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Brazil, 7Programa de Pós-Graduação Em Biologia Celular e Molecular (PPGBMC), Universidade Federal Do Estado Do Rio de
Janeiro, Rio de Janeiro, Brazil

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified for the first time
in Wuhan, China, causes coronavirus disease 2019 (COVID-19), which moved from
epidemic status to becoming a pandemic. Since its discovery in December 2019,
there have been countless cases of mortality and morbidity due to this virus. Several
compounds such as chloroquine, hydroxychloroquine, lopinavir-ritonavir, and remdesivir
have been tested as potential therapies; however, no effective treatment is currently
recommended by regulatory agencies. Some studies on respiratory non-enveloped
viruses such as adenoviruses and rhinovirus and some respiratory enveloped viruses
including human respiratory syncytial viruses, influenza A, parainfluenza, SARS-CoV, and
SARS-CoV-2 have shown the antiviral activity of cardiac glycosides, correlating their effect
with Na+/K+-ATPase (NKA) modulation. Cardiac glycosides are secondary metabolites
used to treat patients with cardiac insufficiency because they are the most potent inotropic
agents. The effects of cardiac glycosides on NKA are dependent on cell type, exposure
time, and drug concentration. They may also cause blockage of Na+ and K+ ionic transport
or trigger signaling pathways. The antiviral activity of cardiac glycosides is related to cell
signaling activation through NKA inhibition. Nuclear factor kappa B (NFκB) seems to be an
essential transcription factor for SARS-CoV-2 infection. NFκB inhibition by cardiac
glycosides interferes directly with SARS-CoV-2 yield and inflammatory cytokine
production. Interestingly, the antiviral effect of cardiac glycosides is associated with
tyrosine kinase (Src) activation, and NFκB appears to be regulated by Src. Src is one
of the main signaling targets of the NKA α-subunit, modulating other signaling factors that
may also impair viral infection. These data suggest that Src-NFκB signaling modulated by
NKA plays a crucial role in the inhibition of SARS-CoV-2 infection. Herein, we discuss the
antiviral effects of cardiac glycosides on different respiratory viruses, SARS-CoV-2
pathology, cell signaling pathways, and NKA as a possible molecular target for the
treatment of COVID-19.
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INTRODUCTION

Acute respiratory infections are the leading cause of morbidity
and mortality from infectious diseases worldwide, due to highly
contagious viruses and rapid dispersal, which may cause a
collapse of the health system (Nair et al., 2011). In recent
years, several viral epidemics have occurred, such as the
severe acute respiratory syndrome coronavirus (SARS-CoV)
epidemic in 2003, the influenza A H1N1 epidemic in 2009,
and the Middle East respiratory syndrome coronavirus (MERS-
CoV) epidemic in 2012. Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), identified for the first time in
2019 in Wuhan, China, caused the coronavirus disease
(COVID-19) that moved from epidemic status, to becoming
a pandemic (Cascella et al., 2020). Several compounds have been
proposed for COVID-19 treatment, but none have been shown
to be effective. Although cardiac glycosides (CGs) are not
specifically used for the treatment of viral infections
(Buckalew, 2015), some studies have shown their antiviral
effects on different respiratory viruses and associated this
effect with the inhibition of Na+/K+-ATPase (NKA) (Sato
and Muro, 1974). Herein, we discuss the antiviral activity of
CG on respiratory viruses through NKA inhibition. We also
suggest a role for NKA inhibitors as an option for COVID-19
therapy.

CGS

CGs are a group of secondary metabolites that are widely
distributed in nature, from different sources, and with
different applications; however, they have a very similar
chemical structure (Schonfeld et al., 1985). This consists of a
steroid ring, a lactone ring with five or six carbons, and a sugar
moiety (Prassas and Diamandis, 2008). These metabolites are
divided into two subgroups: cardenolides, obtained from the
extracts of Digitalis, Strophanthus, and the Uregenia plant
species (Rodrigues-Mascarenhas et al., 2009) and
bufadienolides, obtained mainly from toad toxins (Prassas
and Diamandis, 2008; Ma et al., 2012). The broad diversity
of these molecules is due to small differences in their structure
(Prassas and Diamandis, 2008), which may influence the
mechanisms by which these compounds disturb or
inhibit DNA.

The effect of CG may involve Ca+2 calmodulin kinase
(Diederich et al., 2017). Cardenolides are composed of a
butyrolactone ring with five carbons, whereas bufadienolides
contain a pyrone ring with six carbons (Prassas and
Diamandis, 2008). Besides these structural differences, all CGs
are C23 steroids with one or more sugar residues at C3 and a
lactone ring at C17. Worldwide, digoxin is the cardenolide most
used to treat patients with cardiac insufficiency, whereas ouabain
is the most experimentally used. Both digoxin and ouabain act
through NKA inhibition (Rose and Valdes, 1994) and are the
most potent inotropic agents known (Buckalew, 2015). CGs do
not promote disease regression but improve symptoms and
stabilize clinical conditions (Abdul-Rahim et al., 2016).

NKA

Na+/K+-ATPase is a transmembrane enzyme present in
eukaryotic cells that maintains the electrochemical ion
gradient between the extra- and intracellular medium by
pumping two K+ ions into the cell and three Na+ ions out of
the cell (Sen and Post, 1964; Buckalew, 2015). A classical inhibitor
of NKA is known to be a CG (Rodrigues-Mascarenhas et al.,
2009). Inhibition of NKA occurs through binding to the enzyme’s
α subunit localized on the extracellular surface of the cytoplasmic
membrane, blocking the enzyme in the phosphorylated mode E2
(Buckalew, 2015). Besides inhibitor ligand sites, the α subunit also
contains ligand sites for K+ (extracellular surface) and Na+ (inner
surface) (Mobasheri et al., 2000). The NKA also contains the β
subunit, serving as a guide to stabilize the α subunit in the
membrane and to regulate the affinity of the α subunit for K+

and CG (Mobasheri et al., 2000). The γ subunit modulates the
affinity of the enzyme for different ligands (Therien et al., 2001)
and has direct positive effects on the maximum velocity of ATP
hydrolysis (Cortes et al., 2006).

