). The male Swiss albino
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mice injected with LPS have systemic inflammation and profound
symptoms of sickness behavior. Pre-treatment with metformin
significantly reduces systemic and central inflammatory markers,
concurrent with protection against LPS-induced oxidative stress
(decreased lipid peroxidation but increased GSH levels) in brain
tissues (Mudgal et al., 2019). C57 mice challenged with cecal
ligation and puncture (CLP) exhibit septic brain damage.
Metformin can increase survival percentage, decrease brain
edema, preserve the blood-brain barrier (BBB), and improve
cognitive function. By activating PI3K/Akt signaling,
metformin reduces the neuronal apoptosis induced by sepsis
(Tang et al., 2017). Metformin also protects sepsis-associated
encephalopathy in Wistar rats after CLP. Treatment with
metformin decreases high mobility group box (HMGB1) levels
in rat brains but increases tight junction (TJ) proteins, including
claudin-3 and claudin-5 (Ismail Hassan et al., 2020). The
experimental traumatic brain injury is induced in SD rats by
the weight-dropping procedures. Metformin treatment
significantly ameliorates neurological deficit, cerebral edema,
and neuronal apoptosis. Mechanism study unravels metformin
inhibits nuclear translocation of NF-κB p65 and the
phosphorylation of ERK1/2 and p38 MAPK, which leads to
decreased pro-inflammatory cytokines production and
microglial activation in brains (Tao et al., 2018). Pre-treatment
with metformin protects forebrain ischemia injury caused by
bilateral common carotid artery occlusion in Wistar rats. The
histopathological analysis demonstrates reduced infarct size and
leukocyte infiltration, as well as repressed MPO activity in
metformin-treated rats (Karimipour et al., 2018). In SD rats
subjected to permanent middle cerebral artery occlusion,
metformin preconditioning offers neuroprotective effects
against ischemic stroke by suppressing brain NF-κB activity
and decreasing pro-inflammatory cytokines production in
peri-infarct regions. The ischemic injury-associated
microgliosis and astrocytosis are also alleviated by metformin
(Zhu et al., 2015). The intracerebral hemorrhage model is
established in SD rats by infusion of whole blood into the
right brain striatum. Metformin treatment protects rats from
neurological deficits and preserves the survival of striatal neurons
under intracerebral hemorrhage condition. Furthermore,
metformin downregulates the levels of apoptotic factors
(p-JNK3, p-c-Jun and caspase-3) as well as pro-inflammatory
cytokines (IL-1β, IL-4, IL-6, and TNF-α) (Qi et al., 2017). Aging
drives substantial molecular to morphological changes in brain.
Metformin restores the antioxidant status and improves healthy
brain aging in naturally aged and D-galactose-induced rat
models. Metformin augments ferric reducing antioxidant
potential, GSH, and Beclin-1 levels, whereas it reduces ROS,
protein carbonyl, malondialdehyde, IL-6, and TNF-α in brains of
aged rats (Garg et al., 2017). Metformin improves short-term
memory and inhibits glial cell activation and neuroinflammation
caused by experimental diabetic encephalopathy in C57BL/6mice
injected with streptozotocin. Metformin treatment increases
neuronal survival and p-AMPK in hippocampus of diabetic
mice. By contrast, metformin significantly represses reactive
gliosis, neuronal loss, and NF-kB signaling activation (Oliveira
et al., 2016).