The enzymatic inhibition was first correlated to the ionic
transport of Na+ and K+ blockage, increasing intracellular Ca+

concentration and resulting in muscular contraction
(Wasserstrom and Aistrup, 2005). Nevertheless, NKA
inhibition by CG also triggers signaling pathways through the
activation of protein kinase C (PKC), protein kinase A (PKA),
phosphoinositide 3-kinase (PI3K) (Therien and Blostein, 2000),
protein kinase B (AKT) (Yudowski et al., 2000), tyrosine kinase
(Src) (Xie, 2003), nuclear factor kappa B (NFκB) (Kassardjian and
Kreydiyyeh, 2008), and epidermal growth factor receptor (EGFR)
(Li and Xie, 2009). This function seems to have been acquired
through the incorporation of many domains that interact with
proteins and ligands (Xie and Cai, 2003). According to Razani
et al. (2002), the NKA type with a predominant function in
cellular signaling is restricted to caveolae, areas of the plasma
membrane with high levels of cholesterol, glycosphingolipids,
and sphingomyelin. This is different to the type of NKA with an
ion-pumping function, which is located along the membrane
(Razani et al., 2002). The signal transduction function of NKA
appears to be facilitated by properties that are independent of its
function as an ion pump (Liang et al., 2007), because a low
concentration of CG triggers cell signaling, and a high
concentration causes the interruption of the ionic pump (Xie
and Cai, 2003).

Several reports have shown the importance of ion pump-NKA
alveolar epithelial cells for lung edema clearance (Olivera et al.,
1994; Berthiaume et al., 1999; Borok et al., 2002). When the
enzymatic activity is inhibited or increased, NKA plays a role in
the clearance of edema (Sznajder et al., 2002). Factor et al. (1998)
showed that the transfection of the α1-subunit and β1-subunit
gene through adenovirus type 5 promoted overexpression of both
subunits and increased the ion pump-NKA in the human lung
cell line (A549), favoring pulmonary edema clearance.
Additionally, active Na+ transport is important in the edema
clearance of patients with acute respiratory illnesses
(O’Brodovich, 1990; Sznajder et al., 2002). Different isoforms
of NKA are expressed in different cell types. Alveolar cell type 1,
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which contributes to active Na+ transport, expresses NKA α2
(which contributes to alveolar fluid clearance), while NKA α1,
the most ubiquitous, is expressed in alveolar cell type 1 and
type II (Johnson et al., 2002; Ridge et al., 2003).

β-adrenergic compound agonists such as dopamine,
terbutaline, and isoproterenol improve lung liquid clearance
by upregulating NKA (Saldías et al., 2000; Saldías et al., 2002).
At low concentrations, CG inhibits the enzyme, displaying cell
signaling via NKA without interruption of ion-pump function,
which is essential for edema clearance (Chioncel et al., 2015).
The ion pump-independent action and signal transduction
turn NKA into an important clinical treatment target.

CGS AS ANTI-INFLAMMATORY DRUGS

CGs act on leukocytes that inhibit cell proliferation, migration,
and the production of proinflammatory cytokines (Cavalcante-
Silva et al., 2017; Furst et al., 2017; Cavalcante-Silva et al., 2020).
CGs inhibit NFκB (Yang et al., 2005) and reduce viral entry into
lung epithelial cells, directly decreasing proinflammatory
cytokine production (Mahase, 2020). This is a prerequisite for
viruses infecting lung epithelial cells and virus proliferation (Yang
et al., 2005).

During lung epithelial cell infection, NFκB inhibition by the
CG digitoxin abolished the production of proinflammatory
cytokines, such as tumor necrosis factor alpha (TNFα),
interleukin 1 beta (IL-1β), C-X-C motif ligand 1, growth-
regulated oncogene/keratinocyte chemoattractant (GRO/
KC), macrophage inflammatory protein 2-alpha (MIP2-
alpha), monocyte chemoattractant protein 1 (MCP1),
transforming growth factor beta (TGFβ), and interferon
gamma (IFNγ) (Yang et al., 2005). Moreover, digitoxin
inhibited hypersecretion of IL-8-dependent TNFα by
blocking the recruitment of the TNF receptor-associated cell
death domain protein (Srivastava et al., 2004; Yang et al.,
2005).

In vivo, CG also has an anti-inflammatory role. Ouabain
inhibits CD18 expression in monocytes; CD18 is an adhesion
molecule involved in monocyte migration to the inflammatory
site of injury (Cavalcante-Silva et al., 2020). Ouabain also reduces
fluid extravasation, leukocyte infiltration, and the levels of the
cytokines IL-1β and TNFα in mice with zymosan-induced
peritonitis (Leite et al., 2015). Additionally, digoxin reduces
the expression of IL-17, IL-1β, IL-6, TNFα, and IL-21 in mice
with arthritis (Lee et al., 2015). Ouabain suppresses the
production of IL-6 and TNFα by peripheral blood
mononuclear cells that have been activated with
lipopolysaccharide (LPS) from E. coli, protecting from LPS-
induced lethality (Matsumori et al., 1997). The protective
effect of ouabain was further studied in mouse acute lung
injuries; ouabain decreased TNFα, IL-1β, and IL-6 production,
diminished neutrophil and mononuclear influx, and reduced
pulmonary permeability and edema formation (Wang et al.,
2018). Furthermore, in a model of airway allergic
inflammation, ouabain decreased the levels of IL-13 and IL-4
in bronchoalveolar lavage fluid, cell migration into

peribronchiolar and perivascular areas, and mucus production
in bronchioles (Galvao et al., 2017).

CGS, NKA, AND RESPIRATORY VIRUSES

Respiratory Viruses and NKA Expression
and Activity
Balanian (1975) showed that NKA interactions with an
adenovirus and another viral family, inhibited NKA enzymatic
activity (Balanian, 1975). The interaction between some virus
types and NKA subunits modulates enzyme activity, resulting in
virus replication (Amarelle and Lecuona, 2018).

Some enveloped respiratory viruses downregulate the
expression and activity of NKA (Table 1). The SARS-CoV
envelope protein alters lung epithelium integrity and induces
the displacement of basolateral NKA from the plasma
membrane due to the bronchiolar barrier desquamation,
impairing edema clearance by enzymatic activity (Nieto-
Torres et al., 2015). Influenza A H1N1 (A/Hong Kong/54/
98 strain) and H5N1 (A/Hong Kong/483/97 strain) strains
affect alveolar fluid clearance by alveolar epithelial cells by
NKA downregulation (Chan et al., 2016). Influenza A virus
(IAV A/PR/8/34 strain) infection in alveolar epithelial cells
also reduces NKA expression; it disturbs the host-signaling
pathway by increasing the IFN-dependent TNF-related
apoptosis-inducing ligand (TRAIL) (Peteranderl et al.,
2016). The interaction of the H1N1-M2 protein (IAV A/PR/
8/34 strain) with pulmonary cell NKA modifies the classic
profile of the NKA α1 subunit’s basolateral expression and
disperses the β1 subunit, worsening edema clearance during
acute respiratory distress syndrome (ARDS)-induced by
H1N1(IAV A/PR/8/34 strain) (Peteranderl et al., 2016).
Decreased expression of the NKA α subunit has been
observed in normal human bronchial epithelial cells
infected with H1N1 (IAV A/Puerto Rico/8/1934ΔGFP strain),
resulting in pulmonary fluid homeostasis dysregulation
(Brand et al., 2018). Table 1 shows the influence of
respiratory viruses on NKA activity.

The importance of NKA activity in viral replication has
previously been reported. Our group has shown the
importance of ion concentrations in the viral replication
process. We have also observed that CG-induced changes in
the concentration of Na+ and K+ interfere with the gene
expression and virus yield of alphaviruses and inhibit their
intracellular viral protein synthesis (Souza-Souza et al., 2020).
This evidence corroborates the findings of Strauss et al. (1980),
which showed the importance of ionic changes in host cells for
replication of the Sindbis virus (mutant ts103), Semliki Forest
virus, Middelburg virus, rhabdovirus, and vesicular stomatitis
virus (Indiana serotype) (Strauss et al., 1980; Zhang et al.,
2005).

Palù et al. showed that NKA activity was linked with several
events after viral infection (Palu et al., 1994). Only infection by
non-enveloped respiratory virus adenovirus (Ad2 strain)
increases NKA activity during the replication process. The
interaction between adenovirus and NKA increases enzymatic
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activity, favoring lysis of endocytic vesicles and resulting in the
release of the virus into the cytoplasm. Nevertheless, it is
unclear if the effect on the enzyme is direct or indirect
(Seth et al., 1987).

CG Activity Against Non-enveloped
Respiratory Viruses
NKA inhibitors have been identified as a new antiviral
therapeutic alternative. The antiviral activity of CG has
been related to a variety of viruses, including adenovirus
and rhinovirus A (Table 2). Adenovirus is known to cause
a relatively mild upper respiratory tract disease and more
severe bronchiolitis, pneumonia, diarrhea,
meningoencephalitis, cystitis, and conjunctivitis (Rocholl
et al., 2004; Chhabra et al., 2013).

Stoilov et al. (2008) screened a library of known bioactive
compounds for the capacity to modulate exon inclusion by
microtubule-associated protein tau (MAPT) exon 10 in
adenovirus mRNA. CGs (digoxin, lanatoside C,
digitoxigenin, and ouabain) alter RNA splicing, interfering
directly with viral translation (Stoilov et al., 2008). qRT-PCR
analyses reveal that digoxin and digitoxin reduce genome

levels at 20–22 h post-infection, altering RNA splicing of
immediate-early protein (E1A) in the early stages of
infection and partially blocking the RNA transition at late
stages of adenovirus replication (strain HAdV-A31, -B35, -C5,
and a species D conjunctivitis isolate) (Grosso et al., 2017).
Additionally, digoxin and digitoxin have a virucidal effect
between 2 and 4 h after adenovirus (HAdV-A31) interaction
and reduce the yield of infectious progeny virions (Grosso
et al., 2017).

Human rhinoviruses are the primary etiological agents of the
‘common cold’ (Skern et al., 1985). Although rhinovirus
infections are self-limiting and present with mild symptoms,
elderly patients, with or without respiratory disease, may have
severe complications (Arruda et al., 1997). After the first step,
i.e., attachment and penetration of the virus into the cellular
cytoplasm, the viral RNA is translated into a single polyprotein
that undergoes proteolytic self-cleavage by the viral proteases 2A
and 3C (Skern et al., 1985). This generates functional structural
and non-structural proteins (nsps) for continued viral RNA
replication and assembly of progeny virions (Matthews et al.,
1999). Sato and Muro (showed that scillarenin inhibits the
picornavirus, especially strain 2060 of the rhinovirus, during
RNA synthesis if added during the first half of the latent

TABLE 1 | Na+/K+-ATPase modulation by respiratory viruses.

Virus NKA modulation Modulatory effect References

Non-enveloped
respiratory viruses
Adenovirus Positive Favors viral release into cytoplasm by lysis of endocytic vesicle Seth et al. (1987)

Enveloped respiratory
viruses
Coronavirus Negative Difficult alveolar fluid clearance Nieto-Torres et al. (2015)
Influenza A Negative Affects alveolar fluid clearance Chan et al. (2016), Peteranderl et al. (2016)
Influenza A Negative Dysregulates pulmonary fluid homeostasis Brand et al. (2018)
Human respiratory syncytial virus Negative Formation of macropinosomes, favoring viral entry Lingemann et al. (2019)

TABLE 2 | Antiviral mechanisms of cardiac glycosides.

Viruses Cardiac glycosides Antiviral mechanism References

Enveloped
respiratory viruses
Influenza A Ouabain, Adenium obesum Inhibit viral replication Amarelle et al. (2017)

Kiyohara et al. (2012)
Human respiratory syncytial virus Ouabain Inhibits viral entry Lingemann et al.