PD is a unique neurodegenerative disorder that affects
dopamine-producing (“dopaminergic”) neurons predominantly
in a specific area of the brain called substantia nigra. Human
neuroblastoma SH-SY5Y cells exposed to 1-methyl-4-
phenylpyridinium (MPP) exhibit mitochondrial dysfunction
and other cellular responses similar to those in the
dopaminergic neurons of PD patients. Metformin is able to
increase cell viability, correlated with reduced mitochondrial
fragmentation and an improvement in the mitochondrial
membrane potential (Chanthammachat and Dharmasaroja,
2019). Due to the regulatory role of TNF receptor-associated
protein 1 (TRAP1) in mitochondrial energy metabolism control,
the homozygous TRAP1 mutation [p. Arg47Ter single nucleotide
exchange (R47X)] leads to complete functional protein loss in
patients with late-onset PD. Metformin treatment rescues the
mitochondrial membrane potential in TRAP1 R47X patients’
fibroblasts, orchestrating with down-regulated phosphorylation
of ERK1/2 (Fitzgerald et al., 2017). The murine microglial BV2
cells exposed to LPS show a pro-inflammatory phenotype.
However, metformin treatment largely prevents the LPS-
induced up-regulation of IL-1β and gene expression of
multiple subunits of the NADPH oxidase enzyme, concurrent
with decreased ROS generation. Metformin also hinders LPS-
induced microglial activation and pro-inflammatory cytokine
productions in substantia nigra of Wistar rats, associated with
decreased phosphorylation of JNK and p38 (Tayara et al., 2018).
The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
injection causes neurotoxicity and dopaminergic
neurodegeneration in the SN pars compacta of C57 mice.
Metformin prevents dopaminergic neuron loss and improves
motor behavior in the MPTP mouse model. Metformin
induces PGC-1α through activating transcription factor 2
(ATF2)/cAMP response element-binding protein (CREB)
signaling, which is critical for the neuroprotective effects of
metformin (Kang et al., 2017). One study further reveals that
metformin is able to ease MPTP-induced a-synuclein
phosphorylation and increase the level of a brain-derived
neurotrophic factor in the substantia nigra of MPTP-treated
C57 mice (Katila et al., 2017). On the contrary, it is reported
that, although metformin prevents microglial activation and
inflammation in SN pars compacta of MPTP-treated C57
mice, metformin cannot protect MPTP-induced dopaminergic
neuron loss. In mesencephalic dopaminergic cells of rat (N27)
treated with MPP, metformin can neither preserve cell viability
nor reduce ROS generation (Ismaiel et al., 2016).

The clinical evidence that metformin’s effects on PD remain
limited. The results obtained from humans do not consistently
support the protective effects of metformin on PD. T2D increases
PD’s risk by 2.2-fold in humans. Diabetic patients receiving
sulfonylureas show an increased risk of PD, but which is
avoided by combination with metformin (Wahlqvist et al.,
2012). However, in one metformin cohort study that recruits
4,651 patients, metformin exposure exhibits a higher risk of PD
than non-users [hazard ratio (HR): 2.27, 95% confidence interval
(CI) � 1.68–3.07]. The risk of all-cause dementia is also elevated
in metformin users (HR: 1.66, 95% CI � 1.35–2.04) (Kuan et al.,
2017). A meta-analysis that includes 285,966 participants further
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finds no significant effect on the incidence of all the subtypes of
neurodegenerative diseases with metformin exposure. Instead,
metformin monotherapy is associated with a significantly
increased risk of PD incidence (Ping et al., 2020).

AD, the most common neurodegenerative disease worldwide,
is characterized by the deposition of amyloid-beta (Aβ) plaques,
neurofibrillary tangles, neuronal loss, and neuroinflammation.
Unfortunately, pharmacological treatments presently available
can merely slow down symptoms but cannot cure the disease.
Metformin decreases the apoptosis of Aβ-treated SH-SY5Y
neuroblastoma cells by repressing the intracellular
concentration of Ca2+ and ROS generation. Moreover,
metformin enhances the autophagy process by promoting the
conversion of microtubule-associated protein 1 light chain 3
(LC3) in neuroblastoma cells (Li et al., 2019). Underexposure
to Aβ, the primary cultured rat hippocampal neurons have
substantial neuronal death. Metformin alleviates Aβ-induced
cellular cytotoxicity and reverses hyperphosphorylation of JNK
in the hippocampal neurons (Chen et al., 2016). In mouse
neuroblastoma cells (Neuro-2a), the prolonged
hyperinsulinemia condition induces neuronal insulin resistance
and AD-associated changes, including the high level of Aβ
peptide secretion and the presence of neurofibrillary tangles.
Metformin can sensitize the impaired insulin actions, decrease
tau phosphorylation, and inhibit NF-κB activation in mouse
neurons (Gupta et al., 2011). Metformin also restores the
impaired autophagy process in high glucose-cultured mouse
hippocampal neuron cells (HT22), as demonstrated by
increased protein levels of Beclin 1, LC3 conversion, and
structure of the autophagic vacuoles. Metformin modulates
autophagy through the AMPK dependent pathway (Chen
et al., 2019). The protein phosphatase 2A (PP2A) appears to
be the major tau phosphatase. In primary cortical neurons from
C57mice, metformin specifically reduces the tau phosphorylation
at PP2A-dependent epitopes (serine 202, serine 356, and serine
262). Interestingly, metformin’s effects on PP2A activity and tau
phosphorylation seem to be independent of AMPK because
activation of AMPK does not influence the phosphorylation of
tau at the sites analyzed. In fact, metformin can interfere with the
association of the catalytic subunit of PP2A to the so-called
MID1-α4 protein complex, which regulates the degradation of
PP2A and thereby influences PP2A activity (Kickstein et al.,
2010). The rat AD model is established by bilateral
intracerebroventricular injection of streptozotocin into brains.
Administration of metformin containing phosphatidylserine
nanoliposomes formulation improves learning and memory of
AD-rats. Metformin increases neurogenesis but significantly
depresses cytokine levels of IL-1β, TNF-α, and TGF-β in rat
hippocampal tissues (Saffari et al., 2020). Moreover, metformin
alleviates neurodegenerative changes in streptozotocin-induced
AD rats by normalization of brain glucose transport, uptake, and
metabolism, paralleled with amelioration of microgliosis and
astrogliosis. Metformin also preserves hippocampal synaptic
plasticity in the cortical and hippocampal tissues of diabetic
rats (Pilipenko et al., 2020). Metformin exerts protective
effects against spatial cognitive impairment and hippocampal
structure abnormalities in db/db mice. It enhances autophagic