(2019)
Middle East respiratory syndrome

coronavirus
Ouabain, Bufalin Inhibit early entry stage Burkard et al. (2015)

Severe acute respiratory syndrome
coronavirus 2

Digoxin, Ouabain Inhibit viral replication Cho et al. (2020)

Non-enveloped
respiratory viruses
Adenovirus Digoxin, lanatoside C, ouabain, digitoxigenin,

digitoxin
Alter RNA splicing, virucidal effect, RNA
tranition

Stoilov et al. (2008)
Grosso et al. (2017)

Rhinovirus A Scillarenin 3-O-[N-(tert-butoxycarbonyl)-hydrazido]
suberoyl)

Inhibit RNA synthesis, virucidal effect Sato and Muro (1974)
Kamano et al. (1988)
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period (Sato and Muro, 1974). Kamano et al. analyzed 34
bufadienolides and two cardenolides in rhinovirus (2060)-
infected HeLa cells (Kamano et al., 1988), finding that some
bufadienolides exhibited better antiviral activity than
cardenolides. In addition to scillarenin and 3-O-[N-(tert-
butoxycarbonyl) hydrazide]suberoyl, both bufadienolides
inactivated all viral particles (Sato and Muro, 1974). Table 2
contains some examples of the antiviral effects of CGs and their
mechanisms of action.

CG Activity Against Enveloped Respiratory
Viruses
The inhibitory effects of CG occur at different phases of the life
cycle of non-enveloped viruses and enveloped respiratory viruses
such as influenza A, human respiratory syncytial virus (RSV), and
coronavirus (Amarelle and Lecuona, 2018) (Table 2).

The influenza virus is a human pathogen causing annual
epidemics that threaten to become worldwide pandemics due
to the circulation of different virus strains (Potter, 2001). In
1918–1919, the influenza A H1N1 pandemic killed
approximately 50 million people (Morens and Fauci, 2007).
The most recent registered influenza pandemic was in 2009,
causing approximately 18,500 confirmed deaths and affecting
214 countries (World-Health-Organization, 2009). The viral
multiplication cycle starts with the influenza virus assembling
sialic acid on the cellular glycoprotein or glycolipid through to the
outer side of the HA molecule (de Graaf and Fouchier, 2014).
Medical treatment of influenza, generally based on the
administration of neuraminidase inhibitors (Oxford et al.,
2002) is no longer effective. An in vitro screening model
revealed that CGs have potential anti-influenza activity against
strains A/WSN/33 (influenza A) and B/Yamagata/88 (influenza
B) (Hoffmann et al., 2008). Amarelle et al. showed that 20 nM of
ouabain, 50 nM of digoxin, and 100 nM of cinobufagin inhibit the
influenza A virus. Ouabain inhibited influenza A replication
between 4 and 6 h post-infection by decreasing intracellular
K+ without impairing viral entry and mRNA transcription.
Ouabain post-treatment did not inactivate influenza A
particles (Amarelle et al., 2017). Adenium obesum (Forssk.)
CG also inhibited influenza A virus (A/PR/8/34 strain)
replication in Madin-Darby canine kidney cells at low
concentrations (Kiyohara et al., 2012).

Parainfluenza viruses, the Sendai virus, frequently induce
acute respiratory tract diseases in infants and
immunocompromised adults (Glezen et al., 2000). The first
step of the infection process is the attachment of the HN
glycoprotein to its cellular receptor, followed by the release of
a nucleocapsid structure containing the genome into the
cytoplasm, then transcription of RNA in an mRNA species by
RNA-dependent RNA polymerase (Xu et al., 2013). Nagai et al.
(1972) reported that the action of ouabain on these viruses is
time-dependent; treatment with ouabain is effective if added until
9 h post-infection of the Sendai virus (isolated from the Nagoya
1–60 strain), while pre-treatment with ouabain is not.

Human RSV causes severe lower respiratory tract infections in
infants and young children worldwide (Lozano et al., 2012). The

infection begins upon attachment of the virion to the apical
surface of airway epithelial cells by the G glycoprotein (Zhang
et al., 2002). After fusion, the helical ribonucleoprotein complex is
released into the host cell cytoplasm (Rincheval et al., 2017). In
the initial screening of 2560 compounds, only CGs significantly
reduced RSV (rgRSV224 strain) infectivity, and digoxin and
digitoxin showed antiviral activity with low cytotoxicity
(Norris et al., 2018). A decrease in intracellular K+ inhibits
RSV (rgRSV224 strain) replication. Furthermore, intracellular
Na+ and K+ affect the viral multiplication cycle; changes occur in
the initial 4 h of viral infection that interfere with viral RNA
synthesis without decreasing attachment/entry steps (Norris
et al., 2018). In another experiment, ouabain treatment led to
reduced RSV yield (strain RSV-GFP), affecting an early infection
step, such as viral entry (Lingemann et al., 2019).

Burkard et al. (2015) showed that ouabain and bufalin inhibit
MERS-CoV infection by silencing or inhibiting the NKA α1-
subunit at an early entry stage. Ouabain shows potent inhibitory
effects against transmissible gastroenteritis coronavirus (TGEV),
with IC50 values ranging from 143 ± 13 nM, decreasing the
number of viral RNA copies (Yang et al., 2017; Yang et al., 2018).
CGs also inhibit SARS-CoV-2 infection; ouabain and digitoxin
inhibit viral mRNA expression, copy number, and viral protein
expression of SARS-CoV-2 at the post-entry stage (Hoehl et al.,
2020) (Figure 1A).

CGs and Coronaviruses
Epidemiology of SARS-CoV-2 Infection
Recently, SARS-CoV-2 was discovered in China and spread
rapidly worldwide with greater virulence than the SARS-CoV
outbreak in 2003 (Huang et al., 2020). Coronavirus infection can
cause gastroenteritis, hepatitis, respiratory tract infections
resembling the common cold, lower respiratory tract infections
such as bronchitis and pneumonia, SARS, systemic diseases, and
even death in humans (Owusu et al., 2014).

Since the first report of SARS-CoV-2 infection in December
2019 from the World Health Organization (WHO) Country
Office in China, the number of COVID-19 cases has been
growing steadily at an alarming pace (WHO, 2020b).
According to the WHO, the cases identified outside of China
in the early global spread occurred because infected travelers
traveled abroad. Countries such as Australia, Canada, Cambodia,
France, Finland, Germany, India, Italy, Japan, Nepal, Malaysia,
the Philippines, the Republic of Korea, Singapore, Sri Lanka,
Thailand, the United States of America (USA), United Arab
Emirates, and Vietnam were the first to report Chinese
traveler-associated COVID-19 cases (World-Health-
Organization, 2020b). Some months after the initial report in
China, the first SARS-CoV-2 infection notifications in South
America emerged; Brazil, Peru, and Ecuador were the
countries with the most significant number of cases (Dong
et al., 2020). Currently, the USA and Brazil are the epicenters
of the COVID-19 pandemic (World-Health-Organization,
2020a).

Data from China reveal that SARS-CoV-2 is highly virulent
compared to SARS (Li Q. et al., 2020). The incubation period for
SARS-CoV-2 is 4.5–5.8 days (Lauer et al., 2020). The infection
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then evolves to a pre-symptomatic stage (1–3 days) through
symptomatic infection (2–4 weeks) to a prolonged post-
symptomatic or recovery stage (2–8 weeks) (Subbarao and
Mahanty, 2020). The median age of hospitalized patients with
COVID-19 was 63 years (Bordallo et al., 2020). The SARS-CoV-2
infection affects people who are 2–72 years of age, with a high
prevalence in men (Backer et al., 2020). People with chronic
cardiovascular and pulmonary disease, immunodeficiency,
hypertension (Ejaz et al., 2020; Flaherty et al., 2020), and
diabetes, along with elderly patients (Wang et al., 2020) are
more prone to infection and death by SARS-CoV-2 than
healthy people. In Brazil, chronic heart disease is the deadliest
comorbidity in COVID-19 patients (Pachiega et al., 2020).

The fatality rate tends to vary, ranging from 2.8 to 11% (Wang
et al., 2020) with a median of 5% (Li L. Q. et al., 2020). There have
been more than 15 million cases across the world and more than
625,000 people have died (World-Health-Organization, 2020c).
However, sub-notification and delays to case confirmations can
quickly change the statistics (Rocha-Filho, 2020).

The recovery time for COVID-19 is approximately 14 days
(Noor et al., 2020; Wang et al., 2020). Asymptomatic SARS-CoV-
2-infected people and patients in incubation or those who have
recovered from COVID-19 may shed infectious virus particles
(Hoehl et al., 2020) for up to 3 or 4 weeks (Lan et al., 2020),
representing a considerable challenge for disease prevention and
control.

SARS-CoV-2 has a broad spectrum of infection from
asymptomatic patients to patients who develop mild,
moderate, or severe forms of ARDS (Vardhana and Wolchok,
2020). Most patients have mild symptomatology without needing
hospital treatment, with the appearance of fever, a dry cough, and
tiredness. Less common symptoms are headache, aches and
pains, nasal congestion, diarrhea, sore throat, loss of taste, or
loss of smell (Struyf et al., 2020).

Pathogenesis of SARS-CoV-2 Infection
SARS-CoV-2 is transmitted predominantly via respiratory
droplets and direct contact (Lai et al., 2020). SARS-CoV enters

FIGURE 1 | Summary of the antiviral properties of cardiac glycosides and Na+/K+-ATPase as a signal transducer. (A) Binding of SARS-CoV spike protein to the
ACE2 receptor leads to membrane fusion or endocytosis, a process inhibited by ouabain and bufalin (1). Once in the cytoplasm, the viral genome is released (2) and
translated into replicase proteins. The polyproteins are cleaved by a virus protease into individual replicase complex nonstructural proteins (nsps) (3), forming the
replication-transcription complexes where replication begins (4). (B) Na+/K+-ATPase acts in ion transport, edema clearance, and as a signal transducer. Cardiac
glycoside binding to the preassembled Na+/K+-ATPase (pump) signalosome in caveolae transduces signals via multiple pathways. Activated NKA rapidly activates Src
tyrosine kinase, which activates the EGFR. Activated EGFR recruits protein adaptors that activate the Ras-GTP complex, leading to MEK pathway activation. MAPK
activation triggers the opening of mitochondrial ATP-sensitive potassium channels (mitoKATP), resulting in ROS production and NFκB activation. The MEK pathway also
activates NFκB through ERK ½ activation. In parallel, Src modulates the activation of the PI3K/PDK1 pathway, which is associated with viral activity and replication
suppression. Activated PI3K phosphorylates Akt, which phosphorylates a variety of downstream pathways related to growth, survival, and proliferation. NKA activates
phospholipase C (PLC) and inositol-1,4,5-triphosphate (IP3); the latter binds to the IP3 receptor of the endoplasmic reticulum, releasing calcium ions into the cytoplasm.
Calcium oscillation activates PKC and NFκB. ACE2, angiotensin-converting enzyme 2; TMPRSS2, transmembrane protease serine 2; Src, non-receptor tyrosine
kinases; EGFR, epithelial growth factor receptor; PKC, protein kinase C; PI3K, phosphoinositide 3′ kinase; PLC, phospholipase C; MAPK, mitogen-activated protein
kinase; MEK, MAPK–ERK activating kinase; ROS, reactive oxygen species; mitoKATP, mitochondrial ATP-sensitive potassium channel.
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the host cell through interaction between the viral spike protein
and the angiotensin-converting enzyme 2 (ACE2) of the host cell,
triggering the virus’s fusion with the cellular membrane and
consequently releasing the viral genome into the cytoplasm
(Belouzard et al., 2009). In the cytoplasm, replicase gene
translation ensues from the virion genomic RNA, which
encodes two large open reading frames: rep1a and rep1b.
These express the polyproteins pp1a and pp1ab, posteriorly
translated in nsps (Brierley et al., 1989).