clearance in hippocampi of diabetic mice and reduces tau
phosphorylation at multiple amino acid residues, such as
serine 396, serine 404, and seine 202/threonine 205 (Chen
et al., 2019). APP/PS1 double transgenic mice spontaneously
develop AD-like cognitive deficits. Metformin attenuates spatial
memory deficit, neuron loss in the hippocampus and enhances
neurogenesis in APP/PS1 mice. In addition, metformin
administration decreases Aβ plaque load and chronic
inflammation in the hippocampus and cortex. The AD-
protective functions of metformin are associated with
enhanced cerebral AMPK activation. Moreover, metformin
suppresses the activation of p65 NF-κB and mammalian target
of rapamycin (mTOR) (Ou et al., 2018). In the aging SAMP8
mouse model that exhibits spontaneous onset of AD, metformin
prevents mice’s cognitive decline by decreasing phosphorylation
of tau and reducing the amyloid precursor protein-C-terminal
fragment (APP-C99) in mouse brains (Farr et al., 2019).
However, just like two sides of the same coin, a number of
studies also indicate metformin affects amyloid-β protein
precursor (Aβ-PP) metabolism, leading to Aβ generation in
various cellular models (Chen et al., 2009; Picone et al., 2015;
Son et al., 2016). LAN5 neuroblastoma cells cultured with
metformin have increased mRNA and protein levels of Aβ-PP,
concurrent with the formation of Aβ fragments and aggregates.
Moreover, metformin treatment induces oxidative stress and
mitochondrial dysfunction by increasing genes associated with
ROS production (NOX2, NOX5, COX1, and COX2). The
antioxidants ferulic acid and curcumin revert Aβ-PP levels
induced by metformin (Picone et al., 2015). In mouse primary
cortical neurons and N2a neuroblastoma cells stably expressing
human Aβ-PP, metformin increases cellular Aβ generation. It is
attributable to increased β-cleavage because metformin
transcriptionally up-regulates β-secretase. Inhibition of AMPK
largely suppresses metformin’s effect on Aβ generation and
β-secretase transcription (Chen et al., 2009). In human
neuroblastoma SH-SY5Y cells, metformin is found to enhance
γ-secretase-mediated cleavage of Aβ-PP. The activated AMPK by
metformin suppresses mTOR and promotes the accumulation of
autophagosomes, resulting in increased γ-secretase activity and
Aβ generation in cells (Son et al., 2016). C57 mice administrated
with metformin exhibit activation of AMPK and increased levels
of β-secretase, Aβ-PP, and aggregation of Aβ in the cortex region
of mouse brains. Besides that, metformin is able to directly
interact with Aβ, influencing its aggregation kinetics and
features (Picone et al., 2016).

From a clinical perspective, there remains a debate in terms of
metformin’s effects on AD. In a small non-diabetic cohort (n �
20) with mild cognitive impairment or mild dementia due to AD,
metformin exposure for eight weeks is found to be safe, well-
tolerated. It improves learning, memory, and attention (Koenig
et al., 2017). In contrast, metformin fails to rescue the impaired
cognitive performance in diabetic participants. It is even associated
with worse performance (adjusted OR: 2.23, 95% CI � 1.05–4.75)
than non-metformin users. Vitamin B12 and calcium
supplements may alleviate metformin-induced cognitive
impairments (Moore et al., 2013). The cohort data from
National Alzheimer’s Coordinating Center suggests that the
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association between metformin use and better memory
performance overtime is only observed in diabetic patients
with normal cognition (n � 1192). By comparison, in
patients with AD (n � 807), dipeptidyl peptidase-4 inhibitor
treatment is associated with a slower memory decline (Wu et al.,
2020). In a pooled study including five population-based
cohorts (3,590 individuals with diabetes), no significant
associations are found between metformin use and brain
function and structure outcomes (Weinstein et al., 2019).
Among 7,086 AD individuals extracted from the United
Kingdom-based General Practice Research database, long-
term users of metformin prescriptions are at greater risk of
developing AD (adjusted OR: 1.71, 95% CI � 1.12–2.60) (Imfeld
et al., 2012). In light of these clinical findings, metformin’s
benefit and potential risk to patients with neurodegenerative
disorders needs to be scrutinized.

CANCER

It has been well acknowledged that inflammation is a critical
component of tumor progression. Many cancers arise from sites
of infection, chronic irritation, and inflammation. Moreover, the
tumor microenvironment is primarily orchestrated by
inflammatory cells, an indispensable participant in the
neoplastic process, fostering proliferation, survival, and
migration of tumor cells (Coussens and Werb, 2002).
Metformin and 5-aminosalicylic acid (5-ASA) cooperate to
decrease cellular proliferation and induce apoptosis of
colorectal cancer cells (HCT-116 and Caco-2 cell). Metformin
strengthens the anti-inflammatory effect of 5-ASA by suppressing
the expression of IL-1β, IL-6, COX-2, TNF-α, and TNF receptors
in cancer cells. The combination also shows metastasis-inhibitory
effects via inhibiting the enzymatic activity of matrix
metalloproteinase (MMP)-2 and MMP-9 (Saber et al., 2016).
Metformin decreases the influx of glucose and glutamine in
multiple cancer cells (HCT-116, SW480, HeLa, and MCF-7
cells) by inhibiting expressions of glucose transporter-1 and
solute carrier family -1 member 5 (SLC1A5) (Ding et al.,
2019). Malignant cells create an inflammatory
microenvironment through releasing inflammatory cytokines
and chemokines, particularly the IL-8. Metformin treatment
dampens the nuclear translocation of NF-κB in LPS-treated
HEK293/TLR4 cells, leading to suppressed IL-8 expression and
decreased cellular migration (Xiao et al., 2017). In a transgenic
zebrafish hepatocellular carcinoma model, Metformin can reduce
the development of hepatocellular carcinoma by repressing diet-
induced angiogenesis, steatosis, lipo-toxicity, and non-resolving
inflammation. Meanwhile, metformin can restore T cell
infiltration and potential surveillance (de Oliveira et al., 2019).
By skewing RAW264.7 macrophages toward M2 polarization
with decreased MCP-1 secretion, the metformin-treated
macrophages increase apoptosis, inhibit proliferation, and
decrease migration of the co-cultured HepG2 cells. Metformin
pre-treatment activates Notch signaling in macrophages but
represses it in HepG2 cells (Chen et al., 2015). Metformin
significantly inhibits IL-8 production in human colon cancer