As with SARS-CoV, the SARS-CoV-2 virus enters cells by
binding its spike to ACE2 (Hoffmann et al., 2020). After this
first contact, SARS-CoV-2 uses an enzyme, the cellular serine
protease TMPRSS2, to prime the spike protein (Hoffmann
et al., 2020). The spike protein of SARS-CoV-2 contains a
receptor-binding domain (RBD) that specifically recognizes
ACE2 as its receptor. The SARS-CoV-2 RBD contains a core
and a receptor-binding motif that mediates tight binding with
ACE2 (Shang et al., 2020). The C-terminal domain (CTD) of
SARS-CoV-2 also binds to ACE2.Wang et al. (2020) demonstrated
that key residue substitutions in the SARS-CoV-2 CTD slightly
strengthen the interaction with ACE2 and leads to a higher affinity
for receptor binding than with the SARS RBD (Wang et al., 2020).
This interaction between the S protein and its receptor is
responsible for the species specificity and tissue tropism of the
virus (Li et al., 2005). The cleavage of the viral protein by TMPRSS2
is crucial for the fusion between the virus and cellular membrane,
starting the viral infection process (Hoffmann et al., 2020). Some
cells show accentuated vulnerability to infection, such as type II
alveolar cells, myocardial cells, esophagus epithelial cells, proximal
tubule cells of the kidney and ileum, and urothelial bladder cells
(Zou et al., 2020).

The SARS-CoV-2 S-protein sequence contains 12 additional
nucleotides upstream of the single Arg cleavage site 1, which is
associated with a canonical furin-like cleavage site (Coutard et al.,
2020). This furin-like cleavage site may support virus egress by
being cleaved for S-protein priming and may provide an
advantage in transmission when compared to other lineages of
beta-coronaviruses (Coutard et al., 2020). Coronavirus
replication occurs entirely in the cytoplasm (Subbarao and
Mahanty, 2020). After entry and uncoating, the virus genome
is translated into the pp1a and pp1ab replicase polyproteins to
start RNA synthesis in the replicase–transcriptase complex (de
Wilde et al., 2018). Viral RNA synthesis produces genomic and
subgenomic RNAs, and the viral structural proteins are inserted
into the endoplasmic reticulum, where mature virions are formed
(Fehr and Perlman, 2015).

Higher expression of ACE2 may prolong the virus
multiplication cycle, enhance virus replication, and mediate
penetration of the virus into the host cell (Tian et al., 2020).
SARS-CoV and SARS-CoV-2 bind to ACE2, leading to
downregulation (Kumar et al., 2020). The virus appears to
enter cells via the membrane receptor, which is functionally
removed from the external site of the membrane, consequently
increasing the bioavailability of angiotensin 2 (Verdecchia et al.,
2020). Angiotensin 2 is associated with other pulmonary diseases
such as ARDS by triggering significant inflammatory lesions in
the respiratory tree-like inflammatory infiltrate, edema, and

alveolar wall thickening, which contribute to heightened viral
pathogenesis (Imai et al., 2005; Kuba et al., 2005).

In the lungs, over-activation of angiotensin II receptor type 1
(Ang2-AT1R) leads to severe lung injury and lung failure due to
pneumonia (Banu et al., 2020). Activation of the Ang2-AT1R
pathway activates NFκB, increasing the expression of
proinflammatory cytokines (Albini et al., 2020). It also
activates the JAK/STAT pathway and ADAM17, leading to
downstream production and release of IL-6 (Catanzaro et al.,
2020) and inactivating ACE2 (Eguchi et al., 2018), respectively.
Additionally, the Ang2-AT1R pathway mediates the conversion
of a soluble form of IL-6 (Murakami et al., 2019) and is
vasoconstrictive and pro-fibrotic (Albini et al., 2020; Banu
et al., 2020), playing an essential role in the pathogenesis of
COVID-19. The vasoconstrictive effect caused by the increase in
angiotensin 2 and subsequent dysfunction of the renin-
angiotensin-aldosterone system could be the reason some
patients have shallow blood oxygen levels but are not
breathless (Subbarao and Mahanty, 2020). One of the
suggested mechanisms behind this is that oxygen uptake is
obstructed because of congested and constricted blood vessels
in the lungs, but not due to accumulation of edema fluid in the
alveoli (Subbarao andMahanty, 2020). The most severe symptom
observed in COVID-19 patients is interstitial pulmonary edema,
which is common in 90% of cases (Lu et al., 2020). Some studies
have shown that this clinical manifestation is supported by ACE2
downregulation, which increases alveolar capillary permeability
and leads to interstitial and alveolar edema (Imai et al., 2005).

ACE2 expression is mainly associated with innate and
acquired immune responses: regulation of B cell-mediated
immunity, secretion of the cytokines IL-1, IL-10, TNFα, IL- 6,
and IL-8, and activation of neutrophils, NK cells, and T cells
(Costela-Ruiz et al., 2020). ACE-2 downregulation induces
macrophage activation syndrome (MAS) (Banu et al., 2020),
which is characterized by uncontrolled activation and
proliferation of T lymphocytes and macrophages, leading to a
cytokine storm and multiple organ failure (Bracaglia et al., 2017).

One of the leading causes of death fromCOVID-19 is a cytokine
storm or cytokine release syndrome, which is also associated with
ARDS (Wang et al., 2020). Severe cases tend to demonstrate
lymphocytopenia and a higher leukocyte count (Vabret et al.,
2020). Recognition of SARS-CoV-2 activates downstream
transduction pathways such as NFκB, JAK-STAT, and IRF3,
leading to a large release of inflammatory cytokines, such as IL-
6, IL-1β, IL-2, IL-8, IL-17, CCL3, and TNFα; such cytokines are
increased in severely ill patients (Catanzaro et al., 2020). The
expression of proinflammatory genes, such as chemokines, are
elevated in COVID-19 patients compared to in community-
acquired pneumonia patients and healthy controls, causing
chemokine-dominant hypercytokinemia (Zhou et al., 2020).