cells (COLO205) stimulated with TNF-α, concurrent with
weakened NF-κB transcriptional activity in cells. Metformin
treatment inhibits colitis-associated colon tumorigenesis in
C57 mice induced by azoxymethane and dextran sulfate
sodium (Koh et al., 2014). The male NOD/SCIDs mice
develop xenograft by inoculating HCT116 cells. The
combination of rapamycin, metformin, and probiotics
markedly delays tumor formation and reduces tumor size. The
combination also suppresses the generation of ROS and
inflammatory cytokines (IL-3, IL-6, and TNFα), associated
with decreased phosphorylation of mTOR in tumors (Geagea
et al., 2019). Metformin together with rapamycin attenuates the
progression of prostatic intraepithelial neoplasia lesions to
adenocarcinomas in the ventral prostate of HiMyc mice. The
inhibitory effects of drug combination are more effective than
metformin alone. The reduction of mTOR signaling by
rapamycin treatment can be further potentiated by the
combination with metformin, which is demonstrated by hypo-
phosphorylation of mTOR at serine 2448 in the ventral prostate
of mice (Saha et al., 2015). Of note, metformin is able to mimic
the tumor-suppressing effects of calorie restriction (CR). As a
consequence, the growth of ovarian cancer in C57 mice
implanted with ID8 mouse ovarian cancer cells is hindered by
treatment with metformin. The inhibitory effect of metformin is
similar to treatment with a CR diet. The levels of growth factors
[insulin-like growth factor-1(IGF-1), insulin, and leptin],
inflammatory cytokines (MCP-1, IL-6), and vascular
endothelial growth factor (VEGF) in plasma and ascitic fluid
are significantly reduced by metformin. Moreover, Akt and
mTOR’s phosphorylation is inhibited by metformin in mice’s
peritoneal and adipose tissue (Al-Wahab et al., 2015). Swiss H
mice exposed to cigarette smoke for four months, starting at birth,
have preneoplastic lesions, oxidative DNA damage, and extensive
downregulation of microRNAs in lung tissues. Metformin
treatment prevents preneoplastic lesions, decreases DNA
adduct levels and oxidative DNA damage, concurrent with the
normalized expression of microRNAs (Izzotti et al., 2014).

Clinical investigations demonstrate that the tumor stroma of
patients who have ovarian cancer and receive metformin
treatment exhibits lower IL6 expression (Xu et al., 2018). The
sera from polycystic ovary syndrome women after metformin
treatment for six months exerts anti-invasive and anti-metastatic
effects on human endometrial carcinoma cells in vitro (Tan et al.,
2011). A phase II randomized trial reveals that patients with
breast and colorectal cancer show a trend toward reduction of hs-
CRP (−13.9%), soluble TNFα receptor-2 (−10.4%), or IL-6
(−22.9%) after metformin treatment. The study further
concludes that, in non-diabetic patients with low baseline
physical activity, exercise and metformin can reduce
biomarkers of inflammation associated with cancer recurrence
and mortality (Brown et al., 2020). Moreover, one meta-analysis
indicates metformin exerts beneficial effects to reduce head and
neck cancer (RR � 0.71, 95% CI � 0.61–0.84) and increase overall
survival (RR � 1.71, 95% CI � 1.20–2.42). There exists a dose-
response relationship and increased benefit when metformin is
administered alone (Saka Herran et al., 2018). Instead, in a large
cohort of 87,600 new users of metformin or sulfonylureas from
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the Health Improvement Network database, metformin is not
found to be associated with a decreased risk of bladder cancer,
and without duration-response relationship (Mamtani et al.,
2014). A retrospective study comprising 1520 patients with
breast cancer finds that, although metformin therapy reduces
insulin, sex hormones, hs-CRP, blood glucose, and lipid profile,
the overall survival is not significantly better in the metformin
arm than the control arm. The progression-free survival is not
different between the arms (Zhang et al., 2019).

CONCLUSION

A variety of evidence from cells, animal models, patient records,
and randomized clinical trials strongly suggest the anti-
inflammatory effects should be considered a potentially
important aspect of metformin’s pharmacology (Figure 1).
First of all, inflammation has been undoubtedly recognized as
an important contributor to CVD. Given that the existing

nonsteroidal anti-inflammatory drugs and anti-TNF drugs
have shown limited utility in CVD patients, the novel agents
with different inflammation-inhibitory mechanisms are worth
pursuing. The anti-inflammatory effects of metformin are evident
in pre-clinical models. It is also very encouraging that clinical
findings have verified the protective effects of metformin in
diabetic CVD cohorts. By comparison, there are still
perplexities to be addressed in repurposing metformin to
emerging non-diabetic CVD treatments. Secondly, the pre-
clinical studies prove that metformin exerts renal-protective
effects by abating inflammatory insults. We have to recognize
the controversial outcomes of metformin treatment have sparked
debate regarding its therapeutic efficacy in the clinical setting of
kidney diseases. The particular concern regarding the safety and
efficiency of metformin derives from the risk of metformin-
associated lactic acidosis. Although metformin’s application
has been relaxed among patients with mild to moderate renal
impairment, randomized controlled trials with larger sample sizes
are still waiting to be established to further validate its renal

FIGURE 1 |Metformin exhibits potent inflammation-inhibitory effects, irrespective of its capability of glucose control. Both pre-clinical (from cells and animal models)
and clinical (from patients) evidence demonstrate the therapeutic potentials of metformin to cardiovascular diseases, kidney diseases, neurodegenerative diseases, as
well as cancer. The pleiotropic actions of metformin and its anti-inflammatory properties have been reviewed in this article. Aβ, amyloid beta; AD, alzheimer’s disease;
BBB, blood-brain barrier; BNP, B-type natriuretic peptide; CK-MB, creatinine kinase-myocardial band; COX, cyclooxygenase; CR, calorie restriction; CRP,
C-reactive protein; CVD, cardiovascular diseases; CXCL12, C-X-C motif chemokines ligand 12; Drp-1, dynamin-related protein-1; EC, endothelial cell; ERK,
extracellular-signal regulated kinases; eGFR, estimated glomerular filtration rate; FDA, Food and Drug Administration; GLP-1R, glucagon-like peptide-1 receptor;
Glut1, Glucose transporter 1; GSH, glutathione; HDAC5, histone deacetylase 5; HMGB1, high mobility group box; ICAM-1, intercellular adhesion molecule-1; IL,
interleukin; iNOS, inducible nitric oxide synthase; I/R, ischemia/reperfusion; KLF2, kruppel-like factor 2; MAPK, mitogen-activated protein kinase; LDH, lactate
dehydrogenase;MCP-1, monocyte chemoattractant protein-1;miR, microRNA;MMP, matrix metalloproteinase; MPO, myeloperoxidase;mTOR, mammalian target
of rapamycin; MYD88, myeloid differentiation protein 88; NLR, Neutrophil-Lymphocyte ratio; p, phosphorylation; PBMC, peripheral blood mononuclear cells; PD,
Parkinson’s disease; PP2A, protein phosphatase 2A; PTEN, phosphatase and tensin homolog; PGF2α, prostaglandin F2α; PRDX, peroxiredoxin; ROS, reactive
oxygen species; Smad3, SMAD family member 3; SLC1A5, solute-carrier family 1 member 5; SOD2, superoxide dismutase 2; TGF-β, transforming growth factor beta;
TJ, tight junction; TLR, toll-like receptor; TNF, tumor necrosis factor; TRXR, thioredoxin reductase; STAT3, signal transducer and activator of transcription 3; VCAM-1,
vascular cell adhesion molecule 1; VSMC, vascular smooth muscle cell. The blue arrow indicates the up-regulatory effects of metformin, whereas the red arrow indicates
metformin’s down-regulatory effects.
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protective properties. Thirdly, it is likely that metformin exerts
pleiotropic effects by targeting different molecules in brain
tissues. Therefore, it is understandable that the impact of
metformin on neurodegenerative diseases is complex and
dependent on the type and the nature of the neuron injuries.
Despite the compelling evidence that has demonstrated
metformin’s actions to antagonize neuroinflammation and
oxidative stress in cells or animals, unfortunately, clinical
investigations have not provided convincing evidence to
consolidate its translational values to treat neurodegenerative
diseases. Of note, the pooled analysis even suggests the worse
consequence in patients with metformin exposure. As such, more
studies are required to scrutinize metformin’s benefits and the
potential risk to patients and render a better understanding of the
underlying pathogenic mechanism. Similarly, the evidence from
both observational and laboratory studies suggest that metformin
has antineoplastic activity, in part by its capability to antagonize
inflammation and modulate immunity. A careful reassessment is
still warranted to figure out metformin’s utilization in cancer
therapy. It would be an active field investigated in depth. In

summary, metformin is a safe, inexpensive medication with a
history of more than 50 years of clinical experience in treating
patients with T2D. Future randomized controlled trials,
incorporating better stratification/targeting, would establish
metformin’s utility in other emerging clinical domains,
particularly for inflammation-driven chronic diseases.
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