During infection of host cells by viruses, IFN-stimulated genes
(ISGs) and type I IFNs are expressed to induce an antiviral state
(Subbarao and Mahanty, 2020). IFN-stimulated genes (ISGs) are
increased in COVID-19 patients; however, compared to other
viruses, SARS-CoV infections induced fewer ISGs. In addition,
SARS-CoV-2 may have developed mechanisms to delay the IFN
response by inhibiting innate immune signaling (Zhou et al., 2020).
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Inflammatory cytokine IL-6 levels are significantly elevated in
critically ill patients’ serum; this is related to the need for mechanical
ventilation and mortality (Zhou et al., 2020). This cytokine’s
consistent elevation might function as a predictive biomarker for
disease severity (Gao et al., 2020). High IL-6 levels amplify the innate
immune system response by inducing the release of more cytokines,
heightening the influx of neutrophils (Hunter and Jones, 2015),
activating downstream JAK/STAT3 and MAPK pathways, and
subsequently activating several genes involved in inflammation
and immunity (Garbers et al., 2015; Jordan et al., 2017).

Beyond immune cells, IL-6 causes endothelial cell activation
and dysfunction by inducing the expression of chemoattractant
proteins and adhesion molecules that recruit immune cells into
the sub-intimal space (Qu et al., 2014). IL-6 also induces excessive
vascular endothelial growth factor (VEGF) production, leading to
enhanced angiogenesis (Tanaka et al., 2014). The effects induced
by IL-6 are associated with cardiovascular diseases; several studies
have already reported IL-6 alterations in such diseases and
atherosclerosis (Qu et al., 2014; Wainstein et al., 2017; Zhang
et al., 2018).

There is a high prevalence of cardiovascular diseases among
fatal cases of COVID-19 (Clerkin et al., 2020). The most common
manifestations are acute myocardial injury and arrhythmias
(Bansal, 2020). Myocardial injury is mainly manifested as an
increase in high-sensitivity cardiac troponin I levels (>28 pg/ml)
(Huang et al., 2020). The increase in some inflammatory
biomarkers (IL-6, ferritin, lactate dehydrogenase, and D-dimer)
concomitantly raises the possibility of this being associated with the
cytokine storm.Angiotensin II activates JAK/STAT (Schieffer et al.,
2000) and the NFκB pathway in COVID-19 patients (Kranzhofer
et al., 1999), increasing IL-6 production. Another mechanism is the
myocardial dysfunction from the direct effect of SARS-CoV-2 on
the heart, mediated by ACE2 (Clerkin et al., 2020).

Another striking characteristic of SARS-CoV-2 infection is the
high incidence of interstitial pulmonary edema and pulmonary
alveolar edema (Figure 2) (Tian et al., 2020), that is, leakage of
fluid from pulmonary capillaries into the interstitium and alveoli.
Lu et al. (2020) demonstrated that 90% of COVID-19 patients
showed interstitial pulmonary edema in the lungs. Some
pulmonary edema mechanisms may include ACE2
downregulation with increased alveolar-capillary permeability,
leading to interstitial and alveolar edema (Imai et al., 2005).

The enzyme NKA plays a pivotal role in edema clearance in
the lungs (Goncalves-de-Albuquerque et al., 2015). Active
transport of Na+ by basolateral NKA drives the transepithelial
fluid from the airspaces to the capillaries, improving edema
clearance (Gonçalves-de-Albuquerque et al., 2016). The
decreased expression of NKA results in the accumulation of
pulmonary fluid (Zhang et al., 2018). Activation of NKA is
also linked to lung inflammation, as reported by our group
(Goncalves-de-Albuquerque et al., 2012; Goncalves-de-
Albuquerque et al., 2013; Goncalves-de-Albuquerque et al.,
2014). The SARS-CoV infection has already been shown to
hamper pulmonary edema clearance by NKA due to the
flaking of the bronchiolar barrier, resulting in the
displacement of the enzyme (Nieto-Torres et al., 2015).

CG Use in COVID-19 Treatment?
So far, there are some vaccines in the final test phase (Sharma et al.,
2020). Among these, the sputnik V has already been widely used in
Russia to vaccinate doctors and teachers (Logunov et al., 2020).
Several drugs have also been suggested to treat patients infectedwith
SARS-CoV-2 (Elfiky, 2020; Hossain et al., 2020), including
chloroquine and its analogue, hydroxychloroquine. However,
some studies have shown that these antimalarial drugs can cause
adverse reactions, such as skin changes, neuromyopathy (Estes et al.,
1987), cardiotoxicity (Mahon et al., 2004), dysfunction of lysosomal
enzymes that leads to impairment of intracellular degradation
processes and accumulation of glycogen and phospholipids
(Homewood et al., 1972) and retinopathy (Marmor et al., 2011).
Moreover, in vitro tests using chloroquine and hydroxychloroquine
showed that these compounds did not decrease acute SARS-CoV-2
infection (Touret and De Lamballerie, 2020). In vivo tests have also
shown that chloroquine and hydroxychloroquine are not effective
in inhibiting SARS-CoV replication in a mouse model (Barnard
et al., 2006). Other potential compounds include
lopinavir–ritonavir; however, a study in hospitalized adult
COVID-19 patients showed that treatment with these drugs did
not significantly improve clinical improvement or decrease
mortality and viral RNA detection (Cao et al., 2020). Remdesivir
is effective against SARS, MERS, and SARS-CoV-2 in vitro; clinical
studies show promising results, but they are still under investigation
(Chatterjee, 2020).

Other prophylactic/therapeutic options should be explored,
including human monoclonal antibodies, IFNs, and siRNAs, and
low-molecular-weight SARS-CoV inhibitors targeted at any of
the specific processes involved in the viral replication cycle (such
as viral entry into the cells, proteolytic cleavage, RNA replication,
and transcription) (De Clercq and Field, 2006). In this review, we
have discussed the effect of CGs on respiratory viruses; these
compounds inhibit viral entry and replication without inducing
cell death. Additionally, they inhibit NKA, impairing Na+ and K+

movement (Buckalew, 2015). Intracellular transport of molecules
and ions (Boulant et al., 2015), such as K+ (Hartley et al., 1993)
and Na+ (Hoffmann et al., 2008) is essential for the viral
replication process, making NKA a possible molecular target
and CG an anti-SARS-CoV-2 drug candidate.

Some studies have shown the efficacy and safety of CGs.
Digoxin use reduced recurrent hospitalizations to treat
congestive heart failure (CHF) and decreased the severity of
CHF (Digitalis Investigation Group, 1997). Digoxin decreased
all-cause 30-day hospital admissions in older patients (mean age,
72 years) with chronic systolic CHF. Kaur et al. (2009) reported a
significant reduction in cerebral infarct size and prevention of
ischemia/reperfusion-induced cognitive and motor deficits after
digoxin treatment. An in vitro study has also shown the inhibition
of prostate cancer cell proliferation by digoxin, digitoxin, and
ouabain without damaging normal cells (Yeh et al., 2001).

A low concentration of CG triggers Src signaling via NKA,
resulting in the inhibition of SARS-CoV infection (Figure 1B)
(Burkard et al., 2015). Src modulates PI3K-AKT signaling (Liu
et al., 2007) and is involved in ouabain-induced Ca2+ oscillation
by affecting the interaction between the IP3 receptor and α1 NKA
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(Fontana et al., 2013). The activation of NKA-dependent PI3K-
PDK1 signaling by ouabain is an essential contribution to anti-
transmissible gastroenteritis coronavirus activity (Yang et al.,
2018). Protein kinase C also regulates NKA affinity by
compounds (Ridge et al., 2003). The interaction of ouabain
and NKA also activates a cellular signaling cascade involving
Src, mitoKATP, and reactive oxygen species (ROS). In this
pathway, ouabain protects outer mitochondrial membrane
integrity, adenine nucleotide compartmentation, and energy
transfer efficiency, boosting the myocardium’s resistance to
oxygen deficiency (Pasdois et al., 2007). In addition, Src
activation by CG can trigger MAPK extracellular signal-
regulated kinase 1/2 signaling through the Raf-MEK cascade,
causing effects independent of alterations to intracellular calcium
(Wong et al., 2018). Nimmerjahn et al. (2004) demonstrated the
importance of NFκB for influenza virus (A/FPV/Bratislava
(H7N7) and A/WSN/33 (H1N1) strains) infection in human
cells, reporting that cells with low NFκB activity are resistant to
influenza virus infection and a normalization increase in NFκB
activity suppresses viral infection. In a mouse model of SARS-
CoV infection, blockage of NFκB activation prevented cytokine
storms, resulting in increased survival (DeDiego et al., 2014).
Digoxin blocks the host cytokine storm induced by influenza (A/
Wuhan/H3N2/359/95 strain), inhibiting NFκB and nuclear factor
of activated T-cells (NFAT). Inhibition of NFκB and NFAT
blocks TNFα, GRO/KC, MCP1, MIP2, IL-1β, TGFβ, and
IFNγ, decreasing the inflammatory process and consequently
improving the infection outcome. Ouabain and digitoxin show

antiviral activity, inhibiting mRNA and viral protein expression
of SARS-CoV-2 (Cho et al., 2020). Based on these data, CGs can
be considered anti-SARS-CoV-2 drug candidates.

FINAL REMARKS

CGs are steroidal compounds known to inhibit NKA activity
by binding to the enzyme’s α subunit. Initially, it was believed
that the inhibitory effect on NKA would lead to changes in the
ionic gradient; however, it was discovered that CGs also
trigger cell signaling activation through NKA inhibition.
The first use of a CG in medicine focused on treating
patients with heart failure. This is because CGs are the
most potent inotropic agents; this feature is characterized
by the activation of the Na+/Ca++ exchanger, responsible for
removing intracellular Na+ accumulation through exchange
with Ca++ and favoring muscle contraction. Many biological
activities have been assigned to CGs, including antitumor,
anti-inflammatory, molluscicide, pro-apoptotic, and antiviral
activities. The latter has raised interest because some viral
infections such as SARS-CoV-2 do not have specific
treatments or vaccines.

Some drugs such as chloroquine, hydroxychloroquine,
lopinavir-ritonavir, and remdesivir have been tested as
candidates for alternative COVID-19 therapies. Research has
shown the antiviral activity of ouabain, bufalin, and digitoxin
on MERS-CoV and TGEV (Burkard et al., 2015), while ouabain

FIGURE 2 | Representation of healthy alveoli and SARS-CoV-2-injured alveoli. Representation of alveolar damage during COVID-19 infection, with interstitial and
alveolar edema, cytokine activation, neutrophil migration, Na+/K+-ATPase, water channel assisting the edema removal, diapedesis, recruitment of T cells and NK cells,
epithelial cell death, and initial fibrin deposition. Created with BioRender.com.
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and digitoxin have antiviral effects against SARS-CoV-2 (Hoehl
et al., 2020). The mechanism of action of CG on coronaviruses may
involve cell signaling activation by NKA inhibition. SARS-CoV-2
infection activates NFκB, and digoxin inhibits NFκB and
inflammatory cytokine production, directly interfering with viral
yield. This evidence is supported by a study showing higher
resistance to infection by the influenza virus (A/FPV/Bratislava
(H7N7) and A/WSN/33 (H1N1) strains) in cells with low NFκB
activity (Nimmerjahn et al., 2004). NFκB appears to be regulated by
Src (Kang et al., 2006) and NFκB activation can occur due to the
alteration of intracellular Ca+ from Src-EGFR-RAS regulation (Li
and Xie, 2009). The antiviral effect of CGs may therefore be
associated with Src activation (Burkard et al., 2015).

The antiviral activity of CGs appears to be related to the
activation of cell signaling through NKA inhibition. Because CG
use is based on its antiviral and anti-inflammatory effects, it
combines two strategies: decreasing viral replication and
negatively modulating the exacerbated inflammatory response
observed in COVID-19 patients. Depending on the dose, CGs can
induce different effects, activating signaling without drastically
affecting NKA activity and, therefore, the ionic gradient. Thus,
further studies are required to determine the effect of NKA
inhibitors on SARS-CoV-2 infection.
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